工程光学习题(1)解析

合集下载

工程光学第一章习题及解答

工程光学第一章习题及解答

解题技巧总结
建立清晰的解题思路
根据题目要求,建立清晰的解 题思路,明确解题方向和步骤。
提高计算能力
通过练习和总结,提高自己的 计算能力和准确性,避免因计 算失误导致错误。
仔细审题
在开始解题之前,务必仔细阅 读题目,明确题目要求和给定 条件。
准确应用公式和定理
在解题过程中,准确应用相关 的公式和定理,确保适用条件 和范围正确。
注意细节和隐含条件
在解题过程中,注意细节和隐 含条件,确保解题思路和结果 完整准确。
05 习题拓展
相关知识点拓展
01
光的干涉
光的干涉是光波动性的重要表现之一,它涉及到光的相干性、干涉条件、
干涉图样等知识点。可以进一步了解干涉现象在日常生活和科技领域中
的应用,如光学干涉仪、薄膜干涉等。
02
光的衍射
光的衍射描述了光在传播过程中遇到障碍物时发生的偏离直线传播的现
象。可以深入了解衍射与干涉的区别和联系,以及衍射在光学仪器设计、
光谱分析等领域的应用。
03
光学仪器
了解各种光学仪器的基本原理和应用,如显微镜、望远镜、照相机等。
探究这些仪器中光的干涉、衍射等现象的应用,以及如何提高光学仪器
的性能。
类似题目推荐
题目
什么是光的偏振现象?请举例说明。
答案
光的偏振现象是指光波的电矢量或磁矢量在某一特定方向 上振动。例如,自然光通过偏振片后,只能沿特定方向振 动的光波通过,形成线偏振光。
题目
简述光的色散现象。
答案
光的色散现象是指不同波长的光在传播速度上存在差异, 导致白光通过棱镜后分解成不同颜色的光谱。这是因为不 同波长的光在介质中的折射率不同。
取为无穷大。

工程光学习题解答(第1章)

工程光学习题解答(第1章)

第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用。

答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律.应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量.(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。

说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。

2.已知真空中的光速c≈3×108m/s,求光在水(n=1。

333)、冕牌玻璃(n=1。

51)、火石玻璃(n=1。

65)、加拿大树胶(n=1。

526)、金刚石(n=2.417)等介质中的光速。

解:v=c/n(1)光在水中的速度:v=3×108/1。

333=2.25×108 m/s(2)光在冕牌玻璃中的速度:v=3×108/1。

51=1。

99×108 m/s(3)光在火石玻璃中的速度:v=3×108/1。

65=1。

82×108 m/s(4)光在加拿大树胶中的速度:v=3×108/1。

526=1。

97×108 m/s(5)光在金刚石中的速度:v=3×108/2.417=1。

24×108m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。

那时候的玻璃极不均匀,多泡沫。

除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃).3.一物体经针孔相机在屏上成像的大小为60mm,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:⇒l=300mm4.一厚度为200mm的平行平板玻璃(设n=1。

5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。

工程光学练习答案(带样题).doc

工程光学练习答案(带样题).doc

工程光学练习答案(带样题)期末,东北石油大学审查了09级工程光学的测量和控制材料。

第一章练习1,假设真空中的光速为3米/秒,则计算水中(n=1.333)、皇冠玻璃(n=1.51)、燧石玻璃(n=1.65)、加拿大树胶(n=1.526)、钻石(n=2.417)和其他介质中的光速。

解决方案:当灯在水中时,n=1.333,v=2.25m米/秒,当灯在皇冠玻璃中时,n=1.51,v=1.99m米/秒,当灯在燧石玻璃中时,n=1.65,v=1.82m米/秒,当灯在加拿大树胶中时,n=1.526,v=1.97m米/秒,当灯在钻石中时,n=2.417,v=1.24米/秒。

