大一下学期高等数学期末试题及答案__数套
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题(每题2分,共10分)1. 极限的定义中,ε的值可以是()。
A. 任意正整数B. 任意正实数C. 固定正整数D. 只有12. 若函数f(x)在点x=a处连续,则以下哪项正确?()A. f(a)为f(x)在x=a处的极限值B. f(a)等于f(x)在x=a处的左极限值C. f(a)等于f(x)在x=a处的右极限值D. 所有上述选项都正确3. 以下级数中,收敛的是()。
A. 1 + 1/2 + 1/3 + 1/4 + ...B. (1 + 1/2) + (1/3 + 1/4) + (1/5 + 1/6) + ...C. 1 - 1/2 + 1/3 - 1/4 + 1/5 - ...D. 1 + 1/√2 + 1/√3 + 1/√4 + ...4. 函数y = x^2的导数为()。
A. 2xB. x^2C. 1/xD. -2x5. 微分方程dy/dx = x^2, y(0) = 0的解为()。
A. y = x^3B. y = -x^3C. y = 1/xD. y = -1/x二、填空题(每题2分,共10分)6. 极限lim(x→0) (sin(x)/x) = _______。
7. 函数f(x) = x^3 - 6x^2 + 11x - 6的单调递增区间为 _______。
8. 定积分∫(0→2) x^2 dx = _______。
9. 曲线y = x^3在点x=1处的切线斜率为 _______。
10. 微分方程d/dx(y^2) = 2xy,y(0) = 0的通解为 y = _______。
三、计算题(每题10分,共30分)11. 求函数f(x) = 2x^3 - 3x^2 - 12x + 5从x=-1到x=3的定积分值。
12. 求函数g(x) = e^(2x)的导数,并计算在区间[0,1]上的定积分值。
13. 求由曲线y = x^2, y = 2x - 1, x = 0所围成的面积。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及答案详解大一高等数学期末考试试卷(一)一、选择题(共12分)x,2,0,ex,fx(),1. (3分)若为连续函数,则的值为( ). a,axx,,,0,(A)1 (B)2 (C)3 (D)—1fhf(3)(3),,,2。
(3分)已知则的值为( ). limf(3)2,,h,02h1(A)1 (B)3 (C)-1 (D) 2,223. (3分)定积分的值为( )。
1cos,xdx,,,2(A)0 (B)—2 (C)1 (D)2 4。
(3分)若在处不连续,则在该点处()。
xx,fx()fx()0(A)必不可导(B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)23x1((3分)平面上过点,且在任意一点处的切线斜率为的曲线方程(0,1)(,)xy为。
124(sin)xxxdx,,2. (3分) . ,,112xlimsin3. (3分) = 。
x,0x324. (3分) 的极大值为。
yxx,,23三、计算题(共42分)xxln(15),lim。
1. (6分)求 2x,0sin3xxe,y,,2. (6分)设求y. 2x,12xxdxln(1)。
,3。
(6分)求不定积分,x,3,1,x,,fxdx(1),,4。
(6分)求其中()fx,1cos,x,,0x,1,1.ex,,,1yxt5. (6分)设函数由方程所确定,求 edttdt,,cos0yfx,()dy.,,00 26。
(6分)设求 fxdxxC()sin,,,fxdx(23)。
,,,n3,,7。
(6分)求极限 lim1。
,,,,,nn2,,四、解答题(共28分),1. (7分)设且求 fxx(ln)1,,,f(0)1,,fx()。
,,,,2。
(7分)求由曲线与轴所围成图形绕着轴旋转一周所得旋xxyxxcos,,,,,,22,,转体的体积。
323. (7分)求曲线在拐点处的切线方程. yxxx,,,,324194. (7分)求函数在上的最小值和最大值。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程0cos 0y xt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、 填空题(每小题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫ ⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 . 5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx x x 21arctan . 二、 单项选择题(每小题4分,共20分) 1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ; () C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、 计算(每小题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C e x dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线方程为 .9131-=x y(5)微分方程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .x y y y x '''--= (B )23e .xy y y '''--=(C )23e .x y y y x '''+-= (D )23e .xy y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().fx dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------⎰⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(323323=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*2-56012,31.1()111.21(1)1x x x x r r r r e C e y x b x b e b b y x x e +=----------==----------+-------=+-----------=-=-=-------------解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图0220322203*********RRP g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰)分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aabab ba axf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D. (1) (3) 求D 的面积A;(2) (4) 求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= 1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为.1x e y =1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y 2分(2) 切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.x f x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分 当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分 所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
