中国科学院大学2017年数据挖掘期末考试题

合集下载

数据挖掘与信息技术考试 选择题 60题

数据挖掘与信息技术考试 选择题 60题

1. 数据挖掘的主要目的是什么?A. 数据清洗B. 数据存储C. 从数据中提取有用信息D. 数据可视化2. 下列哪项不是数据挖掘的常见任务?A. 分类B. 聚类C. 数据备份D. 关联规则挖掘3. 在数据挖掘中,K-means算法属于哪一类?A. 分类算法B. 聚类算法C. 关联规则算法D. 回归算法4. 下列哪种数据类型最适合用于关联规则挖掘?A. 数值型数据B. 文本数据C. 二进制数据D. 图像数据5. 决策树算法中,信息增益用于衡量什么?A. 数据的纯度B. 数据的复杂度C. 数据的大小D. 数据的可靠性6. 在数据挖掘中,过拟合是指什么?A. 模型过于简单B. 模型过于复杂C. 模型训练时间过长D. 模型训练时间过短7. 下列哪个工具不是专门用于数据挖掘的?A. R语言B. PythonC. ExcelD. Hadoop8. 在数据挖掘中,ROC曲线用于评估什么?A. 模型的准确性B. 模型的复杂性C. 模型的稳定性D. 模型的泛化能力9. 下列哪种方法可以用于处理缺失数据?A. 删除含有缺失值的记录B. 用平均值填充缺失值C. 用中位数填充缺失值D. 以上都是10. 在数据挖掘中,交叉验证的主要目的是什么?A. 提高模型的准确性B. 减少模型的复杂性C. 评估模型的泛化能力D. 增加数据集的大小11. 下列哪种算法属于监督学习?A. K-meansB. AprioriC. 决策树D. 主成分分析12. 在数据挖掘中,特征选择的主要目的是什么?A. 减少数据维度B. 增加数据维度C. 提高数据质量D. 降低数据质量13. 下列哪种方法可以用于数据降维?A. 主成分分析B. 线性判别分析C. 独立成分分析D. 以上都是14. 在数据挖掘中,Bagging算法的主要目的是什么?A. 提高模型的准确性B. 减少模型的方差C. 增加模型的偏差D. 提高模型的复杂性15. 下列哪种算法属于集成学习?A. K-meansB. 随机森林C. 逻辑回归D. 支持向量机16. 在数据挖掘中,Boosting算法的主要目的是什么?A. 提高模型的准确性B. 减少模型的方差C. 增加模型的偏差D. 提高模型的复杂性17. 下列哪种方法可以用于处理类别不平衡问题?A. 过采样B. 欠采样C. 合成少数类过采样技术D. 以上都是18. 在数据挖掘中,AUC值用于评估什么?A. 模型的准确性B. 模型的复杂性C. 模型的稳定性D. 模型的泛化能力19. 下列哪种方法可以用于处理异常值?A. 删除异常值B. 用平均值替换异常值C. 用中位数替换异常值D. 以上都是20. 在数据挖掘中,交叉验证的常见类型包括哪些?A. 留一法B. K折交叉验证C. 随机划分交叉验证D. 以上都是21. 下列哪种算法属于无监督学习?A. K-meansB. 逻辑回归C. 决策树D. 支持向量机22. 在数据挖掘中,关联规则挖掘的主要目的是什么?A. 发现数据中的模式B. 分类数据C. 聚类数据D. 回归分析23. 下列哪种方法可以用于数据预处理?A. 数据清洗B. 数据集成C. 数据变换D. 以上都是24. 在数据挖掘中,Apriori算法的主要目的是什么?A. 发现频繁项集B. 分类数据C. 聚类数据D. 回归分析25. 下列哪种方法可以用于数据可视化?A. 散点图B. 柱状图C. 热力图D. 以上都是26. 在数据挖掘中,PCA的主要目的是什么?A. 减少数据维度B. 增加数据维度C. 提高数据质量D. 降低数据质量27. 下列哪种方法可以用于数据集成?A. 数据合并B. 数据连接C. 数据融合D. 以上都是28. 在数据挖掘中,LDA的主要目的是什么?A. 减少数据维度B. 增加数据维度C. 提高数据质量D. 降低数据质量29. 下列哪种方法可以用于数据变换?A. 数据规范化B. 数据归一化C. 数据离散化D. 以上都是30. 在数据挖掘中,SVM的主要目的是什么?A. 分类数据B. 聚类数据C. 回归分析D. 发现频繁项集31. 下列哪种方法可以用于数据清洗?A. 删除重复记录B. 填充缺失值C. 纠正错误数据D. 以上都是32. 