六年级相遇问题

合集下载

六年级数学相遇问题解题技巧

六年级数学相遇问题解题技巧

六年级数学相遇问题解题技巧一、相遇问题基本概念与公式1. 基本概念相遇问题是行程问题中的一种,它研究的是两个运动物体作相向运动的情况。

例如甲、乙两人分别从A、B两地同时出发,相向而行,经过一段时间后在途中相遇。

2. 基本公式路程和 = 速度和×相遇时间速度和 = 路程和÷相遇时间相遇时间 = 路程和÷速度和二、解题技巧与题目解析1. 直接利用公式求解例1:甲、乙两车分别从相距360千米的A、B两地同时出发,相向而行。

甲车每小时行50千米,乙车每小时行40千米。

问几小时后两车相遇?解析:已知路程和是360千米(A、B两地的距离),速度和为甲车速度 + 乙车速度,即50+40 = 90(千米/小时)。

根据相遇时间 = 路程和÷速度和,可得相遇时间为360÷90 = 4(小时)。

2. 先求出路程和或速度和再求解例2:小明和小红同时从自己家出发,相向而行。

小明每分钟走60米,小红每分钟走50米。

经过5分钟两人相遇。

两家相距多远?解析:这里已知速度和为60 + 50=110(米/分钟),相遇时间是5分钟。

根据路程和 = 速度和×相遇时间,可得两家相距110×5 = 550(米)。

例3:A、B两地相距480千米,甲、乙两车同时从A、B两地相向而行,甲车速度是每小时45千米,经过6小时两车相遇,求乙车速度。

解析:首先根据路程和与相遇时间求出速度和,速度和 = 路程和÷相遇时间 = 480÷6 = 80(千米/小时)。

然后用速度和减去甲车速度得到乙车速度,即80 45 = 35(千米/小时)。

3. 复杂情况的相遇问题(含中途停留等情况)例4:甲、乙两人从相距200米的A、B两地同时出发,相向而行。

甲每分钟走30米,乙每分钟走20米。

甲中途休息了2分钟,问两人出发后多久相遇?解析:设两人出发后t分钟相遇。

甲实际走的时间是(t 2)分钟。

六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧一、行程问题解题技巧之相遇问题。

1. 题目。

甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过3小时两人相遇。

求A、B两地的距离。

解析。

根据相遇问题的公式:路程 = 速度和×相遇时间。

甲、乙的速度和为15 + 10=25(千米/小时),相遇时间是3小时,所以A、B两地的距离为25×3 = 75千米。

2. 题目。

A、B两地相距200千米,甲、乙两车分别从A、B两地同时相向开出,甲车的速度为每小时30千米,乙车的速度为每小时20千米。

问几小时后两车相遇?解析。

速度和为30+20 = 50千米/小时,根据相遇时间 = 路程÷速度和,可得相遇时间为200÷50=4小时。

3. 题目。

甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是每秒6米,乙的速度是每秒4米。

两人同时同地反向出发,经过多少秒两人第一次相遇?解析。

在环形跑道上反向出发,相遇时两人跑的路程和就是跑道的周长。

速度和为6 + 4=10米/秒,根据时间 = 路程÷速度和,可得相遇时间为400÷10 = 40秒。

二、行程问题解题技巧之追及问题。

4. 题目。

甲、乙两人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,乙先走2小时后,甲才出发,问甲几小时后能追上乙?解析。

乙先走2小时,则先走的路程为6×2 = 12千米。

甲、乙的速度差为8 6 = 2千米/小时。

根据追及时间 = 路程差÷速度差,可得追及时间为12÷2 = 6小时。

5. 题目。

一辆汽车以每小时60千米的速度从A地开往B地,3小时后一辆摩托车以每小时90千米的速度也从A地开往B地,问摩托车出发后几小时能追上汽车?解析。

汽车先出发3小时,行驶的路程为60×3 = 180千米。

摩托车与汽车的速度差为90 60 = 30千米/小时。

六年级相遇问题解题技巧

六年级相遇问题解题技巧

六年级相遇问题解题技巧一、相遇问题基本概念1. 定义两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

2. 基本公式路程和 = 速度和×相遇时间速度和 = 路程和÷相遇时间相遇时间 = 路程和÷速度和二、解题技巧1. 认真审题,确定已知量和未知量例如:甲、乙两车分别从A、B两地同时出发,相向而行。

