附表一标准正态分布函数表
正态分布(4)
2.正态分布密度函数: 正态分布密度函数: 正态分布密度函数
正态曲线( 正态曲线(normal curve)是一条高峰位于中 ) 央,两端逐渐下降并完全对称,曲线两端永远不 两端逐渐下降并完全对称, 与横轴相交的钟型曲线。其密度函数为: 与横轴相交的钟型曲线。其密度函数为:
−( X −µ)2 2σ 2
1 f ( z) = 2π
e
−
z 2
2
− ∞ < z < +∞
经标准化变换后,原变量X变为 ,Z服从总体 经标准化变换后,原变量 变为Z, 服从总体 变为 均数为0,总体标准差为 的正态分布 的正态分布, 均数为 ,总体标准差为1的正态分布,即标准 正态分布( 正态分布(standard normal distribution)。 ) 记作: 记作:
习惯上用N 表示均数为µ 标准差为σ 习惯上用 (µ ,σ2)表示均数为 、标准差为 表示均数为 的正态分布。记作: 的正态分布。记作:
X ~ N(µ,σ )
2
二、正态曲线下面积的分布规律 (一)正态分布曲线下面积 正态曲线下面积的分布规律由µ 所决定。 正态曲线下面积的分布规律由 及σ所决定。 所决定 一般正态分布曲线下面积分布状况: 一般正态分布曲线下面积分布状况: µ± σ µ±1.64 σ µ±1.96 σ µ±2.58 σ 0.6827 0.9090 0.9500 0.9900
Z ~ N ( 0 ,) 1
统计学家编制了标准正态分 布曲线下面积分布表, 布曲线下面积分布表,正态 分布两边对称, 分布两边对称,表中只给出 取负值的情况。 了Z取负值的情况。表内所 取负值的情况 列数相当于Z值左侧标准正 列数相当于 值左侧标准正 态分布曲线下面积, 态分布曲线下面积,记作 Φ(z)。 。
正态分布
e
2 2
dX
2.正态分布的表示方法:X~N(μ , σ2)
三、正态分布的特征
① 呈钟型,高峰在中央(均数所在处);
② 以均数为中心,左右对称; ③ 正态分布有两个参数,即均数与标准差(与)
:位置参数
:形态参数
④ 不服从正态分布的指标,经转换可服从正态分布 ⑤ 正态曲线下的面积分布有一定规律,总面积=1
正态分布
一、正态分布的概念
又称Gauss分布,是自然界最常见、最重要 的一种分布,是连续型变量的分布,是许多 统计分析方法的基础。 得来: 频数分布直方图 设想为频率分布曲线 近似正态分布曲线
二、正态分布图形
1.概率密度函数:
1 F(X ) 2X ( X )2
0.5 0.4 0.3 0.2 0.1 0 -4 -3 -2 -1 0 1 2 3 4
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
σ =0.5
σ =1 σ =2
四、标准正态分布
1.定义:又称Z分布(u分布),是一种特殊的 正态分布 (μ=0,σ2=1) 2.表示方法: Z~N(0 , 1) 3.标准化变换:
4.许多统计分析方法的基础
1.估计频数分布
利用标准正态分布曲线下面积,可
以估计任意取值在(X1,X2 )范围 内的频数比例。
例题2-15
2.确定医学参考值范围
概念 :又称正常值范围,指绝大多数 正常人的人体形态、功能、代谢产物 等各种生理、生化指标的波动范围。 在诊断方面可用于划分正常或异常。
公式(正态分布法):以95%为例
第三节 正态分布
主要内容: 主要内容: 一、正态分布概念 二、正态分布的特点 三、应用
一、正态分布概念
正态分布又称高斯分布,常态分布,是一种数据的 波动规律的表达,主要反映了试验的随机误差。
强度分组为横坐标,以频数为纵坐标,绘成强 度—频数直方图
12 10 8 6 4 2 0 18 20 22 24 26 3 7 5 2 10
应用
1.可疑数据的舍弃; A. 莱 特 准 则 ( 3σ 原 则 ) : 由 于 落 在 (u3σ,u+3σ)的概率为99.73%,处在3σ之外的 概率(即误差概率)仅为0.27%,接近0,对于 常规一般仅进行几十次的测量,如处在3σ之 外则说明属于随机误差,应剔除。 由于次判据是建立在n趋向于无穷得基础上得, 所以当n有限时,尤其是n较小时这一判据并不 十分可靠。但是由于其使用方便,故常常被使 用。
(一)正交设计的基本方法
试验设计包括三方面的内容: 1. 因素和水平选择 2. 误差控制:试验方案的制定 3. 数据处理:分析试验结果