在数据挖掘中,随机森林的主要目的是什么?A. 分类数据B. 聚类数据C. 回归分析D. 发现频繁项集33. 下列哪种方法可以用于数据归一化?A. 最小-最大规范化B. Z-score规范化C. 小数定标规范化D. 以上都是34. 在数据挖掘中,逻辑回归的主要目的是什么?A. 分类数据B. 聚类数据C. 回归分析D. 发现频繁项集35. 下列哪种方法可以用于数据离散化?A. 等宽离散化B. 等频离散化C. 基于聚类的离散化D. 以上都是36. 在数据挖掘中,朴素贝叶斯的主要目的是什么?A. 分类数据B. 聚类数据C. 回归分析D. 发现频繁项集37. 下列哪种方法可以用于数据规范化?A. 最小-最大规范化B. Z-score规范化C. 小数定标规范化D. 以上都是38. 在数据挖掘中,KNN的主要目的是什么?A. 分类数据B. 聚类数据C. 回归分析D. 发现频繁项集39. 下列哪种方法可以用于数据融合?A. 数据合并B. 数据连接C. 数据集成D. 以上都是40. 在数据挖掘中,神经网络的主要目的是什么?A. 分类数据B. 聚类数据C. 回归分析D. 发现频繁项集41. 下列哪种方法可以用于数据连接?A. 内连接B. 外连接C. 全连接D. 以上都是42. 在数据挖掘中,遗传算法的主要目的是什么?A. 优化模型参数B. 分类数据C. 聚类数据D. 回归分析43. 下列哪种方法可以用于数据合并?A. 横向合并B. 纵向合并C. 交叉合并D. 以上都是44. 在数据挖掘中,马尔可夫链的主要目的是什么?A. 预测序列数据B. 分类数据C. 聚类数据D. 回归分析45. 下列哪种方法可以用于数据集成?A. 数据合并B. 数据连接C. 数据融合D. 以上都是46. 在数据挖掘中,隐马尔可夫模型的主要目的是什么?A. 预测序列数据B. 分类数据C. 聚类数据D. 回归分析47. 下列哪种方法可以用于数据变换?A. 数据规范化B. 数据归一化C. 数据离散化D. 以上都是48. 在数据挖掘中,条件随机场的主要目的是什么?A. 序列标注B. 分类数据C. 聚类数据D. 回归分析49. 下列哪种方法可以用于数据清洗?A. 删除重复记录B. 填充缺失值C. 纠正错误数据D. 以上都是50. 在数据挖掘中,深度学习的主要目的是什么?A. 分类数据B. 聚类数据C. 回归分析D. 发现频繁项集51. 下列哪种方法可以用于数据可视化?A. 散点图B. 柱状图C. 热力图D. 以上都是52. 在数据挖掘中,卷积神经网络的主要目的是什么?A. 图像识别B. 文本分类C. 语音识别D. 以上都是53. 下列哪种方法可以用于数据预处理?A. 数据清洗B. 数据集成C. 数据变换D. 以上都是54. 在数据挖掘中,循环神经网络的主要目的是什么?A. 序列数据处理B. 图像识别C. 文本分类D. 语音识别55. 下列哪种方法可以用于数据集成?A. 数据合并B. 数据连接C. 数据融合D. 以上都是56. 在数据挖掘中,自编码器的主要目的是什么?A. 数据降维B. 数据增强C. 数据生成D. 以上都是57. 下列哪种方法可以用于数据变换?A. 数据规范化B. 数据归一化C. 数据离散化D. 以上都是58. 在数据挖掘中,生成对抗网络的主要目的是什么?A. 数据生成B. 数据增强C. 数据降维D. 以上都是59. 下列哪种方法可以用于数据清洗?A. 删除重复记录B. 填充缺失值C. 纠正错误数据D. 以上都是60. 在数据挖掘中,强化学习的主要目的是什么?A. 决策优化B. 分类数据C. 聚类数据D. 回归分析1. C2. C3. B4. C5. A6. B7. C8. D9. D10. C11. C12. A13. D14. B15. B16. A17. D18. D19. D20. D21. A22. A23. D24. A25. D26. A27. D28. A29. D30. A31. D32. A33. D34. A35. D36. A37. D38. A39. D40. A41. D42. A43. D44. A45. D46. A47. D48. A50. A51. D52. D53. D54. A55. D56. D57. D58. A59. D60. A。