甲车的速度是每小时60千米,乙车的速度是每小时40千米,经过3小时两车相遇。

求A、B两地的距离。

解析:在这个题目中,已知量是甲、乙两车的速度(甲车速度公式千米/小时,乙车速度公式千米/小时)和相遇时间公式小时,未知量是A、B两地的距离(也就是路程和公式)。

根据公式公式,可得公式千米。

2. 画线段图辅助理解例如:小明和小红分别从相距500米的两地同时出发,相向而行。

小明的速度是每分钟60米,小红的速度是每分钟40米,他们多久能相遇?解析:先画一条线段表示两地的距离500米,然后在两端分别标记小明和小红的出发地。

从各自的出发地分别画出表示他们行走方向的箭头。

根据线段图可以更直观地看出路程和为500米,速度和为公式米/分钟。

再根据相遇时间公式,可得公式分钟。

3. 灵活运用公式变形例如:A、B两地相距480千米,甲、乙两车同时从两地相向而行,4小时后相遇。

已知甲车的速度是乙车速度的2倍,求甲、乙两车的速度各是多少?解析:首先根据公式公式,这里公式千米,公式小时,所以速度和公式千米/小时。

设乙车速度为公式千米/小时,因为甲车速度是乙车速度的2倍,则甲车速度为公式千米/小时。

根据速度和可列方程公式,即公式,解得公式千米/小时。

那么甲车速度公式千米/小时。

4. 注意单位换算例如:一辆客车和一辆货车分别从相距360千米的两地同时出发,相向而行。

客车的速度是50米/秒,货车的速度是30米/秒,求相遇时间。

解析:首先要统一单位,因为客车速度公式米/秒,货车速度公式米/秒,路程公式千米公式米。

六年级相遇追及问题--基础版

六年级相遇追及问题--基础版

相遇、追及问题一、相遇问题甲从A地到B地, 乙从B地到A地, 然后两人在途中相遇, 实质上是甲和乙一起走了A,B之间这段路程, 如果两人同时出发, 那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地, 相遇问题的关系式为: 速度和×相遇时间=路程和, 即二、追及问题有两个人同时行走, 一个走得快, 一个走得慢, 当走得慢的在前, 走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上, 要算走得快的人在某一段时间内, 比走得慢的人多走的路程, 也就是要计算两人走的路程之差(追及路程).如果设甲走得快, 乙走得慢, 在相同的时间(追及时间)内: 追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地, 追击问题有这样的数量关系: 追及路程=速度差×追及时间, 即在研究追及和相遇问题时, 一般都隐含以下两种条件:(1)在整个被研究的运动过程中, 2个物体所运行的时间相同(2)在整个运行过程中, 2个物体所走的是同一路径。

相遇问题: 总路程=速度和×相遇时间相遇时间=总路程÷速度和相遇时间=路程差÷速度差速度和=总路程÷相遇时间追及问题: 追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间一、相遇问题——基础题两列火车从两个车站同时出发相对开出, 甲车每小时行44千米, 乙车每小时行52千米, 经过2.5小时两车相遇。

两个车站之间的铁路长多少千米?两列火车从两个车站同时相对开出。

甲车每小时行44千米, 乙车每小时行52千米, 经过2.5小时后两车还相距85千米。

六年级相遇问题经典题型

六年级相遇问题经典题型

六年级相遇问题经典题型相遇问题是六年级数学中的经典题型之一,也是数学中最具挑战性的问题之一。

这类问题让我们思考两个或更多个运动物体在不同的速度和方向下移动,他们在未来的某一时刻是否会相遇。

这类问题需要我们清楚地了解速度、时间和距离之间的关系。

在解决这类问题时,我们常使用的方法是建立关于两个运动物体的距离和时间的方程。

下面,我将通过一些具体的例子来帮助我们更好地理解和解决这类问题。

例1:机车追击问题问题描述:甲乙两台机车在同一直线上行驶,甲车速度为40 km/h,乙车速度为50 km/h。

乙车发现甲车后,立即开始追赶,问需要追多长时间才能赶上甲车?解析:在这个问题中,我们需要确定乙车追上甲车的时间。

我们可以设甲车和乙车相遇的时间为t,此时甲车与乙车距离记为D。

甲车在t小时内行驶的距离为40t km。

相遇时,乙车追上甲车,因此乙车行驶的距离加上相遇时乙车与甲车的距离等于甲车行驶的距离,即50t + D = 40t。

我们可以整理这个方程,得到D = 10t。

根据题意,乙车的速度比甲车的速度快10 km/h。

根据问题,我们可以得到追上甲车所需时间t为t = D / 10,带入D = 10t的方程中,得到D = t。

所以乙车追上甲车的时间为t = D / 10 = t小时。

在这个问题中,我们可以得出结论:乙车追上甲车所需的时间是相遇时距离的1/10。

例2:两船相对而行问题问题描述:A船从A码头出发,速度为25 km/h。

b船从B码头出发,速度为15 km/h。

两船相对而行可以靠近一艘岛屿,问首次靠岸的位置与离说的距离是什么?解析:在这个问题中,我们需要确定两船相对运动的距离和时间。

我们可以设两船相对运动的时间为t,此时两船的相对速度记为V。

船B在t小时内行驶的距离为15t km。

两船靠近岛屿的位置与离岛屿的距离为D。

根据题意,在两船相遇时,船A行驶过的距离加上此时两船的距离等于船B行驶的距离,即25t + D = 15t。

小学六年级奥数相遇问题(三篇)

小学六年级奥数相遇问题(三篇)

