微波介质陶瓷
2024年微波介质陶瓷市场前景分析
2024年微波介质陶瓷市场前景分析摘要本文旨在对微波介质陶瓷市场前景进行深入探讨和分析。
首先介绍了微波介质陶瓷的基本概念和分类,然后通过对市场规模、市场发展趋势、竞争格局和市场前景的综合分析,得出了微波介质陶瓷市场具有良好的发展前景的结论。
1. 引言微波介质陶瓷是一种特殊的陶资类材料,具有优异的介电性能、热稳定性和机械强度,广泛应用于各个领域的微波器件中。
随着无线通信、雷达技术、卫星通信和航天技术的快速发展,微波介质陶瓷市场正迎来巨大的机遇。
2. 微波介质陶瓷的分类根据微波介质陶瓷的不同性能和用途,可以将其分为以下几类: - 陶瓷介质共振器件:包括陶瓷滤波器、陶瓷谐振器等; - 陶瓷天线:包括陶瓷介质天线、陶瓷天线阵列等; - 陶瓷封装材料:用于封装集成电路、传感器等器件; - 其他应用:包括陶瓷压电材料、陶瓷压电换能器等。
3. 市场规模与趋势分析据统计,截至目前,微波介质陶瓷市场的规模已经达到了X亿美元,并且预计在未来几年内将保持良好的增长态势。
主要原因包括:•技术进步:随着微波器件技术的不断创新和改进,对微波介质陶瓷的需求不断增加;•应用扩展:微波介质陶瓷广泛应用于通信、雷达、卫星通信、航天、医疗设备等行业,市场需求广阔;•产业链完善:微波介质陶瓷相关产业链较为完善,从原材料供应到产品制造都有相应配套的企业存在。
4. 竞争格局分析目前,微波介质陶瓷市场存在着一些主要厂商,包括: - KYOCERA - Murata Manufacturing - TDK - 象印电波这些厂商在市场份额和技术实力上占据着重要的地位。
此外,一些新兴的本土企业也开始涉足微波介质陶瓷市场,对市场格局产生了一定的冲击。
5. 市场前景展望综合以上分析,可以得出微波介质陶瓷市场具有良好的发展前景的结论。
未来,市场将呈现以下几个趋势:•技术创新:随着科技的不断进步,微波介质陶瓷将不断改进性能,以满足不同应用场景的需求;•应用拓展:微波介质陶瓷将在通信、雷达、航天、医疗设备等领域持续发挥重要作用;•国内市场增长:我国在5G通信、航天领域等方面的发展,将推动微波介质陶瓷市场进一步扩大;•环保节能:微波介质陶瓷具有优异的绿色环保性能,符合现代社会的环保需求。
微波介质陶瓷的应用
微波介质陶瓷(MWDC)是应用于微波频段(主要是UHF、SHF频段,300MHz~300GHz)电路中作为介质材料并完成一种或多种功能的陶瓷,是近年来国内外对微波介质材料研究领域的一个热点方向。
近年来,移动通讯、卫星通信、军用雷达、全球卫星定位系统(GPS)、蓝牙技术、无线局域网等现代通信技术得到了快速发展。
这些通信装置中使用的微波电路一般由谐振器、滤波器、振荡器、衰减器、介质天线、微波集成电路基片等元件组成,微波介质陶瓷(MWDC)是其制备的关键基础材料。
用微波介质陶瓷制作的元器件具有体积小、质量轻、性能稳定、价格便宜等优点。
目前微波陶瓷材料和器件的生产水平以日Murata公司、德EPCOS公司、美Trans-Tech公司、Narda MICROW A VE-WEST公司、英Morgan Electro Ceramics、Filtronic等公司为最高。
其产品的应用范围已在300MHz~40GHz系列化,年产值均达十亿美元以上。
国外介质陶瓷材料发展具有综合领先水平的是日本、美国等发达国家。
日本在介质陶瓷材料领域中一直以全列化、产量最大、应用领域最广、综合性能最优,占据了世界电子陶瓷市场50%的份额。
美国在电子陶瓷的技术研发方面走在世界前列,但是产业化应用落后于日本,大部分技术停留在实验室阶段。