数据挖掘考试题库

数据挖掘考试题库

一、填空题1.Web挖掘可分为、和3大类。

2.数据仓库需要统一数据源,包括统一、统一、统一和统一数据特征4个方面。

3.数据分割通常按时间、、、以及组合方法进行。

4.噪声数据处理的方法主要有、和。

5.数值归约的常用方法有、、、和对数模型等。

6.评价关联规则的2个主要指标是和。

7.多维数据集通常采用或雪花型架构,以表为中心,连接多个表。

8.决策树是用作为结点,用作为分支的树结构。

9.关联可分为简单关联、和。

10.B P神经网络的作用函数通常为区间的。

11.数据挖掘的过程主要包括确定业务对象、、、及知识同化等几个步骤。

12.数据挖掘技术主要涉及、和3个技术领域。

13.数据挖掘的主要功能包括、、、、趋势分析、孤立点分析和偏差分析7个方面。

14.人工神经网络具有和等特点,其结构模型包括、和自组织网络3种。

15.数据仓库数据的4个基本特征是、、非易失、随时间变化。

16.数据仓库的数据通常划分为、、和等几个级别。

17.数据预处理的主要内容(方法)包括、、和数据归约等。

18.平滑分箱数据的方法主要有、和。

19.数据挖掘发现知识的类型主要有广义知识、、、和偏差型知识五种。

20.O LAP的数据组织方式主要有和两种。

21.常见的OLAP多维数据分析包括、、和旋转等操作。

22.传统的决策支持系统是以和驱动,而新决策支持系统则是以、建立在和技术之上。

23.O LAP的数据组织方式主要有和2种。

24.S QL Server2000的OLAP组件叫,OLAP操作窗口叫。

25.B P神经网络由、以及一或多个结点组成。

26.遗传算法包括、、3个基本算子。

27.聚类分析的数据通常可分为区间标度变量、、、、序数型以及混合类型等。

28.聚类分析中最常用的距离计算公式有、、等。

29.基于划分的聚类算法有和。

30.C lementine的工作流通常由、和等节点连接而成。

31.简单地说,数据挖掘就是从中挖掘的过程。

32.数据挖掘相关的名称还有、、等。

数据挖掘期末考试题库

数据挖掘期末考试题库

数据挖掘期末考试题库
进行数据挖掘期末考试前,老师通常会准备一份题库,供学生参考复习。

这个题库包含了一系列的问题,涵盖了数据挖掘的各个方面。

以下是一个示例的数据挖掘期末考试题库,供同学们参考:
1. 什么是数据挖掘?数据挖掘的主要目标是什么?
2. 请简要介绍数据挖掘的主要过程。

3. 数据挖掘中常用的数据预处理方法有哪些?请分别进行介绍。

4. 数据挖掘中常用的特征选择方法有哪些?请分别进行介绍。

5. 数据挖掘中常用的分类算法有哪些?请分别进行介绍。

6. 数据挖掘中常用的聚类算法有哪些?请分别进行介绍。

7. 数据挖掘中常用的关联规则挖掘算法有哪些?请分别进行介绍。

8. 什么是异常检测?数据挖掘中常用的异常检测方法有哪些?请分别进行介绍。

9. 数据挖掘中的交叉验证是什么?请简要说明。

10. 数据挖掘中如何评估分类算法的性能?请简要说明评估指标。

11. 数据挖掘中如何评估聚类算法的性能?请简要说明评估指标。

12. 数据挖掘中如何评估关联规则挖掘算法的性能?请简要说明评估指标。

13. 数据挖掘在实际应用中的案例有哪些?请分别进行介绍。

14. 在数据挖掘过程中,如何选择适当的算法和技术?请简要说明。

15. 数据挖掘存在哪些挑战和限制?请分别进行介绍。

以上题目是一个简要的示例,涵盖了数据挖掘的基本概念、主要过程、常用方法和评估指标等方面。

同学们可以根据这些问题来进行复
习和准备,加深对数据挖掘的理解和掌握。

希望以上题库对同学们的期末考试有所帮助。

祝大家考试顺利!。

数据挖掘试题与答案

数据挖掘试题与答案

一、解答题(总分值30分,每题5分)1.如何明口得数据挖掘和知识发觉的关系?请详细论述之■第一从数据源中抽取感爱好的数据,并把它组织成适合挖掘的数据组织形式;然后,挪用相应的算法生成所需的知识;最后对生成的知识模式进行评佔,并把有价值的知识集成到企业的智能系统中。

知识发觉是一个指出数据中有效、崭新、潜在的、有价值的、一个不可轻忽的流程,其最终目标是把握数据的模式。

流程步骤:先明白得要应用的领域、熟悉相关知识,接着成立目标数据集,并专注所选择的数据子集;再作数据预处巻,剔除错误或不一致的数据:然后进行数据简化与转换工作:再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型:最后通过说明和评判成为有效的信息。

2.时刻序列数据挖掘的方式有哪些,请详细论述之时刻序列数据挖掘的方式有:1)、确信性时刻序列预测方式:关于平稳转变特点的时刻序列来讲,假设以后行为与此刻的行为有关,利用属性此刻的值预测以后的值是可行的。