【导语】学习奥数要有⼀个计划,每个年级都有不同的内容,所以,我们⼀定要制定好计划,不要滞后,也不要超前,按照⼤纲进度学习适合⾃⼰的内容。

以下是⽆忧考整理的《⼩学六年级奥数相遇问题(三篇)》,希望帮助到您。

【篇⼀】 1、甲⼄两辆汽车从相距600千⽶的两地相对开出,甲车每⼩时⾏45千⽶,⼄车每⼩时⾏40千⽶,甲车先开出2⼩时后,⼄车才开出。

⼄车⾏⼏⼩时后与甲车相遇? 2、⼀列⽕车于下午4时30分从甲站开出,每⼩时⾏120千⽶,经过1⼩时后,另⼀列⽕车以同样的速度从⼄站开出,晚上9时30分两车相遇。

甲⼄两站铁路长多少千⽶? 3、快车和慢车同时从甲、⼄两地相对开出,已知快车每⼩时⾏60千⽶,慢车每⼩时⾏52千⽶,经过⼏⼩时后快车经过中点32千⽶处与慢车相遇。

甲、⼄两地的路程是多少千⽶? 4、甲、⼄两车从A、B两地同时相向⽽⾏,甲车每⼩时⾏40千⽶,⼄车每⼩时⾏35千⽶,两车在距中点15千⽶处相遇。

A、B两地相距多少千⽶? 5、甲⼄相距640千⽶,两辆汽车同时从甲地开往⼄地,第⼀辆汽车每⼩时⾏46千⽶,第⼆辆汽车每⼩时⾏34千⽶,第⼀辆汽车到达⼄地后⽴即返回,两辆汽车从开出到相遇共与偶⽤了⼏⼩时? 6、哥哥和妹妹同时从甲到相距540⽶远的学校上学,哥哥每分钟⾛60⽶,妹妹每分钟⾛48⽶,哥哥到达学校后发现忘了拿铅笔,⽴即返回家去取,在途中遇到妹妹。

从开始上学到两⼈再相遇共有多少分钟? 7、甲⼄两队学⽣从相距2700⽶的两地同时出发,相向⽽⾏,⼀个同学骑⾃⾏车以每分钟150的速度在两队之间不停地往返联络,甲队每分钟⾏25⽶,⼄队每分钟⾏20⽶,两队相遇时,骑⾃⾏车的同学共⾏了多少⽶? 8、AB两⼈同时从相距3000⽶的家⾥相向⽽⾏,A每分钟⾏70⽶,B每分钟⾏80⽶,⼀只⼤狗与他同时出发,每分钟⾏100⽶,狗与B相遇后⽴即掉头向A跑去,遇到A后⼜向B跑去,直到AB两⼈相遇。

这只狗⼀共跑了多少⽶? 9、两辆汽车同时分别从相距500千⽶的两地出发,相向⽽⾏,速度分别为每⼩时40千⽶和每⼩时60千⽶,⼏⼩时后两车相遇? 10、A、B两地相距480千⽶,甲⼄两车同时从两站相对出发,甲车每⼩时⾏35千⽶,⼄车每⼩时⾏45千⽶,⼀只燕⼦以每⼩时⾏50千⽶的速度和甲车同时出发向⼄车飞去,遇到⼄车⼜折回向甲车返飞去,遇到甲车⼜返飞向⼄车,这样⼀直飞下去,燕⼦飞了多少千⽶两车才能相遇?【篇⼆】 1、AB两地相距119千⽶,甲⼄两车同时从A、B两地出发,相向⽽⾏,并连续往返于A、B两地。

相遇问题--2024年六年级下册小升初数学思维拓展

相遇问题--2024年六年级下册小升初数学思维拓展

相遇问题【知识点归纳】两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题.它的特点是两个运动物体共同走完整个路程. 小学数学教材中的行程问题,一般是指相遇问题.相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度.它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和﹣已知的一个速度.1.A 、B 两地间有一座桥,甲、乙两人分别从A 、B 两地同时出发,3小时后在桥上相遇.如果甲加快速度,每小时多行2千米,而乙提前0.50.5小时出发,乙每小时少走2千米,还会在桥上相遇,则A 、B 两地相距多少千米?2.刘凯和王明两家相距1200米,两人同时从家出发,相向而行,走了6分钟后,两人还相距342米。

刘凯的速度是王明的1.2倍,刘凯每分钟走多少米?(用方程解答)3.A、B两地相距378千米,甲、乙两车同时从两地出发,相向而行。

甲车的速度是乙车的1.1倍,3小时后两车相遇。

甲车平均每小时行多少千米?4.甲乙两地相距325.5千米,两车从两地相向而行,甲车每小时行45千米,乙车每小时行48千米,甲车开出2小时后,乙车才出发,再经过几小时两车相遇?5.一辆大客车和一辆小汽车分别从甲地和乙地出发,相向而行,大客车平均每小时行56.5千米,小汽车平均每小时行61.5千米,1.5小时两车相遇。

甲乙两地之间的路程是多少千米?6.甲乙两地相距810千米,一辆客车和一辆货车分别从甲乙两地同时出发,相向而行,经过6小时相遇。

客车每小时行75千米,货车每小时行多少千米?(用方程解答)7.甲、乙两地相距480千米,-列客车与-列货车从甲、乙两地同时相向而行,4小时相遇。

已知客车与货车的速度比是3∶2,客车每小时行多少千米?8.甲、乙两车同时从A地出发,甲车向南开,每时行驶55km,乙车向北开,3时后两车相距345km,乙车每时行驶多少千米?9.甲、乙两车同时从两地相对开出,3小时后相遇,甲、乙两车速度之比是5∶4,两地相距540km,求两车各自的速度。