目前,美国电子陶瓷产品约占世界市场份额的30%,居全球第二位。
目前世界电子陶瓷的市场规模达到1300亿美元左右。
未来几年需求量每年将以15~20%的速度增长,到2015年需求量将突破2100亿美元。
我国特陶企业集中分布在北京、上海、天津、江苏、山东、浙江、福建、广东等沿海城市和地区以及华中部分城市地区,西南西北等偏远地区以原军工三线企业为主。
在我国电子陶瓷行业中,股份制和三资企业具有最强的竞争力。
国内微波介质陶瓷材料及器件的生产,在技术水平、产品品种和生产规模上与国外相比有较大差距。
我国特种陶瓷产业目前主要存在产业规模小、技术创新弱、研发投入少、品牌知名度不高、工艺和装备水平低、能耗高、融资困难、无序竞争等问题,特别是企业缺乏创新能力,产业缺乏创新平台,严重制约了特种陶瓷产业由量向质的飞跃提升。
微波介质陶瓷在滤波器中的作用
微波介质陶瓷在滤波器中的作用
微波介质陶瓷在滤波器中扮演着至关重要的角色。
滤波器是微波通信系统中常见的设备,用于滤除不需要的频率分量,以确保信号能够在正确的频带内传输,并有效地阻挡干扰信号。
首先,微波介质陶瓷具有良好的电介质特性,使其成为理想的滤波器材料之一。
它具有高介电常数和低介电损耗,这意味着它能够有效地隔离和传递特定频率的微波信号。
这种特性使得微波介质陶瓷可以被用于构建各种类型的滤波器,包括低通、高通、带通和带阻滤波器。
其次,微波介质陶瓷具有良好的温度稳定性和机械强度。
由于滤波器通常在高温和高功率工作环境中运行,因此需要材料具有良好的稳定性和可靠性。
微波介质陶瓷由于其特殊的结构和化学成分,具有较低的热膨胀系数和优异的机械强度,能够在高温条件下保持稳定的性能。
此外,微波介质陶瓷还能够通过调整其特定的结构和几何形状来实现所需的滤波效果。
通过改变材料的厚度、孔径、表面形貌等参数,可以实现不同类型的滤波器响应。
这种可调整性使得微波介质陶瓷能够根据具体的设计要求进行定制,以使滤波器达到更好的性能和适应性。
因此,微波介质陶瓷在滤波器中的作用不可忽视。
它不仅可以提供良好的电介质特性,满足滤波器的频率选择要求,还能够承受高温和高功率的工作环境,保持稳定和可靠的性能。
通过调整材料的结构和几何形状,微波介质陶瓷能够实现各种类型的滤波器响应,使滤波器具有更好的性能和适应性。
在微波通信系统中,微波介质陶瓷已经成为一种重要的滤波器材料,推动了通信技术的不断发展和进步。
介电常数30的微波介质陶瓷材料
介电常数30的微波介质陶瓷材料微波介质陶瓷材料是一种具有较高介电常数的陶瓷材料,常用于微波器件和电子设备中。
本文将介绍以介电常数30为特点的微波介质陶瓷材料的性质、应用以及制备工艺。
一、性质微波介质陶瓷材料的介电常数是其重要的性能参数之一。
介电常数是材料对电场的响应能力的度量,它决定了材料在电场中的极化程度。
对于介电常数较高的材料,它们在电场作用下极化的能力较强,因而能够有效地储存和传导电能。
以介电常数30的微波介质陶瓷材料为例,它具有以下特点:1. 高介电常数:介电常数30意味着该陶瓷材料在电场作用下具有较强的极化能力,能够有效地储存和传导电能。
2. 低损耗:微波介质陶瓷材料通常具有较低的介电损耗,即在电场作用下能量的损失较小。
这一特点使得它们在微波器件中能够实现高效的能量传输和信号传导。
3. 良好的稳定性:微波介质陶瓷材料具有良好的化学稳定性和热稳定性,能够在高温、高湿等恶劣环境下保持较好的性能稳定性。
4. 良好的机械性能:微波介质陶瓷材料通常具有较高的硬度和强度,能够抵抗外界的机械应力和冲击。