例如,要预测下周某种商品的销售额,能够用最近一段时刻的实际销售量来成立预测模型。

2)、随机时刻序列预测方式:通过成立随机模型,对随机时刻序列进行分析,能够预测以后值。

假设时刻序列是平稳的,能够用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。

3)、其他方式:可用于时刻序列预测的方式很多,其中比较成功的是神经网络。

由于大量的时刻序列是非平稳的,因此特点参数和数据散布随着时刻的推移而转变。

假设通过对某段历史数据的训练,通过数学统计模型估量神经网络的各层权重参数初值,就可能成立神经网络预测模型,用于时刻序列的预测。

3.数据挖掘的分类方式有哪些,请详细论述之分类方式归结为四种类型:1)、基于距离的分类方式:距离的讣算方式有多种,最经常使用的是通过计算每一个类的中心来完成,在实际的汁算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。

(完整word版)数据挖掘题目及答案

(完整word版)数据挖掘题目及答案

(完整word版)数据挖掘题⽬及答案⼀、何为数据仓库?其主要特点是什么?数据仓库与KDD的联系是什么?数据仓库是⼀个⾯向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,⽤于⽀持管理决策。

特点:1、⾯向主题操作型数据库的数据组织⾯向事务处理任务,各个业务系统之间各⾃分离,⽽数据仓库中的数据是按照⼀定的主题域进⾏组织的。

2、集成的数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加⼯、汇总和整理得到的,必须消除源数据中的不⼀致性,以保证数据仓库内的信息是关于整个企业的⼀致的全局信息。

3、相对稳定的数据仓库的数据主要供企业决策分析之⽤,⼀旦某个数据进⼊数据仓库以后,⼀般情况下将被长期保留,也就是数据仓库中⼀般有⼤量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。

4、反映历史变化数据仓库中的数据通常包含历史信息,系统记录了企业从过去某⼀时点(如开始应⽤数据仓库的时点)到⽬前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

所谓基于数据库的知识发现(KDD)是指从⼤量数据中提取有效的、新颖的、潜在有⽤的、最终可被理解的模式的⾮平凡过程。

数据仓库为KDD提供了数据环境,KDD从数据仓库中提取有效的,可⽤的信息⼆、数据库有4笔交易。

设minsup=60%,minconf=80%。

TID DATE ITEMS_BOUGHTT100 3/5/2009 {A, C, S, L}T200 3/5/2009 {D, A, C, E, B}T300 4/5/2010 {A, B, C}T400 4/5/2010 {C, A, B, E}使⽤Apriori算法找出频繁项集,列出所有关联规则。

解:已知最⼩⽀持度为60%,最⼩置信度为80%1)第⼀步,对事务数据库进⾏⼀次扫描,计算出D中所包含的每个项⽬出现的次数,⽣成候选1-项集的集合C1。

《数据挖掘》试题与答案[精品文档]

《数据挖掘》试题与答案[精品文档]

一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。

知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。

流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。

2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。

例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。

2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。

若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。

3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。

由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。

假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。

(完整版)数据挖掘考试题库

(完整版)数据挖掘考试题库

1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。

相关的名称有知识发现、数据分析、数据融合、决策支持等。

数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。

2.何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。

粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。

按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构3.简述数据仓库设计的三级模型及其基本内容。

概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。

逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。

物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。

在物理数据模型设计时主要考虑的因素有: I/O存取时间、空间利用率和维护代价等。

提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。

4.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。

为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。

5.简述数据预处理方法和内容。

①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。

②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。

大数据挖掘及应用期末试题及答案

大数据挖掘及应用期末试题及答案

大数据挖掘及应用期末试题及答案一、概述大数据挖掘是指通过对大量数据的收集、整理和分析,从中发现有用的信息、模式和关联性。

在当今信息化时代,大数据挖掘已成为各行各业重要的工具和手段。

本文将介绍大数据挖掘的一些基本概念,并给出一份期末试题及答案作为例子。

二、大数据挖掘的基本概念1. 数据收集与整理大数据挖掘的第一步是收集和整理数据,这些数据可以来源于各种渠道,如社交媒体、传感器、日志文件等。

数据收集的质量和准确性对后续的挖掘过程至关重要。

2. 数据预处理大数据挖掘中,数据预处理是不可或缺的环节。

该过程主要包括数据清洗、缺失值处理、异常值检测和数据变换等。

通过数据预处理,可以提高挖掘结果的准确性和可信度。

3. 特征选择与提取在大数据挖掘中,一个重要的任务是选择和提取出对于挖掘目标最有用的特征。

这可以通过各种方法来实现,如信息增益、相关性分析、主成分分析等。

4. 数据挖掘算法大数据挖掘涉及多种挖掘算法,如聚类、分类、关联规则、时序分析等。

这些算法可以帮助挖掘出数据中的隐藏规律和模式。

5. 模型评估与优化挖掘得到的模型需要进行评估和优化,以保证其准确性和可靠性。

评估指标可以包括准确率、召回率、F1值等。

三、大数据挖掘及应用期末试题以下是一份大数据挖掘及应用的期末试题,供同学们进行自主学习和思考:试题一:数据清洗请简述数据清洗的作用,并列举三种常见的数据清洗方法。