一般来说,为保证结论的可靠性,在选取因素时 应把所有影响较大的因素选入试验,某些因素 之间可能还有交互作用,所谓交互作用,就是 这些因素在同时改变水平时,其效果会超过单 独改变某一因素水平时的效果。影响较大的因 素还应包括那些单独变化水平时效果可能不太, 大与其他因素同时变化时交互作用较大的因素, 这样才能保证试验的代表性。因素变化越多越 好,取值不能少于3个,这样才能看出曲线,看 出其变化的趋势。某一因素取值变化的次数即 水平数,为了减少试验次数,往往取两水平(现 行工艺水平和新工艺水平)或三水平(低于现行 工艺水平或理论值、现行工艺水平、高于现行 工艺水平)。 水平变化的范围不宜太大。
且从图12-2还可以看出,按趋势,增加 水分与碾压料重、抗折强度,还有可能 提高,因此还应扩大试验范围,试探其 强度趋势。
标准正态分布表
标准正态分布表标准正态分布表是统计学中常用的一种表格,它记录了标准正态分布曲线下的面积值。
标准正态分布是指均值为0,标准差为1的正态分布,其概率密度函数呈钟形曲线,左右对称。
在实际应用中,我们经常需要计算标准正态分布曲线下某个数值范围内的面积,而标准正态分布表则提供了这些数值范围对应的面积值,方便我们进行统计推断和分析。
标准正态分布表的使用方法非常简单。
表格的左侧是小数部分,右侧是小数点后两位,而表格的顶部是个位数部分。
要查找某个数值范围对应的面积值,只需找到对应的个位数和小数部分,然后在交叉的位置就可以找到对应的面积值。
例如,如果要查找标准正态分布曲线下z介于0和1之间的面积值,只需找到0行和10列的交叉位置,即可找到对应的面积值为0.3413。
标准正态分布表的应用非常广泛,它可以帮助我们进行正态分布相关的统计计算和推断。
例如,在假设检验中,我们可以利用标准正态分布表来计算检验统计量的临界值,从而进行假设的推断;在质量控制中,我们可以利用标准正态分布表来计算过程能力指数,评估生产过程的稳定性和一致性;在风险管理中,我们可以利用标准正态分布表来计算风险值的概率,评估风险的可能性和影响程度。
除了查表法,我们还可以利用统计软件进行标准正态分布的计算和推断。
例如,在R语言和Python中,可以利用相关的函数和库来进行标准正态分布的计算和可视化。
这种方法不仅可以提高计算的效率,还可以减少人为失误,特别是在需要进行大量计算和复杂推断时,更加方便快捷。
总之,标准正态分布表是统计学中非常重要的工具,它为我们提供了便利的数值范围对应的面积值,帮助我们进行正态分布相关的统计计算和推断。
在实际应用中,我们既可以利用查表法来获取所需的面积值,也可以利用统计软件进行计算和可视化,以满足不同场景下的需求。
希望本文对标准正态分布表的理解和应用有所帮助,谢谢阅读!。
正态分布及参考值范围
u x
0.8531
0.0655
78.0
u 78.0 73.9 3.9
0.1469
-1.51
0 1.05
Φ(-1.51)=0.0655,故P(X<68.0)=0.0655 Φ(-1.05)=0.1469,故P(X<78.0)=1-0.1469=0.8531
P(X≥78.0)=0.1468
(4)下结论。该地正常女子血清总蛋白含量 <68.0g/L者占总人数的6.55%, <78.0g/L者占总人 数的85.31%,≥78.0g/L者占总人数的14.69%。
内容
1 正态分布的特点
2 标准正态分布 正态分布的应用
3
35
30
25
人数
某地140名正常
20
成年男子红细
15 10
胞数(1012/L
5
) 频数分布图 观察人数不断
0
3.7
4.1 4.5 4.9 5.3 5.7
红细胞数(1012/L)
增加,组段不 断细分,直条 不断变窄
顶端逐渐接近一 条光滑的曲线
人数
解: (1)计算均数、标准差。
X 7982.0 73.(9 g / L) 108
S 591524.0 7982.02 /108 3.( 9 g / L) 108 1
(2)进行u转换
。此例样本量较
大,可用 X 代替
μ,S代替σ计算
。
68.0
73.9
u 68.0 73.9 3.9
(3)查附表1 标准正态分布表 ,(Φ(u)值 ,u≤0),计算 曲线下面积。
应用
➢估计医学参考值范围 ➢质量控制:临床检验、生物鉴定、食品卫生 监督 ➢其他许多统计方法的基础
医学统计学4 正态分布与参考值
X
f(X)
a
b
b
X
P(a X b) f ( x)dx F (b) F (a)
a
f(X)
f ( x) N (0,1)
a
a
0
-a
X
F (a) f ( x)dx
F (a) f ( x)dx 1 F (a)
a
三. 曲线下面积
u -3.0 -2.9 …… -2.5 …… -1.9 …… -0.1 0.0 0.00 0.0013 0.0019 …… 0.0062 …… 0.0287 …… 0.4602 0.5000 0.01 0.0013 0.0018 …… 0.0060 …… 0.0281 …… 0.4562 0.4960 0.02 0.0012 0.0018 …… 0.0059 …… 0.0274 …… 0.4522 0.4920 …… …… …… …… …… …… …… …… …… ……
