自考线性代数(经管类)笔记-重点解析
自考线性代数经管类笔记
![自考线性代数经管类笔记](https://img.taocdn.com/s3/m/3dc77c3830b765ce0508763231126edb6e1a7646.png)
自考线性代数经管类笔记线性代数是一门应用广泛的数学学科,对于经管类专业的学生来说尤为重要。
本篇笔记将详细介绍线性代数的基本概念和常用方法,以及其中涉及到的经管类应用。
一、向量和矩阵1.1 向量的定义和运算向量是由有序的一组数按照一定顺序排列而成的对象,常用于表示多维度的数据。
向量的加法和数乘是基本的运算操作,能够实现向量之间的合成和缩放。
1.2 矩阵的定义和运算矩阵是由多个向量按行或按列排列而成的矩形数组。
矩阵的加法、数乘和乘法是常见的运算操作,通过这些运算可以实现线性方程组的求解和数据的变换。
二、线性方程组2.1 线性方程组的概念线性方程组是由一组线性方程组成的方程集合,可以用矩阵和向量的形式表示。
线性方程组通常用来描述多个变量之间的关系。
2.2 线性方程组的解法高斯消元法是求解线性方程组的常用方法,通过矩阵的初等行变换将线性方程组化为简化的行阶梯形式,从而得到方程组的解。
三、矩阵的应用3.1 线性变换线性变换是指从一个向量空间到另一个向量空间的一种特殊变换,可以用矩阵表示。
在经管类问题中,线性变换常用于描述经济模型、市场规模和供求关系等。
3.2 特征值与特征向量矩阵的特征值和特征向量是描述矩阵性质的重要指标,可以用来判断矩阵的稳定性和变换的特征。
四、行列式4.1 行列式的概念行列式是一个与矩阵相关的标量,可以用来判断矩阵的可逆性、求解线性方程组和计算面积、体积等几何量。
4.2 行列式的性质行列式具有一系列重要的性质,包括行列式的展开性质、可逆矩阵的行列式性质和矩阵乘法的行列式性质等。
五、矩阵的特殊类型5.1 对称矩阵对称矩阵是指矩阵的转置矩阵等于矩阵本身,具有特殊的性质和应用,常用于描述系统的对称程度和分析力学中的刚体问题。
5.2 正定矩阵正定矩阵是指矩阵的所有特征值都大于零,是优化问题和概率论中常见的矩阵类型。
六、线性代数的应用6.1 经济学中的应用线性代数在经济学中有广泛的应用,如求解均衡价格、计算生产函数、分析供求关系等。
自考线性代数(经管类)-考点
![自考线性代数(经管类)-考点](https://img.taocdn.com/s3/m/3c492541793e0912a21614791711cc7931b778d4.png)
线性代数第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数得到下列式子:称为一个二阶行列式,其运算规则为2.三阶行列式由9个数得到下列式子:称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式对任何一个元素,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素的余子式,记成例如,,再记,称为元素的代数余子式.例如,那么,三阶行列式定义为我们把它称为按第一列的展开式,经常简写成4.n阶行列式一阶行列式n阶行列式其中为元素的代数余子式.5.特殊行列式上三角行列式下三角行列式对角行列式(二)行列式的性质性质1 行列式和它的转置行列式相等,即性质2 用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3 互换行列式的任意两行(列),行列式的值改变符号.推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4 行列式可以按行(列)拆开.性质5 把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即或前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即或(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式解:观察到第二列第四行的元素为0,而且第二列第一行的元素是,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.例2 计算行列式解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子,再将后三行都减去第一行:方法2 观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与有相同值的五阶行列式:这样得到一个“箭形”行列式,如果,则原行列式的值为零,故不妨假设,即,把后四列的倍加到第一列上,可以把第一列的(-1)化为零.例3 三阶范德蒙德行列式(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为如果其系数行列式,则方程组必有唯一解:其中是把D中第j列换成常数项后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2 设有含n个方程的n元齐次线性方程组如果其系数行列式,则该方程组只有零解:换句话说,若齐次线性方程组有非零解,则必有,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章矩阵(一)矩阵的定义1.矩阵的概念由个数排成的一个m行n列的数表称为一个m行n列矩阵或矩阵当时,称为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用或O表示2.3个常用的特殊方阵:①n阶对角矩阵是指形如的矩阵②n阶单位方阵是指形如的矩阵③n阶三角矩阵是指形如的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“”与矩阵记号“”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵,,若,,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即,则称矩阵A与B相等,记为因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设,是两个同型矩阵则规定注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设,k为任一个数,则规定故数k与矩阵A的乘积就是A中所有元素都乘以k,要注意数k与行列式D 的乘积,只是用k乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设,,则规定其中由此定义可知,只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,而且矩阵AB的行数为A的行数,AB的列数为B的列数,而矩阵AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即②在时,不能推出或,因而也不满足消去律.特别,若矩阵A与B满足,则称A与B可交换,此时A与B必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A为n阶方阵,则规定特别又若,则规定称为A的方阵多项式,它也是一个n阶方阵6.矩阵的转置设A为一个矩阵,把A中行与列互换,得到一个矩阵,称为A的转置矩阵,记为,转置运算满足以下运算律:,,,由转置运算给出对称矩阵,反对称矩阵的定义设A为一个n阶方阵,若A满足,则称A为对称矩阵,若A满足,则称A为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n阶方阵,有方阵的行列式的概念.