A) 2 B) 7 C) 9 D) 11答案:B) 72. 函数f(x) = 3x + 4 和 g(x) = 2x - 1,求f(x)与g(x)的交点横坐标。
A) -3/5 B) 0 C) 5/7 D) 1/2答案:A) -3/53. 设a为非零实数,若函数f(x) = x^2 + ax + a 的图像经过点(-1, 4),求a的值。
A) -1 B) 1 C) 2 D) -2答案:C) 24. 设方程x^2 - kx + 1 = 0只有一个实根,求k的取值范围。
A) (-∞, 1) B) (0, 1] C) [0, ∞) D) [1/4, ∞)答案:D) [1/4, ∞)5. 函数f(x) = ax^2 + bx + c 的图像经过点(1, 3),且在x = 2处取得最小值0.求a、b、c的值。
A) a = 1, b = 2, c = 0 B) a = 2, b = -3, c = 2 C) a = 1, b = -2, c = 3 D) a = -1, b = 2, c = 3答案:C) a = 1, b = -2, c = 3二、计算题1. 求不定积分∫(sinx + cosx)dx。
答案: -cosx + sinx + C(C为常数)2. 设函数f(x) = x^3 - 6x^2 + 9x + 1,求f(x)的极值点。
答案:极小值点为x = 1,极大值点为x = 33. 设函数y = ln(3x + 1),求其反函数。
答案:y = e^x / 3 - 1/34. 已知曲线y = e^x的斜率为1/2,求曲线上点的坐标。
答案:(ln2, 2)5. 设函数f(x) = √(2x + 1),求f'(1)的值。
答案:1/2三、证明题1. 证明函数y = x^3 - 3x + 2在x = 1处有一个零点。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= .4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1.(6分)求2ln(15)lim.sin 3x x x x→+2. (6分)设y =求.y '3.(6分)求不定积分2ln(1).x x dx +⎰ 4.(6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求.dy 6.(6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1.(7分)设(ln )1,f x x '=+且(0)1,f =求().f x2.(7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭及x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4.(7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、填空题(每小题3分,共18分)1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 .5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx xx 21arctan . 二、单项选择题(每小题4分,共20分)1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ;() C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-;() C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C ex dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → =_____e 1________.(2)曲线x x y ln =上及直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _______.9131-=x y __(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点(D) ())(,11x f x 是拐点,2x 是极值点. 图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .xy y y x '''--= (B )23e .xy y y '''--= (C )23e .xy y y x '''+-=(D )23e .x y y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= x x x xx x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 及22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222 =2arctan 2 =2C =----------------+---------⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分). 1.(本题6分)解微分方程256xy y y xe '''-+=.212-56012,31r r r r +=----------==----------解:特征方程分特征解.分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------⎰⎰分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线及曲线x y ln =及x 轴围成平面图形D.(1) (3) 求D 的面积A;(2) (4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方xyy1程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为 .1x e y =----1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y ----2分(2) 切线xe y 1=及x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =及x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+ 解法二:设() 1.xf x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1xe x ≥+。
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)=x^2-4x+3,求f(x)的最小值。
A. 0B. -1C. -4D. 12. 已知数列{an}的前n项和为S_n=n^2,求a_5。
A. 10B. 11C. 12D. 133. 极限lim (n→∞) (1 + 1/n)^n 的值是:A. eB. 1C. 2D. 34. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 25. 函数f(x)=sin(x)+cos(x)的周期是:A. πC. π/2D. π/46. 已知f(x)=2x-1,求f'(2)的值。