苏教版六年级下小升初典型奥数之相遇问题

苏教版六年级下小升初典型奥数之相遇问题

苏教版六年级下小升初典型奥数之相遇问题在小学奥数中,相遇问题是一个常见且重要的知识点,对于六年级即将面临小升初的同学们来说,掌握好相遇问题不仅能够提高数学解题能力,还能为初中数学的学习打下坚实的基础。

相遇问题,简单来说,就是研究两个或多个物体相向运动时,它们之间的时间、速度和路程之间的关系。

我们先来了解一下相遇问题的基本公式:路程=速度和×相遇时间相遇时间=路程÷速度和速度和=路程÷相遇时间接下来,我们通过一些具体的例子来深入理解相遇问题。

例 1:甲、乙两人分别从 A、B 两地同时出发,相向而行。

甲的速度是每小时5 千米,乙的速度是每小时4 千米,经过3 小时两人相遇。

A、B 两地相距多远?这是一个典型的相遇问题。

我们已知甲、乙的速度以及相遇时间,要求 A、B 两地的距离。

根据公式“路程=速度和×相遇时间”,甲、乙的速度和为 5 + 4 = 9 千米/小时,相遇时间是 3 小时,所以 A、B 两地的距离为 9×3 = 27 千米。

例 2:A、B 两地相距 36 千米,甲、乙两人同时从 A、B 两地出发,相向而行。

甲每小时行 6 千米,乙每小时行 4 千米,几小时后两人相遇?在这个问题中,我们已知 A、B 两地的距离以及甲、乙的速度,要求相遇时间。

根据公式“相遇时间=路程÷速度和”,甲、乙的速度和为 6 + 4 = 10 千米/小时,路程是 36 千米,所以相遇时间为 36÷10 =36 小时。

例 3:甲、乙两人同时从相距 20 千米的两地相向而行,甲每小时行3 千米,乙每小时行 2 千米。

几小时后两人相距 5 千米?这个问题稍微有点复杂,我们需要分两种情况来考虑。

第一种情况,两人还没有相遇,相距 5 千米。

此时两人一共走的路程是 20 5 = 15 千米,速度和是 3 + 2 = 5 千米/小时,所以相遇时间为 15÷5 = 3 小时。

六年级相遇问题必考知识点

六年级相遇问题必考知识点

六年级相遇问题必考知识点相遇问题是数学中一个非常常见的问题类型,也是六年级学生必须掌握的重要知识点之一。

在解决相遇问题时,我们需要运用到一些基本的数学概念和技巧。

接下来,我们将系统地介绍六年级相遇问题的必考知识点。

一、相遇问题介绍相遇问题是指两个或多个物体从不同的出发点同时出发,按照不同的速度或者相同的速度但在不同的方向上移动,在某个时间点相遇的问题。

对于这类问题,我们需要通过计算来确定它们相遇的时间、地点或者速度等相关信息。

二、相遇问题基本公式在解决相遇问题时,我们可以应用以下两个基本公式:1. 路程 = 速度 ×时间2. 相对速度= 速度1 + 速度2(当两物体在同一方向上运动时)这两个公式是解决相遇问题的关键。

三、相遇问题示例及解析为了更好地理解相遇问题的解题思路,我们来看一个具体的示例:示例:小明和小李同时从相距200米的地方出发,小明的速度为5m/s,小李的速度为3m/s,他们以相同的速度向相反的方向移动,当他们相遇后,互相走了多少时间?解析:首先,我们要明确两个物体都是以匀速运动的,且速度方向相反。

根据题目给出的数据,我们可以得知小明的速度为5m/s,小李的速度为3m/s。

又因为两个物体以相同的速度向相反的方向移动,所以可以计算出相对速度为5m/s + 3m/s = 8m/s。

接下来,我们可以使用"路程 = 速度 ×时间"的公式来解决这个问题。

由于相对速度为8m/s,而两个物体相距200米,所以他们相遇所需的时间为:200m / 8m/s = 25秒。

综上所述,当小明和小李相遇时,他们互相走了25秒。

四、相遇问题的拓展应用除了以上示例中的简单相遇问题,相遇问题还存在一些拓展应用。

1. 多物体相遇问题:当涉及到三个或更多物体的相遇问题时,我们可以应用相同的思路和公式来解决。

需要在计算时注意不同物体之间的相对速度。

2. 相遇后继续行进问题:有时,题目可能会要求我们计算两个或多个物体相遇后继续行进一段距离后的位置或时间。

六年级相遇问题应用题

六年级相遇问题应用题

六年级相遇问题应用题1、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?2、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?3、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?5、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?6、两辆车从甲乙两地同时相对开出,4时相遇。

慢车是快车速度的五分之三,相遇时快车比慢车多行80千米,两地相距多少?7、甲乙两人分别从A、B两地同时出发,相向而行,甲每分钟行100米,乙每分钟行120米,2小时后两人相距150米。

A、B两地的最短距离多少米?最长距离多少米?8、甲乙两地相距180千米,一辆汽车从甲地开往乙地计划4小时到达,实际每小时比原计划多行5千米,这样可以比原计划提前几小时到达?9、甲、乙两车同时从AB两地相对开出,相遇时,甲、乙两车所行路程是4:3,相遇后,乙每小时比甲快12千米,甲车仍按原速前进,结果两车同时到达目的地,已知乙车一共行了12小时,AB两地相距多少千米?10、甲乙两汽车同时从相距325千米的两地相向而行,甲车每小时行52千米,乙车的速度是甲车的1.5倍,车开出几时相遇?1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?12、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?13、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