16
12
1000
3000 1000 5000
10
15
9.0 16.5 16.0
15-60 5.5‰ >60 16.0‰ 合计 8.2‰
35 63
15
40
7500
41.5
SMR=63/7 4.5=0.864 间接标化率 =8.2‰×0.864=6.9‰
SMR=40/41.5 =0.964 间接标化率 =8.2‰×0.964=7.9‰
(1012/L )频数分布图
f(x) .3 .2
.1
.0 0 f(x) .3 .2 .1 2 4 6 8 10
x
.0
0 2 4 6 8 10
x
正态分布
正态分布
高斯与正态分布1809年,高斯(Carl Friedrich Gauss,1777—1855)发表了其数学和天体力学的名著《绕日天体运动的理论》。
在此书末尾,他写了一节有关“数据结合”(data combination)的问题,实际涉及的就是这个误差分布的确定问题。
他的做法与拉普拉斯相同。
但在往下进行时,他提出了两个创新的想法。
一是他不采取贝叶斯式的推理方式,测量误差是由诸多因素形成,每种因素影响都不大。
按中心极限定理,其分布近似于正态分布是势所必然。
其实,早在1780年左右,拉普拉斯就推广了狄莫佛的结果,得到了中心极限定理的比较一般的形式。
可惜的是,他未能把这一成果用到确定误差分布的问题上来。
高斯的第二点创新的想法是:他把问题倒过来,先承认算术平均是应取的估计,然后去找误差密度函数条件下才能成立,这就是正态分布。
一种概率分布。
正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。
遵从正态分布的随机变量的概率规律为取μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。
它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。
当μ=0,σ2=1时,称为标准正态分布,记为N(0,1)。
μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。
多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。
C.F.高斯在研究测量误差时从另一个角度导出了它。
P.S.拉普拉斯和高斯研究了它的性质。
高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
正态分布讲解(含标准表)
2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.总体密度曲线b单位O频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x ex 式中的实数、)0(是参数,分别表示总体的平均数与标准差,,()x 的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b ,随机变量X 满足,()()b aP aXB x dx ,则称X 的分布为正态分布(normal distribution ) .正态分布完全由参数和确定,因此正态分布常记作),(2N .如果随机变量X 服从正态分布,则记为X ~),(2N .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2N )是由均值μ和标准差σ唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称正态曲线的作图,书中没有做要求,教师也不必补上讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数)并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x ex f ,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ(1)),(,21)(22xex f x(2)),(,221)(8)1(2xex f x (3)22(1)2(),(,)2x f x ex 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p 有11)2()1()2(p=1)1()2(=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题:xy对于标准正态总体N (0,1),)(0x 是总体取值小于0x 的概率,即)()(00x xP x ,其中00x ,图中阴影部分的面积表示为概率0()P xx 只要有标准正态分布表即可查表解决.