二、应用以介电常数30的微波介质陶瓷材料为基础,可以制备各种微波器件和电子设备,如滤波器、耦合器、天线、射频开关等。
这些器件在通信、雷达、卫星导航等领域中起着重要的作用。
1. 微波滤波器:微波介质陶瓷材料具有较高的介电常数和较低的损耗,能够实现对特定频率的微波信号进行滤波和选择性传输。
通过合理设计和选择介电常数30的陶瓷材料,可以制备出具有良好滤波性能的微波滤波器。
2. 微波耦合器:微波介质陶瓷材料的高介电常数和低损耗使其成为制备微波耦合器的理想选择。
微波耦合器是用于将微波信号从一个传输线传输到另一个传输线的器件,常用于微波通信和雷达系统中。
3. 微波天线:微波介质陶瓷材料具有较高的机械强度和较好的热稳定性,能够满足微波天线对材料性能的要求。
通过制备具有介电常数30的陶瓷材料,可以实现对微波信号的有效接收和辐射。
功能陶瓷 电介质陶瓷和绝缘陶瓷 中介 微波介质陶瓷讲解
5
5
5.5 微波介质陶瓷
实现微波设备的小型化、高稳定性和廉价的途径是微波电
路的集成化。由于金属谐振腔和金属波导体积和重量过大,
大大限制了微波集成电路的发展,而微波介质陶瓷制作的
谐振器与微波管、微带线等构成的微波混合集成电路,可
使器件尺寸达到毫米量级。这就使微波陶瓷成为实现微波 控制功能的基础和关键材料。它的应用大致分为两个方面. 从而对性能也有两种不同要求: 一种是用于介质谐振器(dielectric resonator )DR的功能 陶瓷,其中用于包括带通(阻)滤波器(filters )、分频器、 耿氏二极管、双工器和多工器、调制解调器(modem)等 固体振荡器(oscillators)中的稳倾元件;
P.R.China: 6 companys mainly
浙江正原电气股份有限公司、潮州三环(集团)股份有限公司、景华电子有限责任 公司(999厂)、苏州捷嘉电子有限公司、浙江嘉康电子有限公司、福建南安讯通电 子公司、高斯贝尔公司、嘉兴佳利电子有限公司、西安广芯电子科技有限公司、 张家港燦勤电子元件有限公司、武汉凡谷电子技术股份有限公司、江苏江佳电子 股份有限公司
11
11
1.4.5 微波介质陶瓷
最简单的电介质谐振器是一个相对介电常数为εr的陶瓷圆 柱体,其εr值很高,足以使得电介质-空气界面上反射的 电磁波仍维持在体腔内。
Avoidance Sensors Dielectric Resonator Antennas Motion Detectors
9
9
Famous company
Japan: Murata村田制作所 Germany: EPCOS(S+M) USA: Skyworks Solutions Inc. 陶瓷分部 Trans-Tech USA: Narda Microwave-West Mini-Circuits England: Morgan Electro Ceramics
微波介质陶瓷材料应用现状及其研究方向
微波介质陶瓷材料应用现状及其研究方向马调调【摘要】微波介质陶瓷作为一种新型电子材料,在现代通信中被用作谐振器、滤波器、介质基片、介质天线、介质导波回路等,广泛应用于微波技术的许多领域,如移动通讯、卫星通讯和军用雷达等.随着科学技术日新月异的发展,通信信息量的迅猛增加,以及人们对无线通信的要求,使用卫星通讯和卫星直播电视等微波通信系统己成为当前通信技术发展的必然趋势,这就使得微波材料在民用方面的需求逐渐增多,如手机、汽车电话、蜂窝无绳电话等移动通信和卫星直播电视等新的应用装置.笔者综述了国内外微波介质陶瓷的应用现状,阐明微波介质陶瓷材料应用中存在的问题,指明微波陶瓷材料今后的研究方向.【期刊名称】《陶瓷》【年(卷),期】2019(000)004【总页数】11页(P13-23)【关键词】微波介质陶瓷;微波材料;应用现状;存在问题;研究方向【作者】马调调【作者单位】榆林市天然气化工有限责任公司陕西榆林 718100【正文语种】中文【中图分类】TQ174前言陶瓷的发展史是人类文明史的一个缩影,现代人在研究古代历史的时候,各个时期留存下来的陶瓷便是最有价值的线索。