2.一个物体穿过针孔照相机,在屏幕上形成一个60毫米大小的图像。

如果屏幕被拉开50毫米,图像的尺寸变成70毫米,计算出从屏幕到针孔的初始距离。

解决方案:在同一个均匀的介质空间中,光直线传播。

如果选择通过节点的光,方向不会改变,从屏幕到针孔的初始距离为x,则可以根据三角形的相似性得到:因此,x=300mm毫米意味着从屏幕到针孔的初始距离是300毫米。

3、一块厚度为200毫米的平行平板玻璃(n=1.5),下面放一块直径为1毫米的金属板。

如果玻璃板上覆盖有圆形纸片,则要求玻璃板上方的任何方向都不能看到纸片。

这张纸的最小直径是多少?解决方案:如果纸片的最小半径是x,那么根据全反射原理,当光束从玻璃发射到空气中的入射角大于或等于全反射临界角时,就会发生全反射,正是由于这个原因,在玻璃板上方看不到金属片。

全反射的临界角由下式确定:(1)其中N2=1,n1=1.5,根据几何关系,利用平板的厚度和纸张与金属片的半径计算全反射临界角的方法如下:(2)纸张的最小直径x=179.385mm毫米可以通过组合等式(1)和(2)来获得,因此纸张的最小直径为358.77毫米4.光纤芯的折射率是n1.包层的折射率为n2,光纤所在介质的折射率为n0。

计算光纤的数值孔径(即n0sinI1,其中I1是光在光纤中以全反射模式传播时,光在入射端面的最大入射角)。

工程光学习题一答案

工程光学习题一答案

第一章 习题答案4. 一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属薄片。

若在玻璃板上盖一圆形的纸片,使得在玻璃板上方任何方向上都看不到该金属薄片,问纸片的最小直径应为多少?解:如图所示,设纸片的最小直径为L ,考虑边缘光线满足全反射条件时6667.090sin sin 0212==n n I74536.06667.01cos 22=-=IL=(2x+1)mm=358.77mm16. 一束平行细光束入射到一半径mm r 30=、折射率n=1.5的玻璃球上,求经玻璃球折射后会聚点的位置。

如果在凸面(第一面)镀反射膜,其会聚点应爱何处?如果在凹面(第二面)镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各个会聚点的虚实。

解:(1)此时的成像过程如图(4)所示,平行细光束入射到玻璃球上,经左侧球面折射后形成中间像'1A ,它又是右侧球面的物2A ,经右侧球面再次成像于'2A 。

将-∞=1l ,11=n ,5.1'1=n ,mm r 301=代入单个折射球面成像公式r n n l n ln -=-'''得 mm mm n n r n l 905.0305.11'1'1'1=⨯=-=由于1l 和'1l 异号,01'1'111<=l n l n β,故无限远物与像'1A 虚实相同,即'1A 为实像。

但由于右侧球面的存在,实际光线不可能到达此处,故对于右侧球面2A 为虚物。

将mm r n n mm mm r l l 30,1,5.1,30)6090(22'22'12-====-=-=再次代入单个折射球面成像公式得151305.1305.01'2=+--=l 所以mm l 15'2=,此时02'21'222>=l n l n β,物2A 与像'2A 虚实相反,即'2A 为实像。