试题二:特征选择假设你要对一家电商平台的用户进行分类,以便进行个性化推荐。

你会选择怎样的特征来进行分类?请简要说明你的理由。

试题三:聚类分析假设你正在研究一款新药的效果,并希望对病人进行分类。

请问聚类分析是否适用于这个场景?如果适用,请简要描述一下你会采用的聚类算法,并解释其原理。

试题四:关联规则挖掘你正在研究一家超市的销售情况,希望发现一些产品之间的关联规则。

请列举出一条可能的关联规则,并解释其意义。

四、大数据挖掘及应用期末试题答案答案一:数据清洗数据清洗是指对数据集中的异常值、噪声数据和缺失值进行处理,以提高数据质量和挖掘结果的准确性。

数据挖掘期末测试练习题1

数据挖掘期末测试练习题1

数据挖掘期末测试练习题1本文档包含了一些数据挖掘的期末测试练题。

请根据题目要求,进行相应的分析和回答。

题目一> 请根据给定的数据集,进行分类和聚类分析。

题目一要求根据给定的数据集进行分类和聚类分析。

你可以使用任意的数据挖掘算法和工具来完成这项任务。

请在你的回答中包含以下内容:1. 你选择了哪些数据挖掘算法和工具来进行分类和聚类分析?请说明你的选择原因。

2. 你是如何对数据进行预处理的?3. 你对数据进行了哪些分类和聚类分析?请详细描述你的分析过程和结果。

4. 你从这些分析中获得了哪些有价值的信息或结论?请描述你的发现。

题目二> 请根据给定的数据集,进行关联规则挖掘。

题目二要求根据给定的数据集进行关联规则挖掘。

你可以使用任意的关联规则挖掘算法和工具来完成这项任务。

请在你的回答中包含以下内容:1. 你选择了哪些关联规则挖掘算法和工具来进行关联规则挖掘?请说明你的选择原因。

2. 你是如何对数据进行预处理的?3. 你对数据进行了哪些关联规则挖掘?请详细描述你的分析过程和结果。

4. 你从关联规则挖掘中获得了哪些有价值的信息或结论?请描述你的发现。

题目三> 根据给定的情景和数据,进行时间序列分析。

题目三要求根据给定的情景和数据进行时间序列分析。

请在你的回答中包含以下内容:1. 你对情景和数据进行了哪些时间序列分析?请详细描述你的分析过程和结果。

2. 你从时间序列分析中获得了哪些有价值的信息或结论?请描述你的发现。

以上是数据挖掘期末测试练习题1的题目要求和回答内容。

请根据要求进行分析和回答,并且提供详细的分析过程和结果。

祝你成功!。

数据挖掘考试和答案

数据挖掘考试和答案

数据挖掘考试和答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-均值D. 神经网络答案:C3. 在数据挖掘中,以下哪个概念与“异常检测”相对应?A. 频繁模式挖掘B. 聚类C. 关联规则学习D. 异常检测答案:D4. 以下哪个算法是用于聚类的?A. Apriori算法B. K-最近邻算法C. 逻辑回归D. 随机森林答案:B5. 在关联规则学习中,以下哪个指标用于衡量规则的置信度?A. 支持度B. 置信度C. 增益D. 覆盖度答案:B6. 数据挖掘中的“过拟合”是指模型:A. 过于复杂,无法泛化到新数据B. 过于简单,无法捕捉数据的复杂性C. 训练时间过长D. 计算成本过高答案:A7. 在时间序列分析中,ARIMA模型的全称是什么?A. 自回归积分滑动平均模型B. 自回归移动平均模型C. 自回归积分滑动平均模型D. 自回归条件异方差模型答案:A8. 以下哪个是监督学习算法?A. K-均值聚类B. 决策树C. 主成分分析D. Apriori算法答案:B9. 在数据挖掘中,以下哪个概念与“特征选择”相对应?A. 特征提取B. 特征工程C. 降维D. 数据清洗答案:C10. 以下哪个算法是用于降维的?A. 线性回归B. 主成分分析C. 逻辑回归D. 支持向量机答案:B二、多项选择题(每题3分,共15分)11. 数据挖掘中的“关联规则学习”可以应用于以下哪些场景?A. 市场篮分析B. 异常检测C. 推荐系统D. 聚类分析答案:A, C12. 以下哪些是数据挖掘中常用的距离度量?A. 欧氏距离B. 曼哈顿距离C. 余弦相似度D. 杰卡德相似系数答案:A, B, C, D13. 在数据挖掘中,以下哪些是常用的聚类算法?A. K-均值B. DBSCANC. 层次聚类D. 支持向量机答案:A, B, C14. 以下哪些是数据挖掘中的特征选择方法?A. 过滤方法B. 包装方法C. 嵌入方法D. 随机森林答案:A, B, C15. 在数据挖掘中,以下哪些是模型评估指标?A. 准确率B. 召回率C. F1分数D. 均方误差答案:A, B, C, D三、填空题(每题2分,共20分)16. 数据挖掘中的________是指通过分析数据来发现数据中未知的、有价值的信息和知识的过程。