A. 3B. 2C. 1D. 07. 曲线y=x^2与直线y=4x-5的交点坐标是:A. (1,3)B. (2,3)C. (1,1)D. (2,7)8. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 19. 若f(x)在[a,b]上连续,且∫(a到b) f(x) dx = 0,则f(x)在[a,b]上:A. 恒等于0B. 至少有一个零点C. 恒为正D. 恒为负10. 函数y=ln(x)的原函数是:A. x-1C. x^2D. xln(x) - x + C二、填空题(每题2分,共20分)11. 函数f(x)=x^3的导数是________。
12. 微分方程dy/dx + 2y = 4x的解是________。
13. 已知∫(0到1) x dx = 1/2,那么∫(1到2) x dx =________。
14. 函数f(x)=x^2+1的二阶导数是________。
15. 利用导数求函数f(x)=x^3-2x^2+3x-4在x=2时的切线方程是________。
16. 函数y=e^x的泰勒展开式在x=0处的前三项是________。
17. 定积分∫(0到π/2) sin(x) dx的值是________。
大一下高等数学期末试卷
大一下高等数学期末试卷篇一:大一下学期高等数学期末考试试题及答案高等数学A(下册)期末考试试题【A卷】院(系)别班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a、b满足a?b?0,a?2,b?2,则a?b??3z2、设z?xln(xy),则? 2?x?y3、曲面x2?y2?z?9在点(1,2,4)处的切平面方程为.4、设f(x)是周期为2?的周期函数,它在[??,?)上的表达式为f(x)?x,则f(x)的傅里叶级数在x?3处收敛于,在x??处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则?(x?y)ds?.L※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)222??2x?3y?z?91、求曲线?2在点M0(1,?1,2)处的切线及法平面方程.22??z?3x?y2、求由曲面z?2x?2y及z?6?x?y所围成的立体体积.3、判定级数2222?(?1)nlnn?1?n?1是否收敛?如果是收敛的,是绝对收敛还是条件收敛?nx?z?2z4、设z?f(xy,)?siny,其中f具有二阶连续偏导数,求.,y?x?x?y5、计算曲面积分dS2222,其中是球面被平面z?h(0?h?a)截出的顶部.x?y?z?a???z?三、(本题满分9分)抛物面z?x2?y2被平面x?y?z?1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)。
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题(每题5分,共20分)1. 函数$f(x)=x^2-4x+4$的最小值是()A. 0B. 1C. 4D. 3答案:D2. 极限$\lim_{x \to 0} \frac{\sin x}{x}$的值是()A. 0B. 1C. 2D. $\infty$答案:B3. 曲线$y=x^3$在点$(1,1)$处的切线斜率是()A. 0B. 1C. 3D. 12答案:C4. 微分方程$y''-2y'+y=0$的通解是()A. $y=e^{tx}$B. $y=e^{t}(C_1 \cos t + C_2 \sin t)$C. $y=e^{tx}(C_1 + C_2x)$D. $y=(C_1 + C_2x)e^{tx}$答案:B二、填空题(每题5分,共20分)5. 函数$f(x)=\ln(x)$的定义域是______。
答案:$(0,+\infty)$6. 函数$f(x)=x^3-3x$的导数是______。
答案:$3x^2-3$7. 函数$f(x)=\frac{1}{x}$的不定积分是______。
答案:$\ln|x|+C$8. 函数$f(x)=\sin x$的原函数是______。
答案:$-\cos x+C$三、计算题(每题10分,共30分)9. 计算定积分$\int_{0}^{1} x^2 dx$。
答案:$\frac{1}{3}x^3|_0^1 = \frac{1}{3}$ 10. 求极限$\lim_{x \to 0} \frac{e^x - 1}{x}$。
答案:$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$11. 求函数$f(x)=x^3-6x^2+11x-6$的极值。
答案:函数的极值点为$x=1$和$x=3$,其中$x=1$为极大值点,$x=3$为极小值点。
四、证明题(每题10分,共30分)12. 证明:$\lim_{x \to 0} \frac{\sin x}{x} = 1$。
大一第二学期高数期末考试题(含答案)
大一第二学期高数期末考试一、单项选择题(本大题有4小题, 每小题4分, 共16分)1.。
(A)(B)(C)(D)不可导.2.。
(A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小;(C)是比高阶的无穷小; (D)是比高阶的无穷小。
3.若,其中在区间上二阶可导且,则().(A)函数必在处取得极大值;(B)函数必在处取得极小值;(C)函数在处没有极值,但点为曲线的拐点;(D)函数在处没有极值,点也不是曲线的拐点。
(A)(B)(C)(D)。
二、填空题(本大题有4小题,每小题4分,共16分)4.。
5..6..7..三、解答题(本大题有5小题,每小题8分,共40分)8.设函数由方程确定,求以及.9.设函数连续,,且,为常数. 求并讨论在处的连续性.10.求微分方程满足的解。
四、解答题(本大题10分)11.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程。
五、解答题(本大题10分)12.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D.(1)求D的面积A;(2)求D绕直线x = e 旋转一周所得旋转体的体积V。
六、证明题(本大题有2小题,每小题4分,共8分)13.设函数在上连续且单调递减,证明对任意的,.14.设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示:设)解答一、单项选择题(本大题有4小题, 每小题4分,共16分)1、D2、A3、C4、C二、填空题(本大题有4小题,每小题4分,共16分)5.。
6。
.7. . 8.。
三、解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导,10.解:11.解:12.解:由,知。
,在处连续。
13.解:,四、解答题(本大题10分)14.解:由已知且,将此方程关于求导得特征方程:解出特征根:其通解为代入初始条件,得故所求曲线方程为:五、解答题(本大题10分)15.解:(1)根据题意,先设切点为,切线方程:由于切线过原点,解出,从而切线方程为:则平面图形面积(2)三角形绕直线x = e一周所得圆锥体体积记为V1,则曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2 D绕直线x = e旋转一周所得旋转体的体积六、证明题(本大题有2小题,每小题4分,共12分)16.证明:故有:证毕.证:构造辅助函数:.其满足在上连续,在上可导。
(完整版)大一高等数学期末考试试卷及答案详解
一、1 B;2 C; 3 D;4 A.