工程光学习题1

工程光学习题1

π
2
∵ E = 1 =C B εμ
B=
2 = 0.67 × 10 −8 (T ) 3 × 10 8
相应磁场 B 的表达式为
⎧ ⎡ ⎞ π⎤ −8 14 ⎛ z ⎪ B x = −0.67 × 10 cos ⎢2π × 10 ⎜ − t ⎟ + ⎥ (T ) ⎝c ⎠ 2⎦ ⎣ ⎪ ⎪ ⎨B y = 0 ⎪ ⎪Bz = 0 ⎪ ⎩
当 γ = 6 × 1014 Hz , Δγ = 3 × 10 8 Hz 时
λ=
c
γ
= Δγ
3 × 108 = 5 × 10 − 7 m 14 6 × 10
Δλ =
γ
⋅λ =
3 × 108 × 5 × 10 − 7 = 2.5 × 10−13 代入 14 6 × 10
λm =
2π 2π 2λ (λ + Δλ ) = = 1 ⎞ km Δλ ⎛1 π⎜ − ⎟ ⎝ λ λ + Δλ ⎠
5
⎧ ⎡⎛ 1 ⎤ ⎤⎫ ⎡⎛ 1 1 ⎞ 1 ⎞ = 2a cos⎨π ⎢⎜ + ⎟ Z − Δγt ⎥ ⎟ Z − (2γ − Δγ )t ⎥ ⎬ cos π ⎢⎜ − ⎦ ⎦⎭ ⎣⎝ λ λ + Δλ ⎠ ⎩ ⎣⎝ λ λ + Δλ ⎠
⎡ ⎛1 ⎤ 1 ⎞ A = 2a cos ⎢π ⎜ − ⎟ Z − Δγt ⎥ ⎣ ⎝ λ λ + Δλ ⎠ ⎦
14
π z -t)+ ]知: 2 c
y( E ) (B)
E × H = Z
0
ቤተ መጻሕፍቲ ባይዱ
ω = 2πγ = 2π × 1014
14
z( k )
∴频率:γ=10 (Hz) λ=cT=

工程光学第一章习题及解答

工程光学第一章习题及解答

n2
1.5
n' 2
1
r2
30mm
1
2
l2 90 60 30mm
.
带入①式可得:l2' 15mm(实像) C
距 2 面右侧15mm处
解: (2)满足②式 1/ l' 1/ l 2 / r
l3 r3 30mm
带入②式可得:l3' 15mm (虚像)
l3


l
' 2

10cm
n3 1.5
nl ' / n'l
n3' 1
r3 20cm y3 1 / 6cm
得:
l
' 3

8cm
3 1.2
y3 0.2cm
l'
r
l
解: L() Q M MQ ' h2 (2r )
L() (l )2 h2 (l' )2 h2
l2 2(r l) l'2 2(r l')
dl
rl
r l'


d l2 2(r l) l'2 2(r l')
1
r5 30mm
代入①式,得:l5' 75mm (虚像)
距 1 面右侧75mm处
1
2
.
C
3. 有平凸透镜r=100mm,r=∞,d=300mm, n=1.5,当物体在-∞时,求高斯像的位置l’。 在第二面上刻一十字丝,
问: 其通过球面的共轭像处? 当入射高度h=10mm时,实际光线的像方 截距为多少?与高斯像面的距离为多少?

工程光学第一章习题答案

工程光学第一章习题答案

光学习题解答 CH11、 生活中有很多光学现象,例如,两个手电筒的发出的光在空气中相遇后又独自的直线转播,平面镜成像,水底的鱼看起来比实际浅等都符合光学基本定律。

2、 根据公式v=c/n 可得:光在水中的传播速度为:v=2.25×108m/s 光在冕牌玻璃中的传播速度为:v=1.987×108m/s 光在火石玻璃中的传播速度为:v=1.82×108m/s 光在加拿大树胶中的传播速度为:v=1.96×108m/s 光在金刚石中的传播速度为:v=1.241×108m/s3、 根据题意可得,可以设x 为屏到孔的距离,根据几何关系有如下式子成立:=+50x x 7060,可以解得x=300mm 4、 见图,本题涉及到全反射现象。

金属片边缘点发出光线照射到玻璃另一面是光密介质传入光疏介质,符合全反射条件,=θ∠ACB,有公式:,15.1sin 90sin =θ32sin =θ, D=2L CD +1=358.77mm图1.1习题45、①光从光密介质射到它与光疏介质的界面上,②入射角等于或大于临界角.这两个条件都是必要条件,两个条件都满足就组成了发生全反射的充要条件。