设为一个n阶方阵,则由A中元素构成一个n阶行列式,称为方阵A的行列式,记为方阵的行列式具有下列性质:设A,B为n阶方阵,k为数,则①;②③(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A为一个n阶方阵,若存在另一个n阶方阵B,使满足,则把B称为A的逆矩阵,且说A为一个可逆矩阵,意指A是一个可以存在逆矩阵的矩阵,把A的逆矩阵B记为,从而A与首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A,B为同阶可逆矩阵,为常数,则①是可逆矩阵,且;②AB是可逆矩阵,且;③kA是可逆矩阵,且④是可逆矩阵,且⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则2.伴随矩阵设为一个n阶方阵,为A的行列式中元素的代数余子式,则矩阵称为A的伴随矩阵,记为(务必注意中元素排列的特点)伴随矩阵必满足(n为A的阶数)3.n阶阵可逆的条件与逆矩阵的求法定理:n阶方阵A可逆,且推论:设A,B均为n阶方阵,且满足,则A,B都可逆,且,例1 设(1)求A的伴随矩阵(2)a,b,c,d满足什么条件时,A可逆?此时求解:(1)对二阶方阵A,求的口诀为“主交换,次变号”即(2)由,故当时,即,A为可逆矩阵此时(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A的列分块方式与右矩阵B的行分块方式一致,然后把子块当作元素来看待,相乘时A的各子块分别左乘B的对应的子块.2.准对角矩阵的逆矩阵形如的分块矩阵称为准对角矩阵,其中均为方阵空白处都是零块.若都是可逆矩阵,则这个准对角矩阵也可逆,并且(五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A的某两行(列);(2)用一个非零数k乘A的某一行(列);(3)把A中某一行(列)的k倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为,和,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A为任一个矩阵,当在A的左边乘一个初等方阵的乘积相当于对A作同类型的初等行变换;在A的右边乘一个初等方阵的乘积相当于对A作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A经过若干次初等变换变为B,则称A与B等价,记为对任一个矩阵A,必与分块矩阵等价,称这个分块矩阵为A的等价标准形.即对任一个矩阵A,必存在n阶可逆矩阵P及n阶可逆矩阵Q,使得5.用初等行变换求可逆矩阵的逆矩阵设A为任一个n阶可逆矩阵,构造矩阵(A,E)然后注意:这里的初等变换必须是初等行变换.例2 求的逆矩阵解:则例3 求解矩阵方程解:令,则矩阵方程为,这里A即为例2中矩阵,是可逆的,在矩阵方程两边左乘,得也能用初等行变换法,不用求出,而直接求则(六)矩阵的秩1.秩的定义设A为矩阵,把A中非零子式的最高阶数称为A的秩,记为秩或零矩阵的秩为0,因而,对n阶方阵A,若秩,称A为满秩矩阵,否则称为降秩矩阵.2.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A,只要用初等行变换把A化成阶梯形矩阵T,则秩(A)=秩(T)=T中非零行的行数.3.与满秩矩阵等价的条件n阶方阵A满秩A可逆,即存在B,使A非奇异,即A的等价标准形为EA可以表示为有限个初等方阵的乘积齐次线性方程组只有零解对任意非零列向量b,非齐次线性方程组有唯一解A的行(列)向量组线性无关A的行(列)向量组为的一个基任意n维行(列)向量均可以表示为A的行(列)向量组的线性组合,且表示法唯一.A的特征值均不为零为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组可以表示成矩阵形式,其中为系数矩阵,为常数列矩阵,为未知元列矩阵.从而线性方程组与增广矩阵一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.第三章向量空间(一)n维向量的定义与向量组的线性组合1. n维向量的定义与向量的线性运算由n个数组成的一个有序数组称为一个n维向量,若用一行表示,称为n维行向量,即矩阵,若用一列表示,称为n维列向量,即矩阵与矩阵线性运算类似,有向量的线性运算及运算律.2.向量的线性组合设是一组n维向量,是一组常数,则称为的一个线性组合,常数称为组合系数.若一个向量可以表示成则称是的线性组合,或称可用线性表出.3.矩阵的行、列向量组设A为一个矩阵,若把A按列分块,可得一个m维列向量组称之为A的列向量组.若把A按行分块,可得一个n维行向量组称之为A的行向量组.4.线性表示的判断及表出系数的求法.向量能用线性表出的充要条件是线性方程组有解,且每一个解就是一个组合系数.例1 问能否表示成,,的线性组合?解:设线性方程组为对方程组的增广矩阵作初等行变换:则方程组有唯一解所以可以唯一地表示成的线性组合,且(二)向量组的线性相关与线性无关1.线性相关性概念设是m个n维向量,如果存在m个不全为零的数,使得,则称向量组线性相关,称为相关系数.否则,称向量线性无关.由定义可知,线性无关就是指向量等式当且仅当时成立.特别单个向量线性相关;单个向量线性无关2.求相关系数的方法设为m个n维列向量,则线性相关m元齐次线性方程组有非零解,且每一个非零解就是一个相关系数矩阵的秩小于m例2 设向量组,试讨论其线性相关性.解:考虑方程组其系数矩阵于是,秩,所以向量组线性相关,与方程组同解的方程组为令,得一个非零解为则3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4 无关组的接长向量组必无关.(三)向量组的极大无关组和向量组的秩1.向量组等价的概念若向量组S可以由向量组R线性表出,向量组R也可以由向量组S线性表出,则称这两个向量组等价.2.向量组的极大无关组设T为一个向量组,若存在T的一个部分组S,它是线性无关的,且T中任一个向量都能由S线性表示,则称部分向量组S为T的一个极大无关组.显然,线性无关向量组的极大无关组就是其本身.对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质:定理1 向量组T与它的任一个极大无关组等价,因而T的任意两个极大无关组等价.定理2 向量组T的任意两个极大无关组所含向量的个数相同.3.向量组的秩与矩阵的秩的关系把向量组T的任意一个极大无关组中的所含向量的个数称为向量组T的秩.把矩阵A的行向量组的秩,称为A的行秩,把A的列向量组的秩称为A的列秩.定理:对任一个矩阵A,A的列秩=A的行秩=秩(A)此定理说明,对于给定的向量组,可以按照列构造一个矩阵A,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:解:把所有的行向量都转置成列向量,构造一个矩阵,再用初等行变换把它化成简化阶梯形矩阵易见B的秩为4,A的秩为4,从而秩,而且B中主元位于第一、二、三、五列,那么相应地为向量组的一个极大无关组,而且(四)向量空间1.向量空间及其子空间的定义定义1 n维实列向量全体(或实行向量全体)构成的集合称为实n维向量空间,记作定义2 设V是n维向量构成的非空集合,若V对于向量的线性运算封闭,则称集合V是的子空间,也称为向量空间.2.向量空间的基与维数设V为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V的一个基,把向量组的秩称为向量空间的维数.