二、1 2 3 0; 4 0.
三、1解原式 6分
2 解 2分
4分
3解原式 3分
ቤተ መጻሕፍቲ ባይዱ2分
1分
4 解令 则2分
5 1分
6 1分
1分
1分
7 两边求导得 2分
8 1分
1分
2分
9 解 2分
10 4分
11 解原式= = 6分
四、1解令 则 3分
= 2分
2分
1分
2 解 3分
-----------3
3.求摆线 在 处的切线的方程.
解:切点为 -------2
-------2
切线方程为 即 . -------2
4.设 ,则 .
5.设 ,求 .
解: ---------2
--------------2
= ------------2
故 =
四.应用题(每小题9分,3题共27分)
1.求由曲线 与该曲线过坐标原点的切线及 轴所围图形的面积.
(A)必不可导 (B)一定可导(C)可能可导 (D)必无极限
二、填空题(共12分)
1.(3分) 平面上过点 ,且在任意一点 处的切线斜率为 的曲线方程为.
2. (3分) .
3. (3分) =.
4. (3分) 的极大值为.
三、计算题(共42分)
1.(6分)求
2.(6分)设 求
3.(6分)求不定积分
4.(6分)求 其中
(D)(D)若可积函数 为奇函数,则 也为奇函数.
4.设 ,则 是 的(C).
(A)连续点;(B)可去间断点;
(C)跳跃间断点;(D)无穷间断点.
大一高等数学期末考试试卷及复习资料详解
大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。
(完整版)大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷一、选择题(共12分)1. (3分)若为连续函数,则的值为( ).2,0,(),0x e x f x a x x ⎧<=⎨+>⎩a (A)1 (B)2 (C)3 (D)-12. (3分)已知则的值为( ).(3)2,f '=0(3)(3)lim2h f h f h →--(A)1 (B)3 (C)-1 (D)123. (3分)定积分的值为().(A)0 (B)-2 (C)1 (D)24. (3分)若在处不连续,则在该点处( ).()f x 0x x =()f x (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点,且在任意一点处的切线斜率为的曲线方(0,1)(,)x y 23x 程为 .2. (3分) .1241(sin )x x x dx -+=⎰3. (3分) = .201lim sinx x x→4. (3分) 的极大值为 .3223y x x =-三、计算题(共42分)1.(6分)求2ln(15)lim.sin 3x x x x →+2.(6分)设求y =.y '3.(6分)求不定积分2ln(1).x x dx +⎰4.(6分)求其中3(1),f x dx -⎰,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5.(6分)设函数由方程所确定,求()y f x =0cos 0y xte dt tdt +=⎰⎰.dy 6.(6分)设求2()sin ,f x dx x C =+⎰(23).f x dx +⎰7.(6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1.(7分)设且求(ln )1,f x x '=+(0)1,f =().f x 2.(7分)求由曲线与轴所围成图形绕着轴旋转一cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭x x 周所得旋转体的体积.3.(7分)求曲线在拐点处的切线方程.3232419y x x x =-+-4.(7分)求函数上的最小值和最大值.y x =+[5,1]-五、证明题(6分)设在区间上连续,证明()f x ''[,]a b 1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰标准答案一、 1 B; 2 C; 3 D; 4 A.二、 123 0;4 0.31;y x =+2;3三、 1 解 原式 5分25lim3x x xx→⋅=1分53=2解2分2ln ln ln(1),2xy x ==-+4分21221xy x '∴=-+3 解 原式 3分221ln(1)(1)2x d x =++⎰2分222212[(1)ln(1)(1)]21x x x x dx x=++-+⋅+⎰1分2221[(1)ln(1)]2x x x C =++-+4解 令则2分1,x t -=1分321()()f x dx f t dt -=⎰⎰1分1211(1)1cos t tdt e dt t -=+++⎰⎰ 1分210[]t e t =++1分21e e =-+5两边求导得2分cos 0,yey x '⋅+= 1分cos y xy e'=-1分cos sin 1xx =-2分cos sin 1xdy dx x ∴=-6解2分1(23)(23)(22)2f x dx f x d x +=++⎰⎰ 4分21sin(23)2x C =++7解 原式= 4分23323lim 12n n n ⋅→∞⎛⎫+⎪⎝⎭=2分32e 四、1 解 令则3分ln ,xt =,()1,t t x e f t e '==+=2分()(1)t f t e dt =+⎰.t t e C ++ 2分(0)1,0,f