江西财经大学国际学院线性代数试题2009 Linear Algebra Test A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西财经大学
2009-2010学年第一学期期末考试试卷
试卷代码:12063A 授课课时:48
课程名称:Linear Algebra 适用对象:2008级国际学院
1. Filling in t he Blanks (3’×6=18’)
(1) If ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300210432A , then det(adj(A))= . (2) If ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100
110000010010A , then the inverse 1-A = (3)If ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=00000000b a a b b a a b A , then det(A)= (4) Let A be (4×4) matrix, and -1,2,4,6 are the eigenvalues of A . Then the eigenvalues of A -1 are .
(5) Let 10912,713αβ⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
. Then the tripe products )(βαα⨯⋅= .
(6) If the rank of ⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-=11312211a A r(A)=2, then parameter a = . 2. There are four choices in each question, but only one is correct. You should choose the correct one into the blank. (3’×6=18’)
(1) Let A and B be (3×3) inverse matrices, then ( ) is not always correct.
(A) T T T A B AB =)( (B) 111)(---=A B AB
(C) )()()(A adj B adj AB adj = (D) 222)(A B AB =
(2) Let A and B be (n ×n ) matrices , and 0,0≠=B AB , then . (A)0≠B (B) 0)(≠B adj (C) 0=T A (D) 222)(B A B A +=-
(3) If βα, are n dimension column vectors, and βα, are orthogonal, then ( ) is not always correct.
(A)0)(=⋅βα (B)0=βαT (C) βα, are linear independent. (D)0=αβ
(4) Let A be (m n ⨯) matrix ,and n m <, then the statement ( ) is always true.
(A) 0=AX has infinitely many solutions.
(B) b AX = has infinitely many solutions.
(C) 0=AX has no solutions.
(D)b AX = has no solutions.
(5) If n n ⨯ matrices A and B are similar, then the statement ( ) is always true.
(A) A,B have the same eigenvalues and eigenvectors.
(B) A,B only have the same eigenvectors.
(C) The rank of matrices A,B, such that r(A)=r(B)
(D) The column vectors of A and B are all linear independent.
(6) If A is an (3×3) orthogonal matrix, ],,[321A A A A =, i A is the column vectors of A, then the statement ( ) is not always true.
(A) },,{321A A A is an orthogonal set.
(B) },,{321A A A is a linear independent set.
(C) },,{321A A A is a basis of R 3. (D) 0321=A A A
3. (12’) If the system of linear equations is ⎪⎩⎪⎨⎧=+++=+-=++0)1(3112321
32321x a x x x ax x x x , then what value of a will
make the system has only solution, infinitely many solutions, no solutions, and when the system has infinitely many solutions, find its all solutions.
4. (12’) Let 33)(⨯=ij a A matrix such that det(A)=3, and let ij A denote the ij th cofactor of A. If
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=132333122232
112131
A A A A A A A A A
B , then calculate AB. 5. (10’) Suppose A is a (2×2) matrix such that 032=-+I A A , and ⎥⎦⎤
⎢⎣⎡=⎥⎦⎤⎢⎣⎡=31,12u where Au . Find u A and u A 32. 6. (15’) Find the all eigenvalues and all eigenvectors of matrix A, where ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----=020212022A .