六年级相遇问题知识点

六年级相遇问题知识点

六年级相遇问题知识点相遇问题是数学中的一个重要概念,主要涉及两个物体从不同的起点出发,以不同的速度行走,然后在某个时间点相遇的情况。

解决相遇问题需要掌握一些关键的知识点,下面将详细介绍。

1. 相遇问题的基本概念相遇问题是在空间中描述两个物体从不同位置出发,以不同的速度前进,最终在某个时间点相遇的问题。

可以用数学模型和方程来解决相遇问题。

2. 相遇问题的基本原理在相遇问题中,两个物体的运动可以用时间和距离的关系来描述。

若两个物体在相同的时间内行驶相同的距离,它们将会在同一位置相遇;若两个物体在相同的时间内行驶不同的距离,它们会相遇在不同的位置。

3. 相遇问题的数学模型解决相遇问题需要建立数学模型来描述两个物体的运动情况。

通常使用速度和时间来表示物体的运动,可以利用以下公式来解决相遇问题:速度 = 距离 / 时间4. 相遇问题的问题类型在相遇问题中,一般可以分为以下几种类型:(1) A、B两物体从相同位置出发,以不同的速度相向而行,求它们相遇的时间和位置。

(2) A、B两物体从不同的位置出发,以不同的速度相向而行,求它们相遇的时间和位置。

(3) A、B两物体从不同的位置出发,以不同的速度同向而行,求它们相遇的时间和位置。

(4) A、B两物体从不同的位置出发,以不同的速度同向而行,求它们第一次相遇的时间和位置。

(5) A、B两物体从不同的位置出发,以不同的速度同向而行,直到A超过B一定的距离后回头,求它们第二次相遇的时间和位置。

通过掌握不同类型的相遇问题解法,可以更好地解决各种实际问题。

5. 相遇问题的解题步骤解决相遇问题的一般步骤如下:(1) 确定物体的初始位置、速度以及相关的条件。

(2) 建立数学模型,根据题目中给出的条件,设定未知数。

(3) 利用已知的速度和时间关系以及数学模型中的方程,解得未知数。

(4) 根据解得的未知数,得出相遇的时间和位置。

(5) 对问题进行验证,检查解的合理性和准确性。

6. 相遇问题的实际应用相遇问题的解决方法可以应用于实际生活当中,如交通运输、竞技赛事等方面。

六年级相遇问题经典题型

六年级相遇问题经典题型

六年级相遇问题经典题型六年级相遇问题经典题型常见有多个学生或者朋友在不同的地点出发,然后相遇在某个地点。

这样的问题不仅考察了学生的计算能力,还能锻炼学生的逻辑思维和解决问题的能力。

以下是一个经典的相遇问题。

题目:小明和小红分别从A、B两地同时出发,小明的速度是每小时6公里,小红的速度是每小时4公里。

如果A、B两地的距离是120公里,那么他们在多长时间内相遇?相遇的地点在哪里?解题步骤:1.分析问题题目中给出了小明和小红的出发地点,他们的速度和A、B两地的距离,要求计算他们相遇的时间和地点。