C =∴=1分().x f x x e ∴=+2解3分222cos x V xdx πππ-=⎰2分2202cos xdx ππ=⎰2分2.2π=3解1分23624,66,y x x y x '''=-+=-令得1分0,y ''= 1.x =当时, 当时,2分1x -∞<<0;y ''<1x <<+∞0,y ''>为拐点,1分(1,3)∴该点处的切线为2分321(1).yx =+-4解2分1y '=-=令得1分0,y '=3.4x =2分35(5)5 2.55,,(1)1,44y y y ⎛⎫-=-+≈-== ⎪⎝⎭最小值为最大值为2分∴(5)5y -=-+35.44y ⎛⎫= ⎪⎝⎭五、证明1分()()()()()()bbaax a x b f x x a x b df x '''--=--⎰⎰ 1分[()()()]()[2()bb a a x a x b f x f x x a b dx ''=----+⎰ 1分[2()()ba x ab df x =--+⎰1分 {}[2()]()2()bba a x ab f x f x dx =--++⎰ 1分()[()()]2(),b a b a f a f b f x dx =--++⎰移项即得所证. 1分。
高数下学期期末试题(含答案)3套
高等数学期末考试试卷1一、单项选择题(6×3分)1、设直线,平面,那么与之间的夹角为( )A.0B.C.D.2、二元函数在点处的两个偏导数都存在是在点处可微的()A.充分条件B.充分必要条件C.必要条件D.既非充分又非必要条件3、设函数,则等于()A. B.C. D.4、二次积分交换次序后为()A. B.C. D.5、若幂级数在处收敛,则该级数在处()A.绝对收敛B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处()A.某邻域内单调减少B.取极小值C.某邻域内单调增加D.取极大值二、填空题(7×3分)1、设=(4,-3,4),=(2,2,1),则向量在上的投影=2、设,,那么3、D 为,时,4、设是球面,则=5、函数展开为的幂级数为6、=7、为通解的二阶线性常系数齐次微分方程为三、计算题(4×7分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。
2、求过曲线上一点(1,2,0)的切平面方程。
3、计算二重积分,其中4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。
25、求级数的和。
四、综合题(10分)曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。
五、证明题 (6分)设收敛,证明级数绝对收敛。
一、单项选择题(6×3分)1、 A2、 C3、 C4、 B5、 A6、 D二、填空题(7×3分)1、22、3、 4 、5、6、0 7、三、计算题(5×9分)1、解:令则,故2、解:令则所以切平面的法向量为:切平面方程为:3、解:===4、解:令,则当,即在x 轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则===5、解:令则,即令,则有=四、综合题(10分)4解:设曲线上任一点为,则过的切线方程为:在轴上的截距为过的法线方程为:在轴上的截距为依题意有由的任意性,即,得到这是一阶齐次微分方程,变形为: (1)令则,代入(1)得:分离变量得:解得:即为所求的曲线方程。
(完整版)大一下学期高等数学期末考试试题及答案
高等数学A(下册)期末考试试题【A卷】院(系)另寸___________ 班级___________ 学号 _______________ 姓名_________________ 成绩_____________、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上.)r r r r r1、已知向量a、b满足a b o, a 2,b 2,则a b __________ .32、设z xln(xy),贝H ----- _____________ .x y3、曲面x2 y2 z 9在点(1,2, 4)处的切平面方程为_________________________________________ .4、设f (x)是周期为2的周期函数,它在[,)上的表达式为f(x) x,贝U f (x)的傅里叶级数在x 3处收敛于____________ ,在x 处收敛于_________ .5、设L为连接(1,0)与(0,1)两点的直线段,则Jx y)ds __________ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程一…,并在每张答题纸写上:姓名、学号、班级. 、解下列各题:(本题共5小题,每小题7分,满分35分)2x2 3y2 z29 亠 _1、求曲线 2 2 2 在点M o (1, 1,2)处的切线及法平面方程.z 3x y2 2 2 22、求由曲面z 2x 2y及z 6 x y所围成的立体体积.n 13、判定级数(1)n ln 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1 n2x z z4、设z f (xy, ) sin y,其中f具有二阶连续偏导数,求,•y x x y5、计算曲面积分dS,其中是球面x2 y2 z2 a2被平面z h (0 h a)截出的顶部.