6、只要证明入射角和出射角相等就可以。

7、见下图,可知,光后偏角为:δ=αθ-,有1s i n s i n n=∂θ,由于∂,θ都很小,可知,∂=∂=sin ,sin θθ,得δ=αθ-=)1(-∂n图1.2 题78、见课本图1.6所示,数值孔径一般代表光纤传播光的能力。

记为NA 。

根据三角函数关系及其全反射临界条件有:=Im sin 90sin 21n n ,,01Im)90sin(1sin n n I =-解得NA=n 0sin I 1=2221n n -.9、光在冕牌玻璃中的折射率为n=1.51,由全反射临界条件:∂sin 90sin =n,由图可以知道,β=45o -∂,将n=1.51代人,可以解得θ=5o 40'。

工程光学第三版课后问题详解1

工程光学第三版课后问题详解1

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤能以全反射方式传播时在入射端面的最大入射角)。

工程光学习题解答典型光学系统

工程光学习题解答典型光学系统

工程光学习题解答第七章典型光学系统1•一个人近视程度是2D (屈光度),调节范围是8D,求: (1)远点距离;(2)其近点距离;(3)配戴100度近视镜,求该镜的焦距;(4)戴上该近视镜后,求看清的远点距离;(5)戴上该近视镜后,求看清的近点距离。

1解:①R 2 (1/m)l rl r 0.5m②A R P A 8D R 2DP R A 2 8 10DI P 1 1 0.1m P 10③D 1 f 1mf④R R D 1D1R1m⑤A R P A 8D R 1DP R A 9DI P 1 0.11m92 .一放大镜焦距f 25mm,通光孔径D 18mm,眼睛距放大镜为50mm,像距离眼睛在明视距离250mm,渐晕系数为k 50%,试求(1)视觉放大率;(2)线视场;(3)物体的位置。

D工程光学习题解答已知:放大镜 f 25mm D 放18mmK 50%求:(①r ②2y ③1解: ①1 P DfP 50mm P I 250mm250 501 ——25 2510 1 2 9②由K 50%可得:tg180.18 2P 2* 50tg tg0.18 tg 0.029tg _y D ••• y Dtg••• 2y 10mm方法二:tg 0.18250* 0.02 5mm y 250* tg 45mmI 200mm f e 250mm I 22.2mmI 200 ex yI 22.2 y2y 10mm50 250 200mm200 25I 22.22mm3.—显微镜物镜的垂轴放大率为3x,数值孔径NA 0.1,共扼距L 180mm,物镜框是孔径光阑,目镜焦距f e25mm。

工程光学习题解答(1)求显微镜的视觉放大率。

(2)求出射光瞳直径。

(3)求出射光瞳距离(镜目距)。

(4)斜入射照明时,0.55 m,求显微镜的分辨率。

(5)求物镜的通光孔径。

(6)射物高2y 6mm,渐晕系数k 50%,求目镜的通光孔径。

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题参考答案第一章几何光学基本定律

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律1.已知真空中的光速c =3810⨯m/s ,求光在水(n=)、冕牌玻璃(n=)、火石玻璃(n=)、加拿大树胶(n=)、金刚石(n=)等介质中的光速。

解:则当光在水中,n=时,v=m/s,当光在冕牌玻璃中,n=时,v=m/s, 当光在火石玻璃中,n =时,v=m/s , 当光在加拿大树胶中,n=时,v=m/s , 当光在金刚石中,n=时,v=m/s 。

2. 一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小1mm I 1=90︒n 1 n 2200mmL I 2 x2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0.5. 一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。

工程光学第三版课后答案1

工程光学第三版课后答案1

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

工程光学习题参考答案第一章几何光学基本定律

工程光学习题参考答案第一章几何光学基本定律

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。

2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。

3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =1mm I 1=90︒n 1 n 2200mmL I 2 x66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学课后答案.

工程光学课后答案.