当陶瓷这一古老的工艺发展成陶瓷科学的时候,她便成了对我们生活能产生重大影响的一门学科。
近半个多世纪以来,随着陶瓷材料的研究和开发,在与人类生活息息相关的各个领域,如电子、通讯、能源、交通、宇宙探索和国家安全等,都能找到陶瓷的身影。
可以说现代人的生活离不开陶瓷,陶瓷的进步给人类带来的是生活方式的日新月异。
微波介质陶瓷是近二十多年来发展起来的一种新型的功能陶瓷材料。
它是指应用于微波频率(主要是300 MHz~30 GHz 频段)电路中作为介质材料并完成一种或多种功能的陶瓷材料,是制造微波介质滤波器和谐振器的关键材料。
它具有高介电常数、低介电损耗、温度系数小等优良性能,适用于制造多种微波元器件,能满足微波电路小型化、集成化、高可靠性和低成本的要求。
近年来,由于微波通信事业的迅速发展,卫星通信、汽车电话和便携式电话等移动通信领域对小型化、高性能化的微波电路和微波器件的需求量日益增加,更高频带的利用也在计划之中。
0820微波介质陶瓷材料及其应用简介高斯贝尔功田电子
<20
温度系数可调
125±3
>2500
<20
150±4
>2000
<30(NPO)
180±4
>1800
<30(NPO)
200±5
>1200
30±10
245±5
>1000
30±10
12
六 高斯贝尔微波介质陶瓷产品
6.2 介质谐振器
介质振荡器
介质谐振器,振荡器为微波电子 设备提供稳定的频率参考源。
13
六 高斯贝尔微波介质陶瓷产品
5 10×10×4
-2
2
3
95~120 要求接地板是20×20mm
全球定位导航的GPS、北斗天线用什么陶瓷介质基板,对 天线的性能影响是很大。特别是材料的介电常数对天线的尺寸 起到关键的作用。
在同一谐振频率的条件下高介电常数的介质材料,天线的 体积会减小。
21
六 高斯贝尔微波介质陶瓷产品
6.4 GPS、北斗、RFID陶瓷片天线
备注
1 66×66×1
6
1.5
3
2.5~5.4 要接地基板70×70mm或更大
2 25×25×4
3
1.5
3
15~25 接地板是35×35mm,可以做到4.5dB
3 18×18×4 1.5
2
3
35~40 接地板是50×50mm,可以做到3dB
4 13×13×4
0
2
3
85~100 要求接地板是50×50mm
有介电常数r、谐振品质因数Q值、谐振频率温度系数tf,这三个性能参数的综合数值决定 了微波陶瓷的应用价值。
2.1 介电常数r
微波介质陶瓷生产工艺
微波介质陶瓷生产工艺微波介质陶瓷是一种在微波频段具有相对高介电常数和低热损耗的陶瓷材料,广泛应用于微波通信、雷达、微波炉等领域。
下面将简要介绍微波介质陶瓷的生产工艺。
首先,微波介质陶瓷的生产主要包括原料选用、配比、成型、烧结等步骤。
原料选用是整个生产过程中的关键步骤。
一般而言,微波介质陶瓷的原料主要包括氧化铝、钛酸钡、钛酸锶、氧化锆等,其中氧化铝是主要的无机非金属材料。
在原料选用过程中,需要考虑原料的纯度、粒度、均一性等因素,以确保最终产品的质量和性能。
在配比阶段,将选定的原料按一定比例混合均匀。
配比的关键是保持原料的合理比例,以确保所得到的陶瓷材料具有良好的电学性能和机械强度。
配比过程中可以采用物理混合或者化学反应等方法。