大学数据挖掘期末考试题

大学数据挖掘期末考试题

第 - 1 - 页 共 3 页数据挖掘试卷课程代码: C0204413 课程: 数据挖掘A 卷一、判断题(每题1分,10分)1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法.( )2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘.( )3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。

( )4. 当两个点之间的邻近度取它们之间距离的平方时,Ward 方法与组平均非常相似。

( )5. DBSCAN 是相对抗噪声的,并且能够处理任意形状和大小的簇。

( )6. 属性的性质不必与用来度量他的值的性质相同。

( )7. 全链对噪声点和离群点很敏感。

( )8. 对于非对称的属性,只有非零值才是重要的。

( ) 9. K 均值可以很好的处理不同密度的数据。

( ) 10. 单链技术擅长处理椭圆形状的簇.( )二、选择题(每题2分,30分)1。

当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( )A 。

分类 B.聚类 C.关联分析 D 。

主成分分析2。

( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。

A 。

MIN(单链) B 。

MAX (全链) C 。

组平均 D 。

Ward 方法 3.数据挖掘的经典案例“啤酒与尿布试验"最主要是应用了( )数据挖掘方法。

A 分类B 预测C 关联规则分析D 聚类 4.关于K 均值和DBSCAN 的比较,以下说法不正确的是( )A 。

K 均值丢弃被它识别为噪声的对象,而DBSCAN 一般聚类所有对象。

B 。

K 均值使用簇的基于原型的概念,DBSCAN 使用基于密度的概念。

C 。

K 均值很难处理非球形的簇和不同大小的簇,DBSCAN 可以处理不同大小和不同形状的簇D 。

K 均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN 会合并有重叠的簇 5.下列关于Ward's Method 说法错误的是:( ) A 。

数据挖掘期末试卷

数据挖掘期末试卷

数据挖掘期末试卷一、简答题(共5题,每题10分)1.数据挖掘的定义和目标是什么?2.数据预处理的步骤有哪些?请详细描述。

3.请简述交叉验证在数据挖掘中的作用。

4.请解释什么是聚类分析,并举例说明其在实际应用中的作用。

5.请解释关联规则挖掘的概念,并说明其在市场篮子分析中的应用。

二、计算题(共2题,每题20分)1.假设有一个包含100个数据样本的数据集D,其中80个样本属于类别A,20个样本属于类别B。

现给定一个新的数据样本x,请根据给定的数据集D和数据样本x,使用K近邻算法来确定x的类别,并说明你的推理过程。

2.给定一个包含1000个样本的数据集D,每个样本包含5个特征。

现在希望通过主成分分析(PCA)来对数据集进行降维处理。

请根据给定的数据集D,使用PCA算法来完成降维处理,并说明你的推理过程。

三、编程题(共1题,40分)对于给定的数据集D,其中包含1000个数据样本,每个样本包含5个特征。

请编写Python代码来实现基于K均值算法的聚类分析,并对数据集D进行聚类。

请在代码注释中详细描述你的算法实现过程,并附带代码运行结果截图。

四、应用题(共1题,20分)假设你是一家电商平台的数据分析师,现在希望通过关联规则挖掘来分析用户的购物行为。

请根据给定的购物篮数据集,使用关联规则挖掘算法来发现频繁项集和关联规则,并解释你的挖掘结果。

五、思考题(共1题,10分)数据挖掘技术在当今社会的各个领域中起到了重要的作用。

请从你所了解的领域中选择一个,并说明数据挖掘在该领域中的应用场景和作用。

同时,对于这个领域中可能出现的挑战和问题,你认为采用数据挖掘技术能够解决哪些问题,又有哪些限制?以上为《数据挖掘期末试卷》的题目列表,包括了简答题、计算题、编程题、应用题和思考题。