三、(本题满分9分)抛物面z x y被平面x y z 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分L(e x siny m)dx (e x cosy mx)dy,其中m为常数,L为由点A(a,0)至原点0(0,0)的上半圆周x2 y2 ax (a 0).五、(本题满分10分)n求幕级数的收敛域及和函数.n 13n n六、(本题满分10分)计算曲面积分| 2x3dydz 2y3dzdx 3(z21)dxdy,其中为曲面z 1 x2 y2(z 0)的上侧.七、(本题满分6分)设f (x)为连续函数,f(0) a , F(t) [z f(x2 y2 z2)]dv,其中t 是由曲面z •, —y2tF(t)与z t2x2y2所围成的闭区域,求limt 0备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交; 不得带走试卷。
(完整版)大一高等数学期末考试试卷及答案详解
大一高等数学期末考试一试卷一、选择题(共12 分)1.( 3 分)若 f ( x)2e x , x 0,为连续函数 , 则a的值为 ().a x, x0(A)1 (B)2 (C)3 (D)-12.( 3 分)已知f(3) 2, 则lim f (3 h) f (3) 的值为().h02h(A)1 (B)3 (C)-1(D)1 23.( 3 分)定积分212xdx 的值为().cos2(A)0 (B)-2 (C)1(D)24.(3分)若f (x)在x x0处不连续,则 f ( x) 在该点处().(A)必不行导 (B) 必定可导 (C) 可能可导 (D) 必无极限二、填空题(共 12 分)1.(3 分)平面上过点(0,1) ,且在任意一点 ( x, y) 处的切线斜率为 3x2的曲线方程为.2.( 31x4 sin x) dx.分)( x213.( 3分) lim x2 sin1=.x0x4.( 3分) y2x33x2的极大值为.三、计算题(共42 分)1.( 6x ln(15x).分)求 limsin 3x2x02.(6 分)设ye xx2, 求 y .13.( 6分)求不定积分x ln(1 x2 )dx.x 4.( 63f ( x 1)dx, 此中f (x) 1, x 1,分)求cosxe x1,x 1.5. ( 6 分)设函数 yy x f ( x) 由方程e t dtcostdt 0 所确立 , 求 dy.6. ( 6 分)设 f ( x)dxsin x 2 C, 求 f (2 x 3)dx.3 n7. ( 6 分)求极限 lim 1 .2nn四、解答题(共 28 分)1. ( 7 分)设 f (ln x) 1 x, 且 f (0)1, 求 f ( x). 2. ( 7 分)求由曲线 ycos x2x与 x 轴所围成图形绕着 x 轴旋转一周2所得旋转体的体积 .3. ( 7 分)求曲线 y x 3 3x 2 24x 19 在拐点处的切线方程 .4. ( 7 分)求函数 yx1 x 在 [ 5,1] 上的最小值和最大值 .五、证明题 (6 分)设 f ( x) 在区间 [ a, b] 上连续 , 证明b b a1 bf (x)dx[ f (a) f (b)]( x a)( x b) f ( x) dx.a22 a标准答案一、 1 B;2C; 3D; 4 A.二、 1y x31;22 ;3 0;40.3三、 1解 原式limx5x 5 分x 03x 251 分32 解Q ln y lne x x ln( x 2 1),2 分x 2 12y e x[12x] 4 分x 21 2x 2 13 解原式1ln(1 x 2 ) d (1 x 2 )3 分21[(12)ln(12 (12) 12xdx]2xx )xx 22 分1[(1 x 2 )ln(1 x 2 )x 2 ] C1 分24解令 x1 t, 则2 分320 f ( x)dx1 f (t )dt1t2 t11 costdt1 (e 1)dt0 [ e tt ]12e 2 e 15两边求导得 eyy cosx 0,cosxQ ye ycosxsin x 1dycosx dxsin x 16 解f (2 x 3) dx1 f (2 x2 1sin(2 x 3)2 C21 分1 分1 分 1 分2 分1 分1 分2 分3)d(2 x 2)2 分4 分32 n 37 解原式 = lim3 24 分1n2n3= e22 分四、 1 解令 ln xt, 则 xe t ,f (t) 1 e t ,3 分f (t )(1 e t )dt = t e tC.2 分Q f (0)1, C 0,2 分f (x) xe x .1 分2 解V x2 23 分cos xdx222cos 2 xdx2 分2.2 分23 解 y3x 2 6x 24, y6x 6,1 分令 y 0, 得 x 1.1 分当x 1时 , y0; 当 1 x时 , y0,2 分(1,3) 为拐点 ,1 分该点处的切线为 y 3 21(x 1).2 分4 解 y 11x2 1 x 1, 2 分2 12 1 x令 y0, 得 x3 . 1 分4y( 5)56,2.55,y3 5, y(1) 1,2 分44最小值为 y(5)56, 最大值为 y35 . 2 分44五、证明ba)( x b) f(x) ba)( x b) df ( x)1 分(x( xaabb[( x a)( x b) f (x)] aaf ( x)[2 x ( a b)dx1分ba [2 x (a b)df ( x)1分[2 x (a b)] f ( x)(b a)[ f ( a) f (b)]移项即得所证 .b ba2 a f ( x)dx1分b2 a f ( x)dx,1分1分。