显然,n维向量空间的维数为n,且中任意n个线性无关的向量都是的一个基.3.向量在某个基下的坐标设是向量空间V的一个基,则V中任一个向量都可以用唯一地线性表出,由r个表出系数组成的r维列向量称为向量在此基下的坐标.第四章线性方程组(一)线性方程组关于解的结论定理1 设为n元非齐次线性方程组,则它有解的充要条件是定理2 当n元非齐次线性方程组有解时,即时,那么(1)有唯一解;(2)有无穷多解.定理3 n元齐次线性方程组有非零解的充要条件是推论1 设A为n阶方阵,则n元齐次线性方程组有非零解推论2 设A为矩阵,且,则n元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组的解的全体所组成的向量集合显然V是非空的,因为V中有零向量,即零解,而且容易证明V对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V成为n维列向量空间的一个子空间,我们称V为方程组的解空间(三)齐次线性方程组的基础解系与通解把n元齐次线性方程组的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n元齐次线性方程组有非零解时,即时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为求基础解系与通解的方法是:对方程组先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:,有非零解,取为自由未知量,可得一般解为写成向量形式,令,为任意常数,则通解为可见,为方程组的一个基础解系.(四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设为一个n元非齐次线性方程组,为它的导出组,则它们的解之间有以下性质:性质1 如果是的解,则是的解性质2 如果是的解,是的解,则是的解由这两个性质,可以得到的解的结构定理:定理设A是矩阵,且,则方程组的通解为其中为的任一个解(称为特解),为导出组的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2 当参数a,b为何值时,线性方程组有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:_当时,,有唯一解;当时,,,无解;当时,,有无穷多解.此时,方程组的一般解为令为任意常数,故一般解为向量形式,得方程组通解为。
自考本科线性代数(经管类)知识汇总(红字重点)
![自考本科线性代数(经管类)知识汇总(红字重点)](https://img.taocdn.com/s3/m/effab51d33687e21ae45a90a.png)
自考高数线性代数笔记第一章行列式行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,解因为所以8-3a=0,时例2当x取何值时,解:.解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
所以在行列式的第i行和第j列的交叉位置上。
为叙述方便起见,我们用(i,j)表示这个位置。
n阶行列式通常也简记作。
n阶行列式也是一个数,至于它的值的计算方法需要引入下面两个概念。
自考线性代数(04184)经管类复习提纲内含经典例题分类讲解
![自考线性代数(04184)经管类复习提纲内含经典例题分类讲解](https://img.taocdn.com/s3/m/a502c3d5804d2b160b4ec0b0.png)
线性代数复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
自考04184线性代数(经管类)讲义
![自考04184线性代数(经管类)讲义](https://img.taocdn.com/s3/m/e03a07099b6648d7c0c74652.png)
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
自考线性代数(经管类)重点内容
![自考线性代数(经管类)重点内容](https://img.taocdn.com/s3/m/7e963522dd36a32d73758128.png)
《线性代数(经管类)》重点内容前言:很多自考学员反映,在自考复习过程中大多数时候感到既畏惧,又无从下手。
那么,如何才能在有限的时间里,让我们的学员了解报考课程的重点难点,做到胸有成竹,运筹帷幄,从而提高复习效率,卓有成效地提高学生的成绩呢,自考网教学研发中心各专业研发团队特结合近10年自学考试历年真题的命题趋势及规律总结出考试重点,考生通过对重点考点的复习可以系统掌握考试常考的的知识点,明确复习目标,减轻考生的复习压力,减少复习时间,提高复习质量,让考生轻轻松松备考,简简单单通过考试。
第一章行列式1.简单的二阶、三阶行列式的计算。
(P3)2.利用行列式的定义计算行列式。
(P9)3.利用行列式的六大性质计算行列式。
(P11)4.利用克拉默法则求解线性方程组。
(P27)第二章矩阵5.矩阵的乘法运算。
(P37)6.矩阵乘法运算规律。
(P41)7.方阵的行列式具有的性质。
(P45)8.方阵的逆矩阵及其具有的性质。
(P48)9.利用矩阵的初等变换求解逆矩阵。
(P66)10.矩阵秩的求法。
(P70)11.利用矩阵求解线性方程组。
(P75)第三章向量空间12.线性表示。
(P83)13.线性相关和线性无关的性质与证明。
(P88)14.求向量组的极大无关组。
(P94)15.向量组的秩具有的性质。
(P97)16.求向量组的秩。
(P99)17.求向量空间的基与维数。
(P106)第四章线性方程组18.齐次线性方程组的性质。
(P110)19.求解齐次线性方程组。
(P114)20.非齐次线性方程组解的判别定理。
(P119)21.非齐次线性方程组的求通解方法。
(P)第五章特征值与特征向量22.特征值与特征向量的定义求法。
(P129)23.特征值与特征向量的一些重要结论。
(P131)24.特征值的性质。
(P132)25.求特征值与特征向量的一般方法。
(P133)26.方阵相似具有的性质。
(P138)27.求向量内积。
(P146)28.正交矩阵的性质与证明。
自考04184线性代数(经管类)讲义
![自考04184线性代数(经管类)讲义](https://img.taocdn.com/s3/m/a426018069dc5022abea0008.png)
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
例如)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
线性代数(经管类)笔记
![线性代数(经管类)笔记](https://img.taocdn.com/s3/m/48225b844b73f242326c5f0e.png)