2.计算时间设小明和小红相遇的时间为t小时,根据题意可知小明前进的距离为6t,小红前进的距离为4t。

由于他们是同时出发的,所以他们相遇时,小明和小红前进的总距离应该等于A、B两地的距离。

即6t +4t = 120,解得t = 10。

3.计算地点根据计算出的相遇时间t,可以求出小明和小红相遇时的位置。

小明在t小时内前进的距离为6 * 10 = 60公里,小红在t小时内前进的距离为4 * 10 = 40公里。

所以,他们相遇的地点距离A地60公里,距离B地60公里。

4.结论小明和小红在10小时后在距离A地60公里、距离B地60公里的地方相遇。

结论:小明和小红在10小时后在B地60公里处相遇。

以上是六年级相遇问题经典题型的解题步骤,通过这个题目的解答,学生不仅能够锻炼自己的计算能力,还可以培养自己的逻辑思维和解决问题的能力。

在解题的过程中,学生需要观察问题,分析问题,提出解决问题的方法,并得出结论。

这样的训练不仅有助于学生在数学上的提高,还能培养学生解决实际问题的能力,对学生的综合素质提高有很大的帮助。

此外,老师在教学中也可以结合实际生活中的例子,让学生更好地理解相遇问题的解题方法。

比如,讲述两辆车从不同地点同时出发,相遇的问题,或者两个人从不同地点开始散步,最终相遇的问题等等。

通过这样的教学方式,可以提高学生的学习兴趣,让他们在实际生活中也能够运用所学的知识解决问题。

小学数学六年级相遇问题

小学数学六年级相遇问题
第5页/共21页
(65 + 70)×4 = 135 ×4 = 540 (米)
第6页/共21页
速度和 × 相遇时间 = 路程
第7页/共21页
65×4+ =702×604+280 =540(米)
答:他们两家相距540米.
(65+70)×4
=135×4 =540(米)
第8页/共21页
1.志明和小龙同时从两地对面走来,经过5分钟两人相遇,两地相距多 少米?(用两种方法解答)
第17页/共21页
方法一:75×1+ 75×2 +69×2
方法二:75×﹙1+2﹚+69×2 方法三:75×1+﹙75+69﹚×2 方法四:﹙75+69﹚×﹙2+1﹚
第18页/共21页
猜一猜: 相遇问题还可能有哪些变化?
第19页/共21页
第20页/共21页
感谢您的观看!
第21页/共21页
第13页/共21页
3、只列式,不计算
A、 两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上 海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
26×25+17×25
(26+17)×25
第14页/共21页
3、只列式,不计算 B、两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行千米,乙车平 均每小时行千米.经过3小时,两车相距多少千米?
(54+52) =×5 = 106×5
530(米)
第10页/共21页
2.两列火车从两个车站同时相向开出.甲车每小时行44千 米,乙车每小时行52千米,经过小时两车相遇.两个车站之 间的铁路长多少千米?

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)一、相遇问题常见公式。

1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲行走的路程=两者相遇路程-乙行走的路程二、解决实际问题的技巧。

1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。

2、相遇问题除了要弄清路程、速度与两者相遇时间之外,须注意一些其他重要的细节:(1)两者是否是同一起点、同时出发。

如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。

(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。

方向不一样,处理问题就会不一样。

(3)所行走的路线是环形的,还是直线型的。

如果是环形的,要考虑再次相遇的可能。

【典型例题】1、小恬骑车从家出发去距离3.5千米远的图书馆,同一时间小琳从图书馆出来朝小恬家的方向骑来,14分钟后两人刚好相遇。

小恬每分钟骑车130米,那么小琳每分钟骑车多少米?【例题分析】这道题目是典型的路程相遇问题,已知相遇路程和相遇时间,只需要运用公式:甲的速度=相遇路程÷相遇时间-乙的速度代入相关的数量,求出答案即可。

【解答】3.5千米=3500米3500÷14-130=250-130=120(米)答:小琳每分钟骑车120米。

【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。

两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?2、两列高铁同时从两地相对开出,经过 32 个小时后,两列高铁在途中相遇。

数学六年级第11讲:相遇问题(最新数学课件)

数学六年级第11讲:相遇问题(最新数学课件)

240米 总路程不变
学校
相遇点
少年宫
相遇后阿派走的路程
为什么相遇后欧拉走的
相遇前欧拉、阿派行 路程就是相遇前阿派走
走的时间:
的路程?
240÷60=4(分钟)
相遇前欧拉行走的路
程:5×60=300(米)
欧拉的速度:
300÷4=75(米/分钟)
答:欧拉的速度是75米每分钟。
练习2
米德和卡尔同时从学校和阿博士的实验室出发,相向而行,米德每
练习1
王叔叔发现落了一份文件在家,王叔叔家离公司有4000米,王叔
叔立马返回家拿,当王叔叔走了4分钟之后,王阿姨也发现,并也立刻
给王叔叔送去,16分钟后两人相遇,已知王叔叔比王阿姨每分钟快20
米。求王叔叔的速度。
王阿姨 a 王叔叔 a+20 王叔叔先走的路程:
4(a+20)
解:设王阿姨的速度为a米/分钟, 则王叔叔的速度为(a+20)米/分钟。 4(a+20)+16×(a+a+20)=4000
小时走5千米,两人相遇后,米德再走3小时到阿博士的实验室,卡尔 再走15千米到达学校。卡尔每小时走多少千米?
米德行走时间
学校
相遇点
实验室
相遇前卡尔行走路程
卡尔相遇前行走路程: 5×3=15(千米) 卡尔相遇前行走时间: 15÷5=3(小时) 卡尔的速度: 15÷3=5(千米/小时)
答:卡尔每小时走5千米。
答:慢车每小时行36千米。
练习3
有甲、乙两辆货车,分别从北京和上海运输货物,甲 车每小时行驶40千米,经过4小时甲车已驶过中点34千米, 这时甲车与乙车还相距7千米。乙车每小时行驶多少千米?

六年级下册数学相遇问题

六年级下册数学相遇问题

六年级下册数学相遇问题1.甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟,三辆汽车同时从同一个起点出发,问至少要多少时间这三辆汽车才能同时又在起点相遇?2.东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?3.AB两地间有一条公路长2800米,甲车从A地出发5分钟后,乙车从B地出发,又经过10分钟两车相遇。

已知乙车每分钟行100米,甲车每分钟行多少米?4.妹妹从家出发到学校去,每分钟走80米,家与学校相距1400米。

5分钟后,哥哥骑自行车从家出发去学校,每分钟行200米。

哥哥刚到学校就立即沿原路返回,在途中与妹妹相遇。

从妹妹从家出发到与哥哥相遇,妹妹共走了几分钟?5.两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。

甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?6.甲乙两地相距350千米,一辆汽车在早上8点从甲地出发,以每小时40千米的速度开往乙地。

两小时后另一辆汽车以每小时50千米的速度从乙地开往甲地。

几点两车在途中相遇?7.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?8.小明和小华两人同时从A、B两地相向而行,第一次在离A地75米处相遇,相遇后继续前进到达对方目的地后又立刻返回,第二次相遇在离B地55米处,求A、B两地相距多远?9.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处。