大一下高等数学期末试题精确答案
一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续 B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ).4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂2220(,)y y dy f x y dx⎰⎰=)dv xce1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)126'),则⎰(1)设直线L 为0x y z --=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()xax b e + B.2()xax b xe + C.2()xax b ce ++ D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A222sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰21nn ∞-2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy ∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim332nnn n→∞++-= .3、已知2ln(1)y x=+,在1x=处的微分dy= .4、定积分1200621(sin)x x x dx-+=⎰.5、求由方程57230y y x x+--=所确定的隐函数的导数dydx=.二.选择题(每空3分,共15分)2四.计算题(4小题,每题6分,共24分)1、已知221txy t⎧=⎪⎨⎪=-⎩,求22d ydx2、计算积分2cosx xdx ⎰3、计算积分1arctan xdx ⎰4、计算积分⎰五.觧答题(3小题,共28分)1、(8)'求函数42341y x x =-+的凹凸区间及拐点。
2、(8)'设1101()101x x xf x x e +⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰ 3、(1)求由2y x =及2y x =所围图形的面积;(6)'(2)求所围图形绕x 轴旋转一周所得的体积。
(6)'高等数学(下)模拟试卷四一. 填空题(每空3分,共15分)1、函数1y x =的定义域为 .2、,0ax e dx a +∞->⎰= .3、已知sin(21)y x =+,在0.5x =-处的微分dy = .4、定积分121sin 1xdx x -+⎰= .5、函数43341y x x =-+的凸区间是 . 二.选择题(每空3分,共15分)1、1x =是函数211x y x -=-的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡232、计算积分arcsin xdx ⎰3、计算积分0π⎰4、计算积分,0a >⎰五.觧答题(3小题,共28分)1、(8)'已知2223131at x t aty t ⎧=⎪⎪+⎨⎪=⎪+⎩,求在2t =处的切线方程和法线方程。
2、(8)'求证当0a b >>时,1ln ln 1a b a a b b -<<- 3、(1)求由3y x =及0,2y x ==所围图形的面积;(6)'(2)求所围图形绕y 轴旋转一周所得的体积。
(6)'12345671.函数()y x f z ,=在点()00,y x 的全微分存在是()y x f ,在该点连续的( )条件。
A .充分非必要B .必要非充分C .充分必要D .既非充分,也非必要2.平面012:1=+++z y x π与022:2=+-+z y x π的夹角为( )。
A .6π B .4π C .2π D .3π 3.幂级数∑∞=-1)5(n n n x 的收敛域为( )。
A .[)6,4B .()6,4C .(]6,4D .[]6,44.设)(),(21x y x y 是微分方程0)()(=+'+''y x q y x p y 的两特解且≠)()(21x y x y 常数,则下列( )是其通解(21,c c 为任意常数)。
A .)()(211x y x y c y +=B .)()(221x y c x y y +=C .)()(21x y x y y +=D .)()(2211x y c x y c y +=5.⎰⎰⎰Ωzdv 在直角坐标系下化为三次积分为( ),其中Ω为3,0,3,0x x y y ====,D 1231D :212、求方程xe y dx dy-=+满足20==x y 的特解。
3、求方程282xy y y e '''+-=的通解。
高等数学(下)模拟试卷六一、填空题:(每题3分,共21分.)1.函数arccos()z y x =-的定义域为 。
2.已知函数ln()z xy =,则()2,1zx ∂=∂ 。
3.已知()22sin z x y =+,则=dz 。
41y x =+(1,0)-()1,02Lds =⎰5671234程y ''A . B . C . D .5.2z dvΩ⎰⎰⎰在柱面坐标系下化为三次积分为( ),其中Ω为2222x y z R ++≤的上半球体。