第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数得到下列式子:称为一个二阶行列式,其运算规则为2.三阶行列式由9个数得到下列式子:称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式对任何一个元素,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素的余子式,记成例如,,再记,称为元素的代数余子式.例如,,那么,三阶行列式定义为我们把它称为按第一列的展开式,经常简写成4.n阶行列式一阶行列式n阶行列式其中为元素的代数余子式.5.特殊行列式上三角行列式下三角行列式对角行列式(二)行列式的性质性质1 行列式和它的转置行列式相等,即性质2用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3互换行列式的任意两行(列),行列式的值改变符号.推论1如果行列式中有某两行(列)相同,则此行列式的值等于零.推论 2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4行列式可以按行(列)拆开.性质 5 把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即或前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即或(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式解:观察到第二列第四行的元素为0,而且第二列第一行的元素是,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.例2 计算行列式解:方法1这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子,再将后三行都减去第一行:方法 2 观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与有相同值的五阶行列式:这样得到一个“箭形”行列式,如果,则原行列式的值为零,故不妨假设,即,把后四列的倍加到第一列上,可以把第一列的(-1)化为零.例3 三阶范德蒙德行列式(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为如果其系数行列式,则方程组必有唯一解:其中是把D中第j列换成常数项后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2 设有含n个方程的n元齐次线性方程组如果其系数行列式,则该方程组只有零解:换句话说,若齐次线性方程组有非零解,则必有,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.例4当取何值时,齐次线性方程组只有零解?解:方程组的系数行列式由于故当且且时,方程组只有零解.第二章矩阵(一)矩阵的定义1.矩阵的概念由个数排成的一个m行n列的数表称为一个m行n列矩阵或矩阵当时,称为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用或O表示2.3个常用的特殊方阵:①n阶对角矩阵是指形如的矩阵②n阶单位方阵是指形如的矩阵③n阶三角矩阵是指形如的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“”与矩阵记号“”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵,,若,,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即,则称矩阵A与B相等,记为因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设,是两个同型矩阵则规定注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设,k为任一个数,则规定故数k与矩阵A的乘积就是A中所有元素都乘以k,要注意数k与行列式D的乘积,只是用k乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设,,则规定其中由此定义可知,只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,而且矩阵AB的行数为A的行数,AB的列数为B的列数,而矩阵AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即②在时,不能推出或,因而也不满足消去律.特别,若矩阵A与B满足,则称A与B可交换,此时A与B必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A为n阶方阵,则规定特别又若,则规定称为A的方阵多项式,它也是一个n阶方阵6.矩阵的转置设A为一个矩阵,把A中行与列互换,得到一个矩阵,称为A 的转置矩阵,记为,转置运算满足以下运算律:,,,由转置运算给出对称矩阵,反对称矩阵的定义设A为一个n阶方阵,若A满足,则称A为对称矩阵,若A满足,则称A为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n阶方阵,有方阵的行列式的概念.设为一个n阶方阵,则由A中元素构成一个n阶行列式,称为方阵A的行列式,记为方阵的行列式具有下列性质:设A,B为n阶方阵,k为数,则①;②③(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A为一个n阶方阵,若存在另一个n阶方阵B,使满足,则把B称为A的逆矩阵,且说A为一个可逆矩阵,意指A是一个可以存在逆矩阵的矩阵,把A的逆矩阵B记为,从而A与首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A,B为同阶可逆矩阵,为常数,则①是可逆矩阵,且;②AB是可逆矩阵,且;③kA是可逆矩阵,且④是可逆矩阵,且⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则2.伴随矩阵设为一个n阶方阵,为A的行列式中元素的代数余子式,则矩阵称为A的伴随矩阵,记为(务必注意中元素排列的特点)伴随矩阵必满足(n为A的阶数)3.n阶阵可逆的条件与逆矩阵的求法定理:n阶方阵A可逆,且推论:设A,B均为n阶方阵,且满足,则A,B都可逆,且,例1 设(1)求A的伴随矩阵(2)a,b,c,d满足什么条件时,A可逆?此时求解:(1)对二阶方阵A,求的口诀为“主交换,次变号”即(2)由,故当时,即,A为可逆矩阵此时(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A的列分块方式与右矩阵B的行分块方式一致,然后把子块当作元素来看待,相乘时A的各子块分别左乘B的对应的子块.2.准对角矩阵的逆矩阵形如的分块矩阵称为准对角矩阵,其中均为方阵空白处都是零块.若都是可逆矩阵,则这个准对角矩阵也可逆,并且五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A的某两行(列);(2)用一个非零数k乘A的某一行(列);(3)把A中某一行(列)的k倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为,和,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A为任一个矩阵,当在A的左边乘一个初等方阵的乘积相当于对A作同类型的初等行变换;在A的右边乘一个初等方阵的乘积相当于对A作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A经过若干次初等变换变为B,则称A与B等价,记为对任一个矩阵A,必与分块矩阵等价,称这个分块矩阵为A 的等价标准形.即对任一个矩阵A,必存在n阶可逆矩阵P及n阶可逆矩阵Q,使得5.用初等行变换求可逆矩阵的逆矩阵设A为任一个n阶可逆矩阵,构造矩阵(A,E)然后注意:这里的初等变换必须是初等行变换.