成型是将配制好的原料均匀地按照一定的形状和尺寸进行造型的过程。
常见的成型方法包括压制、注射成型、挤压等。
其中,压制是最常用的成型方法,通过将材料放入模具中,然后通过机械力使其形成所需要的形状。
成功的成型过程需要保持原料均匀分布、含水量适中。
烧结是最后一个关键环节,也是微波介质陶瓷生产中最重要的工艺步骤。
烧结的目的是通过高温处理将成型的陶瓷材料转化为致密坚硬的材料。
烧结温度一般在1200℃-1600℃之间,烧结时间一般在2-4小时之间。
同时,需要控制好氧化还原环境以及烧结速率等参数,以获得良好的烧结效果。
在整个生产过程中,各工序之间需要严格控制温度、时间、湿度等参数,以确保产品的质量和稳定性。
此外,还需要对成品进行严格的检测,以检验其电学性能、物理性能等指标是否达到要求。
综上所述,微波介质陶瓷的生产工艺包括原料选用、配比、成型、烧结等步骤。
这些步骤在整个生产过程中需要精心控制各个参数,以确保产品的质量和性能。
随着技术的不断进步,微波介质陶瓷的生产工艺也在不断改进,以满足不同领域对于高性能陶瓷材料的需求。
第四章-1 微波介质陶瓷
2.2 Q值及其影响因素
品质因数Q 是微波系统能量损耗的一个度量标准。 对于微波谐振器,损耗由四种类型组成:介质损耗,导 体损耗,辐射损耗和外部损耗。介质品质因数Qd,导体 品质因数Qc,辐射品质因数Qr 分别表示为:
Qd = 2ωW1 Pd Qc = 2ωW1 Pc Qr = 2ωW1 Pr
广泛应用于移动通信、卫星通讯、军事雷达、卫星定位导航系统等军用和民用领域。
微波介质陶瓷的生产厂家及市场需求
国际厂家 目前微波介质陶瓷和器件的生产水平以下 面公司为最高
日本Murata 公司 德国EPCOS 公司 美国Trans-Tech 公司 Narda MICROWAVE-WEST 公司 英国Morgan Electro Ceramics公司
微波介质陶瓷的应用
表1 微波介质陶瓷的应用分类
陶瓷材料种类 应用领域 应用 频率稳定化振荡器 种类 1.耿式二极管 2.GaAs-FET振荡器 3.双极晶体管放大器 1.TE01δ模式介质滤波器 2.同轴介质滤波器 3.介质片状滤波器 1.圆棒、管、放条形介质线路 2.圆棒、管、放条形图像线路 1.棒形天线 2.平板天线 3.天线阵 1.单层电容(SLC) 2.多层电容(MLC)
80年代至今
已经成功地研制出 Ba(Zn1/3Ta2/3)O3 微波高端频率 Ba(Mg1/3Ta2/3)O3 (8~30GHz) BaO-Ln2O3-TiO2(Ln=Nd,Sm) 等体系,使其达到了实用阶段
微波介质陶瓷的实用器件
微波介质陶瓷的应用领域
GPS定位系统
卫星通讯
微波介质陶瓷
军事雷达
民用移动电话
QL =
f0 f (at 3dB)
在微波范围内微波介质陶瓷的Q· f 乘积基本保持不变, 因此一般情况下,用Q· f 的乘积来衡量微波介质陶瓷损 耗的大小 但是从上面的公式对比可以看出,大的Q· f 值与高介电 常数相矛盾
功能陶瓷--电介质陶瓷和绝缘陶瓷-中介-微波介质陶瓷概要
浙江正原电气股份有限公司、潮州三环(集团)股份有限公司、景华电子有限责任 公司(999厂)、苏州捷嘉电子有限公司、浙江嘉康电子有限公司、福建南安讯通电 子公司、高斯贝尔公司、嘉兴佳利电子有限公司、西安广芯电子科技有限公司、 张家港燦勤电子元件有限公司、武汉凡谷电子技术股份有限公司、江苏江佳电子 股份有限公司
Dielectric Filter
7
7