A .2200R Rd rdr z dzπθ⎰⎰⎰ B .2200R rd rdr z dzπθ⎰⎰⎰C .22Rd dr dzπθ⎰⎰ D .220Rd rdr dzπθ⎰⎰三、计算下列各题(共18分,每题6分)1、已知335z xyz -=,求y z x z ∂∂∂∂, 2、求过点(1,0,2)且平行于平面235x y z ++=的平面方程。
3、计算22()Dxy dxdy+⎰⎰,其中D 为y x =、0y =及1x =所围的闭区域。
四、求解下列各题(共25分,第1题7分,第2题8分,第3题10分)1、计算曲线积分2()(sin )L x y dx x y dy --+⎰,其中L 为圆周22x x y -=上点)0,0(到)1,1(的一段弧。
23 1235.设x z arctan=,则x =∂______________________6.微分方程250y y y '''-+=的通解为7.若区域{}4|),(22≤+=y x y x D ,则⎰⎰=D dxdy 2 8.级数012nn ∞=∑的和s=二.选择题:(每题3分,共15分)1.()y x f ,在点()b a ,处两个偏导数存在是()y x f ,在点()b a ,处连续的 条件 (A )充分而非必要 (B )必要而非充分(C )充分必要 (D )既非充分也非必要 2.累次积分100(,)dx f x y dy⎰⎰改变积分次序为(A) 11(,)dy f x y dx⎰⎰ (B)100(,)dy f x y dx⎰⎰21y 11.3.求函数32(,)6125f x y y x x y =-+-+的极值. 4.求幂级数214n nn x n ∞=⋅∑的收敛域.高等数学(下)模拟试卷一参考答案一、填空题:(每空3分,共15分)1、 {(,)|0,0}x y x y x y +>->2、22yx y -+ 3、4102(,)x dx f x y dy ⎰45、312x xy C e C e -=+二、选择题:(每空3分,共15分) 1.C 2.D 3.C 4A 5.D三、计算题(每题8分,共48分)1、解: 12(1,2,3){1,0,1}{2,1,1}A s s →→=-= 2'2 3422x e = 6Q 8'512⎰222203sin ()27y xdx e dy e πππ=+-=-+⎰⎰ 8'6.解:11,x x y y e P Q e x x '+=⇒== 2'∴通解为11()()[()][]dx dxP x dxP x dxx x x y e Q x e dx C e e e dx C --⎰⎰⎰⎰=+=+⎰⎰ 4'11[][(1)]x x e xdx C x e C x x =⋅+=-+⎰ 6'代入11x y ==,得1C =,∴特解为1[(1)1]x y x e x =-+ 8'四、解答题1、解:22(22)xzdydz yzdzdx z dxdy z z z dv zdv∑ΩΩ+-=+-=⎰⎰⎰⎰⎰⎰⎰⎰Ò 4'3cos sin r drd d ϕϕθϕΩ=⎰⎰⎰ 6'方法一:原式=234cos sin 2d d dr πππθϕϕϕ=⎰⎰⎰10'24'(0x ⎰∴1. 2. 3. 4. 5. 三、计算题(每题8分,共48分)1、解: 12(0,2,4){1,0,2}{0,1,3}A n n →→==- 2'121223013ij ks n n i j k→→→→→→→→→=⨯==-++- 6'∴直线方程为24231x y z --==- 8' 2、解: 令sin cos x yu x y v e +== 2'12cos cos x yz z u z v f x y f e x u x v x +∂∂∂∂∂''=⋅+⋅=⋅+⋅∂∂∂∂∂ 6'12(sin sin )x y z z u z v f x y f e y u y v y +∂∂∂∂∂''=⋅+⋅=⋅-+⋅∂∂∂∂∂ 8'3、解::0014D r πθ≤≤≤≤, 3'4A Q5⎰ 6∴4'1、解:(1)令12sin 3nn n π∞=∴∑收敛, 11(1)2sin 3n n nn π∞-=∴-∑绝对收敛 6' (2)令1()n n x s x n ∞==∑1111()1n n n n x s x x n x ∞∞-=='⎛⎫'===⎪-⎝⎭∑∑, 2' 0()()(0)ln(1)xs x s x dx s x '⇒=+=--⎰ 4'2、解:构造曲面1:1,z ∑=上侧122xdydz ydzdx zdxdy xdydz ydzdx zdxdy∑∑+++++⎰⎰⎰⎰ 2'22110(211)44r dv dv d rdr dz πθ=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰128(1)2r rdr ππ=-= ∴=3.lnsin lnsin 422211111cos cot1sin x x dy e e dx x x x xx ''⎛⎫=-=- ⎪⎝⎭四.计算题:1.21300;0,0;0y x y x dy y e y y xy x y dxe x'''==''--=====-;2.原式222sin sin (1)xarc x xarc x x ''=-=+-⎰⎰2sin xarc x c'=3. 原式333231222224(sin )cos (sin )sin (sin )sin 5x x dx x d x x d x ππππ'''==-=⎰⎰⎰4.原式223210'''⎡===⎣。