例2 求的逆矩阵解:则例3 求解矩阵方程解:令,则矩阵方程为,这里A即为例2中矩阵,是可逆的,在矩阵方程两边左乘,得也能用初等行变换法,不用求出,而直接求则(六)矩阵的秩1.秩的定义设A为矩阵,把A中非零子式的最高阶数称为A的秩,记为秩或零矩阵的秩为0,因而,对n阶方阵A,若秩,称A为满秩矩阵,否则称为降秩矩阵.2.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A,只要用初等行变换把A化成阶梯形矩阵T,则秩(A)=秩(T)=T中非零行的行数.3.与满秩矩阵等价的条件n阶方阵A满秩A可逆,即存在B,使A非奇异,即A的等价标准形为EA可以表示为有限个初等方阵的乘积齐次线性方程组只有零解对任意非零列向量b,非齐次线性方程组有唯一解A的行(列)向量组线性无关A的行(列)向量组为的一个基任意n维行(列)向量均可以表示为A的行(列)向量组的线性组合,且表示法唯一.A的特征值均不为零为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组可以表示成矩阵形式,其中为系数矩阵,为常数列矩阵,为未知元列矩阵.从而线性方程组与增广矩阵一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.例4解线性方程组解:把线性方程组的增广矩阵化成简化阶梯形矩阵:得到同解线性方程组即或取为自由未知量,可知方程组有无穷多解,上式就是所给方程组的一般解.2.向量的线性组合设是一组n维向量,是一组常数,则称为的一个线性组合,常数称为组合系数.若一个向量可以表示成则称是的线性组合,或称可用线性表出.3.矩阵的行、列向量组设A为一个矩阵,若把A按列分块,可得一个m维列向量组称之为A的列向量组.若把A按行分块,可得一个n维行向量组称之为A的行向量组.4.线性表示的判断及表出系数的求法.向量能用线性表出的充要条件是线性方程组有解,且每一个解就是一个组合系数.例1 问能否表示成,,的线性组合?解:设线性方程组为对方程组的增广矩阵作初等行变换:则方程组有唯一解所以可以唯一地表示成的线性组合,且(二)向量组的线性相关与线性无关1.线性相关性概念设是m个n维向量,如果存在m个不全为零的数,使得,则称向量组线性相关,称为相关系数.否则,称向量线性无关.由定义可知,线性无关就是指向量等式当且仅当时成立.特别单个向量线性相关;单个向量线性无关2.求相关系数的方法设为m个n维列向量,则线性相关m元齐次线性方程组有非零解,且每一个非零解就是一个相关系数矩阵的秩小于m例2 设向量组,试讨论其线性相关性.解:考虑方程组其系数矩阵于是,秩,所以向量组线性相关,与方程组同解的方程组为令,得一个非零解为则3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4无关组的接长向量组必无关.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:解:把所有的行向量都转置成列向量,构造一个矩阵,再用初等行变换把它化成简化阶梯形矩阵易见B的秩为4,A的秩为4,从而秩,而且B中主元位于第一、二、三、五列,那么相应地为向量组的一个极大无关组,而且(四)向量空间1.向量空间及其子空间的定义定义1 n维实列向量全体(或实行向量全体)构成的集合称为实n维向量空间,记作定义2 设V是n维向量构成的非空集合,若V对于向量的线性运算封闭,则称集合V是的子空间,也称为向量空间.2.向量空间的基与维数设V为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V的一个基,把向量组的秩称为向量空间的维数.显然,n维向量空间的维数为n,且中任意n个线性无关的向量都是的一个基.3.向量在某个基下的坐标设是向量空间V的一个基,则V中任一个向量都可以用唯一地线性表出,由r个表出系数组成的r维列向量称为向量在此基下的坐标.例4证明:构成的一个基,并求出在此基下的坐标.解:考虑由这三个3维向量组成的三阶行列式所以线性无关,它们构成的基,令由得唯一解,则所求在此基下的坐标为第四章线性方程组(一)线性方程组关于解的结论定理1 设为n元非齐次线性方程组,则它有解的充要条件是定理2当n元非齐次线性方程组有解时,即时,那么(1)有唯一解;(2)有无穷多解.定理3 n元齐次线性方程组有非零解的充要条件是推论1设A为n阶方阵,则n元齐次线性方程组有非零解推论2 设A为矩阵,且,则n元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组的解的全体所组成的向量集合显然V是非空的,因为V中有零向量,即零解,而且容易证明V对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V成为n维列向量空间的一个子空间,我们称V为方程组的解空间(三)齐次线性方程组的基础解系与通解把n元齐次线性方程组的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n元齐次线性方程组有非零解时,即时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为求基础解系与通解的方法是:对方程组先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:,有非零解,取为自由未知量,可得一般解为写成向量形式,令,为任意常数,则通解为可见,为方程组的一个基础解系.(四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设为一个n元非齐次线性方程组,为它的导出组,则它们的解之间有以下性质:性质1 如果是的解,则是的解性质2如果是的解,是的解,则是的解由这两个性质,可以得到的解的结构定理:定理设A是矩阵,且,则方程组的通解为其中为的任一个解(称为特解),为导出组的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2当参数a,b为何值时,线性方程组有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:_当时,,有唯一解;当时,,,无解;当时,,有无穷多解.此时,方程组的一般解为令为任意常数,故一般解为向量形式,得方程组通解为第五章特征值与特征向量(一)特征值与特征向量1.实方阵的特征值与特征向量的定义与求法设A为一个n阶实方阵,若存在一个数及一个非零n维列向量,使得,则称为A的一个特征值,称是A的属于这个特征值的一个特征向量.特征值必是特征多项式的根,而相应特征向量必是齐次线性方程组的非零解,反之也对.例1 设,求A的特征值和特征向量.解:A的特征方程为则为A的两个特征值.对,求解,即得方程组的一个基础解系为,则为A的属于的一个特征向量.对,同理可求出的一个基础解系为则为A的属于的一个特征向量2.特征值和特征向量的性质性质1设是n阶方阵的全体特征值,则必有这里为矩阵A的n个对角元之和,称为A的迹.性质2 设已知为A的特征值,为相应特征向量,即,那么对任意多项式必有,特别性质3 n阶方阵A的属于不同特征值的特征向量必线性无关.(二)方阵的相似变换1.矩阵相似的定义与相似矩阵的基本性质设A和B是两个n阶方阵,如果存在某个n阶可逆矩阵P,使得,则称A和B是相似的,记为A~B.相似矩阵必有相同的特征多项式,因而必有相同的特征值,相同的迹和相同的行列式,但反之不一定.2.方阵相似对角化若n阶方阵A能相似于一个n阶对角矩阵,则说方阵A是可以相似对角化的,有以下基本定理:定理n阶方阵A可相似对角化A有n个线性无关的特征向量.推论当n阶方阵A有n个互不相同的特征值时,A必能相似对角化.3.方阵相似对角化的方法设A为n阶实方阵,若它能相似对角化,即A有n个线性无关的特征向量,不妨设它们属于的特征值依次为(这里可以有重复的)则令为一个n阶可逆矩阵,必有称这个对角矩阵为A的相似标准形.例2 设,求A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形解:A的特征方程为则为A的特征值.可求出属于的线性无关特征向量为,属于二重特征值的线性无关特征向量为于是为A的三个特征无关特征向量,A可相似对角化令为可逆矩阵.使得,为A的相似标准形(三)向量内积和正交矩阵1.向量内积的定义和基本性质下面我们在n维向量空间中讨论设为两个n维列向量,把实数,称为向量与的内积向量的内积具有对称性、线性性与正定性.2.向量的长度n维列向量的长度为实数。