⼯程光学课后答案.第⼀章16. ⼀束平⾏细光束⼊射到⼀半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸⾯镀反射膜,其会聚点应在何处?如果在凹⾯镀反射膜,则反射光束在玻璃中的会聚点⼜在何处?反射光束经前表⾯折射后,会聚点⼜在何处?说明各会聚点的虚实。

解:该题可以应⽤单个折射⾯的⾼斯公式来解决,设凸⾯为第⼀⾯,凹⾯为第⼆⾯。

(1)⾸先考虑光束射⼊玻璃球第⼀⾯时的状态,使⽤⾼斯公式:会聚点位于第⼆⾯后15mm处。

(2)将第⼀⾯镀膜,就相当于凸⾯镜像位于第⼀⾯的右侧,只是延长线的交点,因此是虚像。

还可以⽤β正负判断:(3)光线经过第⼀⾯折射:, 虚像第⼆⾯镀膜,则:得到:(4)在经过第⼀⾯折射物像相反为虚像。

18.⼀直径为400mm,折射率为1.5的玻璃球中有两个⼩⽓泡,⼀个位于球⼼,另⼀个位于1/2半径处。

沿两⽓泡连线⽅向在球两边观察,问看到的⽓泡在何处?如果在⽔中观察,看到的⽓泡⼜在何处?解:设⼀个⽓泡在中⼼处,另⼀个在第⼆⾯和中⼼之间。

(1)从第⼀⾯向第⼆⾯看(2)从第⼆⾯向第⼀⾯看(3)在⽔中19.有⼀平凸透镜r 1=100mm,r =∝2,d=300mm,n=1.5,当物体在时,求⾼斯像的位置'l 。

在第⼆⾯上刻⼀⼗字丝,问其通过球⾯的共轭像在何处?当⼊射⾼度h=10mm ,实际光线的像⽅截距为多少?与⾼斯像⾯的距离为多少?解:19.有平凸透镜r 1=100mm ,r 2=∞,d=300mm ,n=1.5,当物体在-∞时,求⾼斯像的位置l’。

在第⼆⾯上刻⼀⼗字丝,问其通过球⾯的共轭像处?当⼊射⾼度h=10mm 时,实际光线的像⽅截距为多少?与⾼斯像⾯的距离为多少?d=300mmr 1=100mmI I 'B 'r 2=∞ -I 2I 2’B’B” A’ n=1.5解 1)由r nn l l -'=-'11代⼊ ∞=1l , 5.11='n ,11=n ,1001=r 得: mm l 3001='mm d l l 030030012=-=-'=∴即:物体位于-∞时,其⾼斯像点在第⼆⾯的中⼼处。

工程光学习题答案(附试题样本)

工程光学习题答案(附试题样本)