希望能够通过这些题目来测试学生对于数据挖掘知识的理解和应用能力。

祝大家成功完成试卷!。

数据挖掘考试题及答案

数据挖掘考试题及答案

数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法是用于分类的?A. K-meansB. AprioriC. ID3D. PageRank答案:C3. 在数据挖掘中,哪个指标用于衡量分类模型的性能?A. 准确率B. 召回率C. F1分数D. 所有以上答案:D4. 决策树算法中,哪个算法是基于信息增益来构建树的?A. ID3B. C4.5C. CARTD. CHAID答案:A5. 以下哪个算法是用于关联规则挖掘的?A. K-meansB. AprioriC. ID3D. KNN答案:B6. 在数据挖掘中,哪个算法是用于异常检测的?A. K-meansB. DBSCANC. Isolation ForestD. Naive Bayes答案:C7. 以下哪个算法是用于特征选择的?A. PCAB. AprioriC. ID3D. K-means答案:A8. 在数据挖掘中,哪个算法是用于神经网络的?A. K-meansB. AprioriC. BackpropagationD. ID3答案:C9. 以下哪个算法是用于聚类的?A. K-meansB. AprioriC. ID3D. KNN答案:A10. 在数据挖掘中,哪个算法是用于时间序列预测的?A. ARIMAB. AprioriC. ID3D. K-means答案:A二、多项选择题(每题3分,共15分)11. 数据挖掘中的预处理步骤可能包括哪些?A. 数据清洗B. 数据集成C. 数据转换D. 数据降维E. 特征提取答案:ABCDE12. 以下哪些是数据挖掘中常用的聚类算法?A. K-meansB. DBSCANC. Hierarchical ClusteringD. AprioriE. Mean Shift答案:ABCE13. 在数据挖掘中,哪些是常用的分类算法?A. Naive BayesB. Decision TreesC. Support Vector MachinesD. Neural NetworksE. Apriori答案:ABCD14. 以下哪些是数据挖掘中常用的评估指标?A. 准确率B. 召回率C. F1分数D. ROC曲线E. AUC值答案:ABCDE15. 在数据挖掘中,哪些是异常检测算法?A. Isolation ForestB. One-Class SVMC. Local Outlier FactorD. K-meansE. DBSCAN答案:ABC三、填空题(每题2分,共20分)16. 数据挖掘中的________是指从大量数据中提取或推导出有价值信息的过程。

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、单项选择题1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-均值D. 神经网络答案:C3. 在数据挖掘中,哪个指标用于衡量分类模型的性能?A. 准确率B. 召回率C. F1分数D. 所有以上答案:D4. 以下哪个不是数据挖掘中的聚类算法?A. K-均值B. DBSCANC. AprioriD. 层次聚类答案:C5. 在关联规则挖掘中,哪个算法是最著名的?A. AprioriB. FP-GrowthC. EMD. K-均值答案:A二、多项选择题6. 数据挖掘过程中可能需要进行的预处理步骤包括哪些?A. 缺失值处理B. 异常值检测C. 数据标准化D. 特征选择答案:ABCD7. 以下哪些是监督学习算法?A. 线性回归B. 逻辑回归C. 决策树D. K-均值答案:ABC8. 在数据挖掘中,以下哪些是评估模型性能的指标?A. 精确度B. 召回率C. 混淆矩阵D. ROC曲线答案:ABCD9. 以下哪些是无监督学习算法?A. K-均值B. 主成分分析C. 自动编码器D. 支持向量机答案:ABC10. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征提取B. 特征选择C. 特征转换D. 特征降维答案:ABCD三、填空题11. 数据挖掘中的________是指从大量数据中提取模式或知识的过程。