自考线性代数(经管类)各章考核重点解析
![自考线性代数(经管类)各章考核重点解析](https://img.taocdn.com/s3/m/9eed406748d7c1c708a1458e.png)
自考线性代数(经管类)各章考核重点解析第一章行列式(一)考核知识点1.行列式定义。
2.行列式的性质与计算。
3.克拉默(Cramer)法则。
(二)自学要求学习本章,要确切了解行列式的定义;理解行列式的性质;熟练掌握行列式的计(特别是低阶的数字行列式和具有特殊形状的文字或数字行列式),会计算简单的行式;理解克拉默法则在线性方程组求解理论中的重要性。
本章的重点;行列式的性质与计算。
难点;n阶行列式的计算(三)考核要求1.行列式的定义。
要求达到“识记”层次。
1.1熟练计算二阶与三阶行列式。
1.2清楚行列式中元素的余子式和代数余子式的定义。
1.3了解行列式的按其第一列展开的递归定义。
1.4熟记三角行列式的计算公式。
2.行列式的性质与计算。
要求达到“简单应用”层次。
2.1掌握并会熟练运用行列式的性质。
2.2掌握行列式的基本方法。
2.3回计算具有特殊形状的数字和文字行列式以及简单的n阶行列式。
2.4低阶范德蒙德行列式的计算。
3.克拉默法则。
要求达到“简单应用”层次。
3.1知道克拉默法则。
3.2会用克拉默法则求解简单的线性方程组。
第二章矩阵(一)考核知识点1.矩阵的各种运算的定义及其运算律。
重点是矩阵的乘法。
2. 分快矩阵的定义及其运算。
3.逆矩阵的定义与性质,伴随矩阵,方阵可逆的判别条件。
4.矩阵的初等变换和初等矩阵。
5.可逆矩阵的逆矩阵的求法。
6.矩阵的秩的定义与求法。
(二)自学要求学习本章,要求掌握矩阵的各种运算及其运算法则;知道方阵可逆的充分必要条件;会求可逆矩阵的逆矩阵;熟练掌握矩阵的初等变换;理解矩阵的秩定义,会求矩阵的秩。
本章的重点;矩阵运算及其矩阵的求法,矩阵的初等变换。
难点;逆矩阵的求法及矩阵的概念。
(三)考核要求1.矩阵的定义。
要求达到“识记”层次。
1.1理解矩阵的定义。
1.2知道三角矩阵、对角矩阵、单位矩阵和零矩阵的定义。
1.3清楚矩阵与行列式是两个有本质区别的概念,清楚矩阵与行列式符号的区别。
自考04184线性代数(经管类)讲义-自考高数线性代数课堂笔记
![自考04184线性代数(经管类)讲义-自考高数线性代数课堂笔记](https://img.taocdn.com/s3/m/8af3dd01ad02de80d5d8400f.png)
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;符号叫二阶行列式,其大小规定为:例如号叫为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。
其中,每一个数称为行列式的一个元素,它的前一个下标i称为行标,它表示这个数在第i行上;后一个下标j 称为列标,它表示这个数在第j列上。
自考04184线性代数(经管类)讲义
![自考04184线性代数(经管类)讲义](https://img.taocdn.com/s3/m/c802f99d83c4bb4cf6ecd15f.png)
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积和和主对角线平行的线上的三个数的积之和减去次对角线三个数的积和次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
自考04184线性代数(经管类)讲义
![自考04184线性代数(经管类)讲义](https://img.taocdn.com/s3/m/e03a07099b6648d7c0c74652.png)
自考高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。
所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。
行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。
1.1行列式的定义(一)一阶、二阶、三阶行列式的定义(1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。
注意:在线性代数中,符号不是绝对值。
例如,且;(2)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。
(主对角线减次对角线的乘积)例如(3)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。
我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。
例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。
高等教育自学考试04184线性代数(经管类)-公式必记
![高等教育自学考试04184线性代数(经管类)-公式必记](https://img.taocdn.com/s3/m/926c6211ef06eff9aef8941ea76e58fafab04581.png)
高等教育自学考试04184线性代数(经管类)-公式必记1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -? -;③、上、下三角行列式(= ◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -? -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:0A ≠(是非奇异矩阵);()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价;A 可表示成若干个初等矩阵的乘积;A 的特征值全不为0; ?T A A 是正定矩阵;A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ?? ?= ? ??,则:Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----?? ?= ? ? ??;②、111A O A O O B O B ---??=;(主对角分块)③、111O A O B B O A O ---??= ? ?;(副对角分块)④、11111A C A A CB O B OB -----??-??=;(拉普拉斯)⑤、11111A O A O C B B CAB -----??= ? ?