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题解答

工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1.用于制作光学零件的透射材料分为 、 、 。

2.一学生带500度近视眼镜,则该近视镜的焦距为 ,该学生裸眼所能看清的最远距离为 。

3.唯一能成完善像的最简单的光学元件是 。

4.一个右手坐标系的虚物,经一个屋脊棱镜的屋脊反射后,成 坐标系的 像。

5.光波的相干条件为 、 、 。

6.光的干涉现象是光的 的重要特征。

实验证明了光可以发生干涉。

7.影响干涉条纹可见度的主要因素是两相干光束的 、 、 。

8.摄影物镜的三个重要参数分别为 、 、 。

9.摄影物镜的类型主要分为普通摄影物镜、 、 、 和变焦距物镜等。

10.显微镜的照明方法有 、 、 、 。

11.摄影系统由 和 组成。

12.波的叠加原理可以表述为:几个波在相遇点产生的合振动是各个波单独在该点产生振动的 。

波的叠加原理表面了光波传播的 。

13.几何光学的四个基本定律分别为 、 、 、 。

14.反射棱镜的种类繁多,形状各异,大体上可分为 、 、 、 。

15.视场光阑经其前面的光学系统所成的像称为 ,视场光阑经其后面的光学系统所成的像称为 。

16.在理想光学系统中,除了垂轴放大率外,还有 和 两种放大率。

17.产生干涉的光波称为 ,其相应的光源称为 。

18.等厚干涉型的干涉系统称为斐索干涉仪,按测量对象分为 、 。

19.时间相干性好的同义语有 、 、 。

20.孔径光阑经其前面的光学系统所成的像称为 ,孔径光阑经其后面的光学系统所成的像称为 。

二、作图题1.求AB 的像B A ''。

图中C 为球面反射镜的曲率中心。

2.求AB 的像B A ''。

图中C 为球面反射镜的曲率中心。

3.求物AB经理想光学系统所成的像,并注明系统像方的基点位置和焦距。

5.求像方主平面和像方焦点。

1.简述几何光学的四个基本定律的含义。

答:(1)光的直线传播定律,几何光学认为,在各向同性的均匀介质中,光是沿着直线方向传播的。

(2)光的独立传播定律,不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。

(3)光的反射定律,反射光线位于由入射光线和法线所决定的平面内,反射光线和入射光线位于法线的两侧,且反射角与入射角的绝对值相等,符号相反。

(4)光的折射定律,折射光线位于由入射光线和法线所决定的平面内,折射角的正弦与入射角的正弦之比与入射角大小无关,仅由两种介质的性质决定。

2.用图解法就像可供选择的典型光线和可利用的性质有哪些?答:(1)平行于光轴入射的光线,它经过系统后过像方焦点;(2)过物方焦点的光线,它经过系统后平行于光轴;(3)倾斜于光轴入射的平行光束经过系统后会交于像方焦平面上的一点;(4)自物方焦平面上一点发出的光束经系统后成倾斜于光轴的平行光束;(5)共轭光线在主面上的投射高度相等。

3.简述棱镜系统成像方向判断原则。

答:(1)O 'z '坐标轴和光轴的出射方向一致;(2)垂直于主截面的坐标轴O 'y '视屋脊面的个数而定,如果有奇数个屋脊面,则其像坐标轴方向与物坐标轴Oy 方向相反;如果没有屋脊面或有偶数个屋脊面,则像坐标轴方向与物坐标轴方向一致。

(3)平行于主截面的坐标轴O 'x '的方向视反射面的个数(屋脊面按两个反射面计算)而定。

如果物坐标系为右手坐标系,当反射面个数为偶数时,O 'x '坐标轴按右手坐标系确定;而当反射面个数为奇数时,O 'x '坐标轴依左手坐标系确定。

4.何为孔径光阑、视场光阑?何为入射光瞳、出射光瞳? 答:(1)限制轴上物点孔径角大小的金属圆片称为孔径光阑。

(2)限定成像范围的光阑称为视场光阑。

(3)孔径光阑经孔径光阑前面光学系统所成的像称为入射光瞳;(4)孔径光阑经孔径光阑后面光学系统所成的像称为出射光瞳。

5.光学系统成完善像的条件可以表述为? 答:(1)入射波面为球面波时,出射波面也为球面波。

(2)输入光为同心光束时,出射光亦为同心光束。

(3)物点及其像点之间任意两条光路的光程相等。

6.摄像物镜的三个重要参数是什么?它们分别决定系统的什么性质?答:摄影物镜的三个重要参数分别是焦距、相对孔径和视场角。

焦距决定成像的大小,相对孔径决定像面照度,视场决定成像的范围。

7.简述共轴理想光学系统所成的像的性质。

答:(1)位于光轴上的物点对应的共轭像点也必然位于光轴上;位于过光轴的某一截面内的物点对应的共轭像点必位于该平面的共轭像面内;同时,过光轴的任意截面成像性质都是相同的。

(2)垂直于光轴的平面物所成的共轭平面像的几何形状完全与物相似,也就是说在整个物平面上无论哪一部分,物和像的大小比例等于常数。

(3)一个共轴理想光学系统,如果已知两对共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上的两对共轭点的位置,则其他一切物点的像点都可以根据这些已知的共轭面和共轭点来表示。