问:甲、乙两地的距离是多少?10.小智、小霖两人分别从A、B两地同时出发,相向而行,往返于A、B之间,第一次相遇在距A地20千米处,之后两车继续以原速前进,各自到达对方出发点后立刻返回,第二次相遇在距A地40千米处,求A、B的距离。

六年级数学相遇问题应用题

六年级数学相遇问题应用题

六年级数学相遇问题应用题六年级数学相遇问题引言相遇问题是六年级数学中一个常见的应用题,通过求解两个人相遇的时间、距离等问题,培养学生的综合运算能力和问题解决能力。

本文整理了几个典型的相遇问题,供学生练习和巩固知识。

问题一:两人同时从A、B两地出发,相向而行,相遇后又继续按原速度返回,求相遇后两人走过的总路程。

已知:两地距离为d,两人的速度分别为v1和v2。

要求:求两人相遇后所走过的总路程。

解答: 1. 两人相遇时,他们走的总时间是路程d除以两人速度之和:t = d / (v1 + v2)。

2. 相遇后,两人又按原速度返回,所以总路程是相遇前走过的路程的两倍:总路程 = 2 * (d + t * v1)。

问题二:两人从A地和B地同时出发,以不同速度相向而行,相遇后互换速度继续走,再次相遇时,两人相遇点距离起点距离多少?已知:两地距离为d,两人的速度分别为v1和v2。

要求:求两人第二次相遇点距离起点的距离。

解答: 1. 两人第一次相遇时,他们共同走的路程是总路程的一半:路程 = d / 2。

2. 第一次相遇后,两人互换速度继续走,所以他们再次相遇时,路程相当于两个人分别走过的路程之和等于总路程:2 * (v1 * t1 + v2 * t2) = d。

3. t1和t2分别为两个人相遇前的时间,可以通过已知条件求得。

4. 第二次相遇点距离起点的距离等于两个人相遇前走过的路程之和,即 v1 * t1 + v2 * t2。

结语通过解决相遇问题,可以培养学生的综合运算能力和问题解决能力。

以上是两个典型的相遇问题,供同学们练习和巩固知识。

希望本文对学生们的学习有所帮助。

六年级行程问题经典例题40题

六年级行程问题经典例题40题

六年级行程问题经典例题40题一、相遇问题1. 甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时后两人相遇。

求A、B两地的距离。

解析:根据相遇问题的公式,路程 = 速度和×相遇时间。

甲、乙的速度和为5 + 4 = 9(千米/小时),相遇时间是3小时,所以A、B两地的距离为9×3 = 27(千米)。

2. 两地相距600千米,上午8时,客车以每小时60千米的速度从甲地开往乙地,货车以每小时50千米的速度从乙地开往甲地。

要使两车在中点相遇,货车必须在上午几时出发?解析:两地中点距离为600÷2 = 300千米。

客车到达中点需要的时间为300÷60 = 5小时,货车到达中点需要的时间为300÷50 = 6小时。

客车上午8时出发,5小时后即13时到达中点,货车要6小时到达中点,所以货车必须提前1小时出发,也就是上午7时出发。

3. 甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行70千米,乙车每小时行80千米,3小时后两车还相距50千米。

A、B两地相距多远?解析:甲、乙两车3小时行驶的路程之和为(70 + 80)×3=450千米,此时还相距50千米,所以A、B两地相距450+ 50 = 500千米。

二、追及问题4. 甲、乙两人在相距12千米的A、B两地同时出发,同向而行。

甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。

几小时后乙能追上甲?解析:乙的速度是4×3 = 12千米/小时,乙与甲的速度差是12 4 = 8千米/小时。

追及路程是12千米,根据追及时间 = 追及路程÷速度差,可得追及时间为12÷8 = 1.5小时。

5. 一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?解析:汽车先开出5小时行驶的路程为40×5 = 200千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇问题:公式(1)总路程=(甲速+乙速) ×相遇时间
(2)相遇时间=总路程÷(甲速+乙速)
一、求路程
1) 甲乙二人分别从AB两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,又继续前进,分别到达B、A两地后又立即按原速度返回。

从开始直到第二次相遇,共用了6小时。

问AB两地相距多少千米?
2) 两列火车从甲乙两地同发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。

两车相遇时,每一列火车比第二列火车多行了20千米,求甲乙两地间的距离。

3) 甲乙二人同时从AB两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点1.5千米的地方相遇。

求AB两地之间的距离。

4) 从甲城往乙城开出一列普通客车,每小时行60千米,行驶到全程的3/17时,从乙城往甲城开出一列快车,每小时行驶80千米。

快车开出4小时后同普通客车相遇。

求甲乙两城间相距多少千米?
5) 甲车的速度是乙车速度的5/6,两车同时从AB两站相向而行,在离中点2千米处相遇,求两站间的距离。

1
二、求各行多少
1)两地相距37.5千米,甲乙二人同时从两地出发相向而行,甲每小时走3.5千米,乙每小
时走4千米,相遇时甲乙二人各走了多少千米?
2)甲乙二人从相距40千米的两地同时相对走来,甲每小时走4千米,乙每小时走6千米。