-;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO= ;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ? ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ??Λ= ? ??λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-???? ? ?= ? ? ? ?????;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-=≠ ? ? ? ???;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --???? ? ?=≠ ? ? ? ?????;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ?≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A rB ≤;(※)⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ?? ?的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ??==-??<-?;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ? =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a xb +++= ??+++= +++=?;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ?????? ??? ? ??? ?=?= ??? ? ??? ???????(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β?? ? ?= ? ???(全部按列分块,其中12n b b b β?? ? ?= ? ???);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ?矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ构成m n ?矩阵12T T T m B βββ??= ? ? ???;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ?=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关?0α=;②、,αβ线性相关?,αβ坐标成比例或共线(平行);③、,,αβγ线性相关?,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ?=有解;()(,)r A r A B ?=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论)8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解②、矩阵列等价:~cA B AQ B ?=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9.对于矩阵m n A ?与l n B ?:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C =,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ? =只有零解;②、0Bx = 有非零解0ABx ? =一定存在非零解;12. 设向量组12:,,,n r r B b b b ?可由向量组12:,,,n s s A a a a ?线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P )②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关;14. 12,,,s ααα线性相关存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)1212(,,,)0s s x xx ααα?? ? ?= ? ???有非零解,即0Ax =有非零解;12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=?==?≠?;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a 11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ?A 经过初等变换得到B ;=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;②、A 与B 合同 ?=T C AC B ,其中可逆;T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似1-?=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ?的正惯性指数为n ;A ?与E 合同,即存在可逆矩阵C ,使T C AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0;0,0ii a A ?>>;(必要条件)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数(经管类)》考试笔记,重点解析
武汉大学出版社 2006年版
第一章行列式
1.1 行列式的定义
1.2 行列式行(列)展开
1.3 行列式的性质与计算
1.3 克拉默法则
第二章矩阵
2.1 线性方程组与矩阵的定义
2.2 矩阵运算
2.3 分阵的逆矩阵
2.4 分块矩阵
2.5 矩阵的初等变换与初等方阵
2.6 矩阵的秩
2.7 矩阵与线性方程组
第三章向量空间
3.1 n维向量概念及其线性运算
3.2 线性相关与线性无关
3.3 向量组的秩
3.4 向量空间
第四章线性方程组
4.1 齐次线性方程组
4.2 非齐次线性方程组
第五章特征值与特征向量
5.1 特征值与特征向量
5.2 方阵的相似变换
5.3 向量内积和正交矩阵
5.4 实对称矩阵的相似标准形
第六章实二次型
6.1 实二次型及其标准形
6.2 正这二次型和正定矩阵
第一部分行列式
本章概述
行列式在线性代数的考试中占很大的比例。
从考试大纲来看。
虽然只占13%左右。
但在其他章。
的试题中都有必须用到行列式计算的内容。
故这部分试题在试卷中所占比例远大于13%。
1.1 行列式的定义
1.1.1 二阶行列式与三阶行列式的定义
一、二元一次方程组和二阶行列式
例1.求二元一次方程组
的解。
解:应用消元法得
当时。
得
同理得
定义称为二阶行列式。
称为二阶行列式的值。
记为。
于是
由此可知。
若。
则二元一次方程组的解可表示为:
例2
二阶行列式的结果是一个数。
我们称它为该二阶行列式的值。
二、三元一次方程组和三阶行列式
考虑三元一次方程组
希望适当选择。
使得当后将消去。
得一元一次方程
若,能解出
其中要满足
为解出。
在(6),(7)的两边都除以得
这是以为未知数的二元一次方程组。
定义1.1.1 在三阶行列式中,称
于是原方程组的解为;
类似地得
这就将二元一次方程组解的公式推广到了三元一次方程组。
例3 计算
例4 (1)(2)
例5 当x取何值时,?