从图中不难发现:当00x 时,)(1)(00x x ;而当00x 时,Φ(0)=0.52.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于x 的值)(0x 是指总体取值小于x 的概率,即)()(00x xP x ,)0(0x .若00x ,则)(1)(00x x .利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x,2x x 与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x xx x x .3.非标准正态总体在某区间内取值的概率:可以通过)()(xx F 转化成标准正态总体,然后查标准正态分布表即可在这里重点掌握如何转化首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=(1.2)-(-2.32)=(1.2)-[1-(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ)解:(1))3(F =)213(=Φ(1)=0.8413(2)F(μ+σ)=)(=Φ(1)=0.8413 F(μ-σ)=)(=Φ(-1)=1-Φ(1)=1-0.8413=0.1587F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342 F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954 F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997 对于正态总体),(2N 取值的概率:68.3%2σx95.4%4σ99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7%因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(xex f x ,它是偶函数,说明μ=0,)(x f 的最大值为)(f =21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布2.正态分布是可以用函数形式来表述的其密度函数可写成:22()21(),(,)2xf x ex ,(σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为),(2N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。
正态分布及其应用 (normal distribution)
➢二.图形 正态分布密度函数
f(X) 21 exp((X 2 2)2)
其中参数 为均值, 为标准差,由此
决定的正态分布记作 N(三.特征
➢ 正态分布是单峰曲线,形状呈钟型,中间高,两
端低,以 X 为对称轴,左右完全对称。
➢ 在 X 处,f (X) 取得最大值。
➢ 有两个参数:位置参数 和变异度参数 。 一定, 越大,数据越分散,曲线越平坦; 一
定, 增大,曲线沿 X 轴向右平移。因此,不
同的 ,不同的 ,对应不同的正态分布。
不同均值正态分布示意图
1.5 1
不同标准差的正态分布示意图
➢ 正态曲线下面积的分布规律
通过对密度函数积分我们可以知道正态曲线下, 横轴上所夹的面积为1。理论上:
• 根据正态 分布的对称性知,外侧尾部面 积 u2.21与外侧尾部面积 u2.21 相同,查附表1,得对应的概率为0.0136, 体重在50kg以上的12岁儿童占1.36%。
第三节 医学参考值范围的制定
➢医学参考值范围Reference Range 指某 群体“正常人”的解剖、生理、生化等 各种指标大多数个体值的波动范围。
附表1给出了标准正态分布曲线下从的面积根据正态分布的对称性我们可以求出任何一个区间内标准正态分布曲线下的面积也就是落在任何一个区间内的概率
正态分布及其应用
(normal distribution)
第一节 正态分布的概念和特征
➢一.概念 正态分布又称高斯(Gauss)分布,
是最常见、最重要的一种连续型分布, 医学资料中有许多指标的频数分布都呈 正态分布,如身高、体重、脉搏、血红 蛋白、血清总胆固醇等。
限和上限,即双侧界值;有些指标如
肺活量通常只以过低为异常,血铅以