答案:知识发现12. 在分类问题中,________是指模型预测正确的样本数量占总样本数量的比例。

答案:准确率13. 在聚类分析中,________是一种基于密度的聚类算法,它将具有足够高密度的区域划分为一个簇。

答案:DBSCAN14. 在关联规则挖掘中,________算法通过减少候选项集来提高挖掘效率。

答案:FP-Growth15. 在数据挖掘中,________是指通过算法自动从数据中学习并构建模型的过程。

数据挖掘导论期末试题及答案

数据挖掘导论期末试题及答案

数据挖掘导论期末试题及答案第一部分:试题问答题1. 数据挖掘的定义是什么?2. 数据挖掘的过程包括哪些步骤?3. 请简要解释数据预处理的步骤。

4. 请列举常用的数据挖掘算法。

5. 请解释聚类分析和分类分析的区别。

6. 什么是关联规则挖掘?请给出一个例子。

7. 在数据挖掘过程中,如何评估模型的性能?8. 什么是过拟合?如何避免过拟合?9. 数据挖掘有哪些应用领域?10. 请简要介绍数据挖掘中的隐私保护技术。

编程题1. 给定一个包含n个整数的列表,请编写Python代码来计算列表中所有数的平均值。

2. 使用Python编写一个函数,接受两个参数n和m,返回一个列表,其中包含从n到m之间所有偶数的平方。

3. 在Python中,定义函数calcBMI(height, weight),接受一个人的身高(单位:米)和体重(单位:千克),计算并返回该人的BMI指数。

4. 使用Python编写一个函数,接受一个字符串作为参数,返回字符串中每个字符出现的次数。

第二部分:答案问答题1. 数据挖掘的定义是从大量的数据中发现先前未知、可理解和实际可用的模式的过程。

2. 数据挖掘的过程包括数据收集、数据预处理、特征选择、算法选择、模型构建、模型评估和模型应用等步骤。

3. 数据预处理的步骤包括数据清洗、数据集成、数据变换和数据规约。

4. 常用的数据挖掘算法包括决策树算法、朴素贝叶斯算法、支持向量机算法、K均值算法和关联规则挖掘算法等。

5. 聚类分析是将数据对象分为不同的组别,而分类分析是根据已有的分类标签对数据对象进行分类。

6. 关联规则挖掘是在大规模数据集中寻找项目之间的有趣关系的过程。

例如,购买尿布的人也倾向于购买婴儿食品。

7. 评估模型的性能可以使用准确率、精确率、召回率、F1值等指标进行评估。

8. 过拟合是指模型在训练集上表现很好,但在测试集或真实数据上表现糟糕的现象。

为了避免过拟合,可以使用交叉验证、正则化等方法。

数据挖掘期末考试复习题(精).doc

数据挖掘期末考试复习题(精).doc

1数据挖掘来源于机器学习2数据仓库是面向主题的集成的稳定的不同时间的数据集合,用于支持经营管理中决策制定过程;3元素据描述了数据仓库的数据和环境,遍及数据仓库的所有方面,是整个数据仓库的核心,4Codd将数据分析模型分为四类绝对模型解释模型思考模型或公式化;5数据立方体是在所以可能组合的维上进行分组聚集运算的总和;6 (数据质量)是(|数据仓库|)的成败关键; 7概括分析是探索者分析过程的第一步。

8.数据仓库的物理模型设计是对逻辑模型设计的数据模型确定物理存储结构和存取方法。

9.自组织网络以ART模型,Kohonen模型为代表,用于聚集类。

10.预测是利用历史数据找出变化规律,建立模型。

并用此模型来预测未来数据的种类,特征等;11调和数据是存储在企业级数据仓库和操作型数据存储中的数据。

12 S Q L Server ssas提供了所以业务数据的同意整合试图,可以作为传统报表和数据挖掘,在线分析处理,关键性能指示器记分卡的基础13数据仓库的概念模型定义通常采用信息包括图法来进行设计;14关联规则的经典算法包括()()15分类关联规则16分类器设计阶段包含划分数据集,分类器构造,分类器测试;16雪花模型是对星型模型式维表的进一步层次化和规范化来消除冗余的数据;17数据处理通常分为两大类,联机事务处理,联机分析处理。

18数据抽取的两个常见类型是静态抽取和增量抽取;19维度表一般由主键,分类层次和描述属性组成。

20 ROLAp是基于关系数据库的OLAP实现,而MO L AP是基于多维数据机构组织的OLAP实现。

21数据仓库按照其开发过程,其关键环节包括数据抽取,数据存储,数据管理,数据表现。

2 2 KD D是从数据集中识别出有效的新颖的潜在有用的以及最终可理解的模式的高级处理过程。

2 3 遗传算法的基本要素问题编码:初始群体的设定:适应值函数的设计:遗传操作设计;控制参数设定:24数据集市数据集市是指具有特定应用的数据仓库,主要针对某个具有应用战与意义的应用或者具体部门级的应用,支持用户利用自己有的数据获得重要竞争的优势。

数据挖掘考试题目——聚类

数据挖掘考试题目——聚类

数据挖掘考试题目——聚类一、填空题1、密度的基于中心的方法使得我们可以将点分类为:__________、________ 、_________。

2、DBSCAN算法在最坏的情况下,时间复杂度是__________、空间复杂度是__________。

3、DBSCAN算法的优点是_______、__________________________。

4、DBSCAN算法的缺点是处理_________________、_____________的数据效果不好。

5、DBSCAN算法的参数有:___________、____________。

6、簇的有效性的非监督度量常常可以分为两类:__________、__________,它常采用的指标为__________。

7、簇的有效性的监督度量通常称为___________,它度量簇标号与外部提供的标号的匹配程度主要借助____________。

8、在相似度矩阵评价的聚类中,如果有明显分离的簇,则相似度矩阵应当粗略地是__________。

9、DBSCAN算法的参数确定的基本方法是观察____________________的特性。

10、不引用附加的信息,评估聚类分析结果对数据拟合情况属于__________技术。

答案:1、核心点边界点噪声点2、O(n2) O(n)3、耐噪声能够处理任意大小和形状的簇4、高维数据变密度的5、EPS MinPts6、簇的凝聚性簇的分离性均方差(SSE)7、外部指标监督指标的熵8、块对角的9、点到它的第K个最近邻的距离(K-距离)10、非监督二、选择题1、DBSCAN算法的过程是(B)。

①删除噪声点。

②每组连通的核心点形成一个簇。

③将所有点标记为核心点、边界点和噪声点。

④将每个边界点指派到一个与之关联的核心点的簇中。

⑤为距离在Eps之内的所有核心点之间赋予一条边。

A:①②④⑤③B:③①⑤②④C:③①②④⑤D:①④⑤②③2、如果有m个点,DBSCAN在最坏的情况下的时间复杂度度为(C)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档