为将此结果推广到n元一次方程组。
需先将二阶、三阶行列式推广到n阶行列式。
1.1.2 阶行列式的定义
定义1.1.2 当n时,一阶行列式就是一个数。
当时,称
为n阶行列式。
定义(其所在的位置可记为的余子式
的代数余子式。
定义为该n阶行列式的值。
即。
容易看出,第j列元素的余子式和代数余子式都与第j列元素无关;类似地,第i行元素的余子式和代数余子式都与第i行元素无关。
n阶行列式为一个数。
例6 求出行列式第三列各元素的代数余子式。
例7(上三角行列式)
1.2 行列式按行(列)展开
定理1.2.1(行列式按行(列)展开定理)
例1 下三角行列式=主对角线元素的乘积。
例2 计算行列式
例3 求n阶行列式
小结
1.行列式中元素的余子式和代数余子式的定义。
2.二阶行列式的定义。
3.阶行列式的定义。
即。
4.行列式按行(列)展开的定理和应用这个定理将行列式降阶的方法。
1.3 行列式的性质及计算
1.3.1 行列式的性质
给定行列式
将它的行列互换所得的新行列式称为D的转置行列式,记为或。
性质1 转置的行列式与原行列式相等。
即
性质2用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。
推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。
推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。
性质3 行列式的两行(列)互换,行列式的值改变符号。
以二阶为例
设
推论3 若行列式某两行(列),完全相同,则行列式的值为零。
证设中,第i行与第j行元素完全相同,则
所以,D=0。
性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。
性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,即
只要看
注意性质中是指某一行(列)而不是每一行。
可见
性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。
证
(任两行成比例则行列式为零)
.
1.3.2 行列式的计算
人们认识事物的基本方法是化未知为已知。
对行列式,先看何为已知,(1)二,三阶行列式的计算;(2)三角形行列式的计算。
因此,我们计算行列式的基本方法是利用行列式的性质把行列式化为三角形,或降阶。
例1 计算
在行列式计算中如何造零是个重要技巧,主要是应用性质6。
例2 计算
例3 计算
例4 计算
(互换行列式的两行,值异号)例5 计算
扩展
计算
例6 计算方法1
方法2
扩展:计算
例7 计算
例8 计算
扩展:计算
例9 计算n阶行列式
解按第一列展开,得
例10 范德蒙行列式……
.
例11 计算
例12 证明
小结
1.准确叙述行列式的性质;
2.应用行列式的性质计算行列式的方法
(1)低阶的数字行列式和简单的文字行列式;(2)各行元素之和为相同的值的情况
(3)有一行(列)只有一个或两个非零元的情况1.4 克拉默法则
这一节将把二元一次方程组解的公式推广到n个未知数,n个方程的线性方程组。
为此先介绍下面的定理。
定理1.4.1 对于n阶行列式
证由定理1.2.1知,注意改变第二列的元素,并不改变第二列元素的代数余子式
类似地,可证明该定理的剩余部分。
定理1.4.2 如果n个未知数,n个方程的线性方程组
的系数行列式
则方程组有惟一的解:
其中
证明从略
例1.求解
把克拉默法则应用到下面的齐次方程组有
定理1.4.3 如果n个未知数n个方程的齐次方程组
的系数行列式D≠0,则该方程组只有零解,没有非零解。
推论如果齐次方程组
有非零解,则必有系数行列式D=0。
事实上,以后我们将证明对于由n个未知数n个方程的齐次方程组,系数行列式D=0,不仅是该齐次方程组有非零解的必要条件,也是充分条件,即若系数行列式D=0,则齐次方程组必有非零解。
例2 判断线性方程组
是否只有零解
例3 当k为何值时,齐次方程组
没有非零解?
例4 问当取何值时,齐次方程组
有非零解?
1.定理1.4.1 对于,有
2.n个未知数,n个方程的线性方程组的克拉默法则。
以及n个未知数, n个方程的齐次线性方程组有非零解的充分必要条件。
第一章小结
基本概念
1.行列式中元素的余子式和代数余子式。
2.行列式的定义
基本公式
1.行列式按一行(一列)展开的定理;
2.行列式的性质;
3.行列式中任一行(列)与另一行(列)的代数余子式乘积的和=0;
4.克拉默法则
5.n个未知数,n个方程的齐次方程组有非零解的充分必要条件是它的系数行列式=0。
1.行列式中元素的余子式和代数余子式的计算;
2.行列式的计算及重点例题
(1)二、三阶行列式的计算;方法:利用行列式的性质降阶。
(2)各行元素之和为常数的情况(重点例题:1.3节中例5及其扩展);
(3)特殊的高阶行列式。
第二部分矩阵
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。