在微波电路中的应用主要有以下几方面: 用作微波电路的介质基片 起着电路元器件及线路的承载、支撑和绝缘作用; 用作微波电路的电容器 起着电路或元件之间的耦合及储能作用; 用作微波电路的介质天线 起着集中吸收储存电磁波能量的作用; 用作微波电路的介质波导 起着导引电磁波沿一定方向传播的作用; 用作微波电路的介质谐振器件(最主要应用) 起着类似于一般电子线路中LC谐振电路的作用
微波谐振器的频率特征曲线
17
17
1.4.5 微波介质陶瓷
在微波频段 εr基本上为定值,不随频率而变化。 要使微波介质陶瓷具有高εr值。除需考虑微观晶相类型及 其组合外,应在工艺上保证晶粒生长充分,结构致密。
18
18
在微波频段,品质因数Q值与微波频率f有关,因此微波 介质陶瓷材料的介电损耗与品质因数则可表示为:
27
测试频率<1GHz,可用阻抗分析仪如HP4294A
28
28
1.4.5 微波介质陶瓷
Q值的测量
样品Q值可以通过测量TE011, 谐振峰的宽度计算出来。
Q fr f
相 对
△f为3dB频带宽度(BW)
辐 射
功
率
τf值的测量
f
f2 f1 f1 T2 T1
微波介质陶瓷研究报告
微波介质陶瓷研究报告微波介质陶瓷是一种应用广泛的高性能陶瓷材料,其性能优异,可广泛应用于微波电子器件、高频电子玻璃等领域。
针对微波介质陶瓷的研究报告如下:一、微波介质陶瓷的基本概念微波介质陶瓷是一种用于制作微波电子器件的陶瓷材料,主要用于制作高性能陶瓷薄膜、陶瓷电容器、微波电子器件等。
其特点是介电常数高、损耗低、温度稳定性好、化学稳定性好等。
二、微波介质陶瓷的制备方法微波介质陶瓷的制备方法主要包括干燥压制、共烧法、化学气相沉积法、反应烧结法等。
其中,干燥压制方法是最常用的一种方法,通过将陶瓷粉末进行混合、干燥后压制成型,再进行烧结得到微波介质陶瓷材料。
三、微波介质陶瓷的性能要求微波介质陶瓷的性能要求主要包括介电常数、品质因数、温度系数、热膨胀系数等。
一般来说,介电常数越高、品质因数越大、温度系数越小、热膨胀系数越小,微波介质陶瓷的性能就越优异。
四、微波介质陶瓷的应用领域微波介质陶瓷的应用领域很广,包括微波天线、微波滤波器、微波隔离器、微波振荡器、微波天线等。
其中,微波滤波器是应用最为广泛的一种器件,其主要功能是将无用信号分离出来,只将需要的信号传输到下一个电路中。
五、微波介质陶瓷的发展趋势随着微波电子技术的发展,微波介质陶瓷材料的应用领域也在不断扩展。
未来,随着5G通信、人工智能等技术的不断发展,微波介质陶瓷材料的需求量也将会持续增长。
同时,人们对微波介质陶瓷材料性能的要求也会越来越高,因此,微波介质陶瓷材料的制备方法和性能要求也将不断创新和改进。
综上所述,微波介质陶瓷是一种应用广泛的高性能陶瓷材料,其制备方法和性能要求都需要进一步研究和改进。
未来,随着微波电子技术的发展和应用越来越广泛,微波介质陶瓷材料的市场前景也将会持续看好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
微波陶瓷的发展趋势
低成本 微型化
生产大 规模化 高稳 定化
低损耗 较高的Q 值
低 f
高r
具体来说,可以从以下几个方面展开 理论上加强对微波介质极化、介质损耗机理的研究,明确微观 结构对材料微波性能的影响,以研究和开发新型的微波介质材料。 为提高Q值和εr ,可以采用新工艺和新技术。 根据性能,可以采用同种材料体系的离子复合取代或不同材料 体系的复合,提高材料的综合性能.采用低温共烧陶瓷 (LTCC)技 术降低微波介质陶瓷的烧结温度,解决微波陶瓷生产应用的困难, 促进微波陶瓷的产业化。通常以氧化物或低熔点玻璃为助烧剂, 以此来降低材料的烧结温度.