8.什么是干涉现象?答:若在考察时间内,两光波的初相位保持不变,光程差也恒定,则该点的强度不变,叠加区内各点的强度也不变,那么在叠加区内将看到强弱稳定的强度分布,把这种现象称为干涉现象。

9.简述组合透镜孔径光阑的判断方法。

答:(1)从轴上物点追迹一条近轴光线(u 角任意),求出光线在每个折射面上的投射高度,然后将得到的投射高度与相应折射面的实际口径去比较,则比值最大的那个折射面的边框就是这个镜头的孔径光阑。

(2)将每一块透镜经它前面的所有透镜成像并求出像的大小,这些像中,对给定的轴上物点所张的角最小者,其相应的透镜边框为这个镜头的孔径光阑。

1.已知真空中的光速 c =38103⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解: v c n = nv 8103⨯= 则当光在水中,n=1.333时,v=2.25810⨯m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99810⨯m/s,当光在火石玻璃中,n =1.65时,v=1.82810⨯810⨯m/s , 当光在加拿大树胶中,n=1.526时,v=1.97810⨯m/s , 当光在金刚石中,n=2.417时,v=1.24810⨯m/s 。

2.一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变70mm ,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:507060+=x x所以x=300mm即屏到针孔的初始距离为300mm3.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:5.11sin ='=n n I m (1) 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:2005.0-=x tgI m (2) 联立(1)式和(2)式可以求出纸片最小直径 x=179.385mm ,所以纸片最小直径为358.77mm 。

4.一直径为400mm ,折射率为1.5的玻璃球中两个小气泡,一个位于球心,另一个位于1/2半径处。

沿两气泡连线方向在球的两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?解:从右侧观察:eyemm l B 200-= 1='n mm r 200-= mm l A 300-= 5.1=nrnn l n l n -'=-''lnr n n n l +-''=' mm l A 400-=' mm l B 200-='[mm l B 200= 1='n mm r 200= mm l A 100= 5.1=n 代入求解得mm l A 80='mm l B 200='[解法2]认为A ,B 均为像点,求其物此时, mm l A 100='mm r 200= mm l B 200='代入公式: rnn l n l n -'=-''解得 mm l A 80=mm l B 200=在水中,mm l B 200= 34='n mm r 200= mm l A 100= 5.1=n 代入rn n l n l n -'=-''求解得:mm l A 94=' mm l B 200='5.证明光学系统的垂轴放大率公式k k kl l l l l l n n 21211''''=β。

证明:设一个共轴球面光学系统由k 个面组成,由于第i 面的像空间就是第i+1面的物空间,第i 面的像就是第i+1面的物,所以i i n n '=+1 i i y y '=+1则系统的垂轴放大率为k kk k y y y y y y y y ββββ 2122111='••'•'='=又因为11111l n l n ''=β 22222l n l n ''=β k kk k k l n l n ''=β 所以kk k l l l l l l n n 21211''''=β6.一直径为20mm 的玻璃球,其折射率为3,今有一光线以60入射角入射到该玻璃球上,试分析光线经过玻璃球的传播情况(用作图描述并加上计算过程)。

解:在入射点A 处。

同时发生折射和反射现象2211sin sin I n I n = 5.0360sin sin 2==︒I302︒=I∴在A 点处光线以30︒的折射角进入玻璃球,︒根据球的对称性,可知折射光线将到达图中B 3023︒==I I 305︒=∴II I n 43sin sin = 23sin 4=I ︒=604I同理:由B 点发出的反射光线可以到达C ︒=307I 608︒=IB 点的反射光线可再次到达A 点,并发生折、反现象。

309︒=I 30210︒==I I 60111='=I I 由以上分析可知:当光线以60︒入射角射入折射率为3的玻璃球后,可在如图A ,B ,C 三点连续产生折射反射现象。

相关文档
最新文档