相遇后他们又继续走了1小时。

两人各走了多少千米?
3)两列火车分别从甲乙两个火车站相对开出,第一列火车每小时行48.65千米,第二列火
车每小时行47.35千米。

两车在相遇时,第一列火车比第二列火车多行了5.2千米。

求相遇时两列火车各行了多少千米?
4)东西两车站相距564千米,两列火车同时从两站相对开出,经6小时相遇。

第一列火车
比第二列火车每小时快2千米。

相遇时这两列火车各行了多少千米?
三、求相遇时间
1)两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出。

客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。

两车开了几小时以后相遇?
2
2)在一次战役中,敌我双方原来相距62.75千米。

据侦察员报告,敌人已向我处前进
11千米,我军随即出发迎敌,每小时前进6.5千米,敌人每小时前进5千米。

我军出发几小时后与敌人相遇?
3)甲乙两地相距200千米,一列货车由甲地开往乙地要行驶5小时;一列客车由乙地
开往甲地需要行驶4小时。

如果两列火车同时从两地相对开出,经过几小时可以相遇?(保留一位小数)
4)在复线铁路上,快车和慢车公别从两个车站开出,相向而行。

快车车身长是180米,
速度为每秒种9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟?
5)两地之间的路程是420千米,一列客车和一列货车同时从两个城市相对开出,客车
每小时行55千米,货车每小时的速度是客车的10/11,两车开出后几小时相遇?
三、求相遇时间
1) 两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出。

客车的平均速度是每小时55千米,货车的平均速度是每小时45千米。

两车开了几小时以后相遇?
3
2) 在一次战役中,敌我双方原来相距62.75千米。

据侦察员报告,敌人已向我处前进11千米,我军随即出发迎敌,每小时前进6.5千米,敌人每小时前进5千米。

我军出发几小时后与敌人相遇?
3) 甲乙两地相距200千米,一列货车由甲地开往乙地要行驶5小时;一列客车由乙地开往甲地需要行驶4小时。

如果两列火车同时从两地相对开出,经过几小时可以相遇?(保留一位小数)
5)在复线铁路上,快车和慢车公别从两个车站开出,相向而行。

快车车身长是180米,速
度为每秒种9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟?
6)两地之间的路程是420千米,一列客车和一列货车同时从两个城市相对开出,客车每小
时行55千米,货车每小时的速度是客车的10/11,两车开出后几小时相遇?
四.求速度
1) 甲乙两个车站相距550千米,两列火车同时由两站相向开出,5小时后相遇,如果快车每小时行60千米,那么慢车每小时行多少千米?
4
2) AB两个城市相距380千米。

客车和货车从两个城市同时相对开出,经过4小时相遇。

货车比客车每小时快5千米。

这两列车每小时各行多少千米?
3) 甲乙两个城市相距980千米,两列火车由两城市同时相对开出,经过10小时相遇。

快车每小时行50千米,比慢车每小时多行多少千米?
4) 两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。

一辆汽车每小时行37千米,另一辆汽车每小时行多少千米?
5. 甲乙两人从相距40千米的两地相向而行。

甲步行,每小时走5千米,先出发0.8小
时;乙骑自行车,骑2小时后,两人在某地相遇。

乙骑自行车每小时多少千米?
6. 甲乙二人从相距50千米的两地相对而行,甲先出发,每小时步行5千米。

1小时后
乙骑自行车出发,骑了2小时,两人相距11千米。

乙每小时行驶了多少千米?
7. 甲乙两地相距486千米,快车与慢车同时从甲乙两地相对开出,经过6小时相遇,已知快车与慢车速度比是5:4。

求快车和慢车每小时各行多少千米?
5
五、追及问题:
公式:(1)距离差=速度差×追及时间
(2)追及时间=距离差÷速度差
(3)速度差=距离差÷追及时间=快速-慢速
1) 甲乙二人在同一条路上前后相距9千米。

他们同时向同一个方向前进。

甲在前,以每小时5千米的速度步行;乙在后,以每小时10千米的速度骑自行车赶甲。

几小时后乙能追上甲?
2) 甲乙二人在相距6千米的两地同时同向出发,乙在前,每小时行5千米;甲在后,每小时的速度是乙的1.2倍。

甲几小时才能追上乙?
3) 甲乙二人围绕一条长400米的环形跑道练习长跑。

甲每分钟跑350米,乙每分钟跑250米。

二人同时从起跑线出发,经过多长时间甲能追上乙?
4) 在解放战争的一次战役中,我军侦察到敌军在我军南面6千米的某地,正以每小时5.5千米的速度向南逃窜,我军立即以每小时8.5千米的速度追击敌人。

在追上敌人后,只用半小时就全歼敌军。

从开始追击到全歼敌军,共用了多长时间?
5) 一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍?
六、相离问题:两个物体之间的路程=两个物体出发地之间的路程+速度和×时间
1) 哥哥由家向东到工厂去上班,每分钟走85米,弟弟同时由家往西到学校去上学,每分钟走75米。

几分钟后二人相距960米?
2) 甲乙二人从同一城镇某车站同时出发,相背而行。

甲每小时行6千米,乙每小时行7千米。

8小时后,甲乙二人相距多少千米?
3) 东西两镇相距69千米。

张、王二人同时自两镇之间的某地相背而行,6小时后二人分别到达东西两镇。

已知张每小时比王多行1.5千米。

二人每小时各行多少千米?
7。

相关文档
最新文档