应用
C.微波介质陶瓷基板 • 微波介质陶瓷材料可以用来制作微波集成电路的基板,整个微 波电路包括传输线和各种微波元件均可以制作在同一块基板上, 因此微波集成电路具有体积小、重量轻、成本低、可大批量生 产等优点。目前制造这类基板的材料主要是具有低损耗的陶瓷 介质材料
D.微波介质天线
• 微波介质天线具有小型化、高性能的特点。片式介质天线在智 能手机和WLAN中均得到广泛应用。目前为了实现各种通信设 备之间的网络互联和资源共享,蓝牙技术和WIFI技术已被广泛 应用于手机、笔记本电脑、平板电脑等设备中,在这一热门领 域,微波介质天线也发挥了至关重要的作用
组会报告 ----微波介质陶瓷
报告内容
1.微波介质陶瓷的简介
2.微波介质陶瓷的应用
3.微波介质陶瓷的的发展史
4. 微波陶瓷的发展趋势
1
微波介质陶瓷的简介
微波介质陶瓷是指应用于微波频段电路中作为介质材料 (主要是300MHz~300GHz 频段波长介于0.1mm-1m的电 磁波)并完成一种或多种功能的陶瓷
2
微波介质陶瓷的应用
A.微波陶瓷介质电容器 • 在微波集成电路、微波单片集成电路中,利用微波介质电容器 制成的放大器、振荡器、混频器等微波器件已得到了广泛应用。 B.微波陶瓷介质谐振器 • 在微波电路中,介质谐振器类似于一般电路中的放大器、振荡 器等功能回路。目前介质谐振器已广泛应用于微波电路和微波 集成电路,并可根据实际需要制做不同形状满足不同谐振模式 的需要
我国微波介质陶瓷的发展 在我国直到20世纪80年代初才开始有微波介质陶瓷材料 方面的研究,20世纪90年代以来,我国开始重视研发新型 微波介质陶瓷材。 目前,随着国家越来越重视微波介质元器件的发展, 《中国制造2025》指出加快微波功能模块,微波介质陶瓷, 4G通信产业相关发展。 我国在微波介质陶瓷领域的研究水平正在逐渐接近发达 国家。研发拥有自主知识产权的微波介质陶瓷新材料及新 型微波元器件对提高我国电子信息领域的国家竞争力具有 重要的战略意义
3Байду номын сангаас
微波介质陶瓷的发展史
1939年尝试将电介质材料应用在微波电路中并证实了其可行性
1960年 A.Okaya 首次试用TiO2单晶来制作小型化微波介质谐振器
S.B.Cohn 在1968用TiO2陶瓷制作了微波介质滤波器 20世纪70年代,美国率先研制出了BaO-TiO2系陶瓷,促使微波介 质陶瓷进入了大规使用化阶段 日本在80年代发现了R-04C、R-09C等不同类型陶瓷并报道了其介 电性能。