大学物理A习题答案
大学物理A1习题册参考答案-第5-6章
A1r 2r ab1、 下列几个叙述中哪一个是正确的?A 、电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;C 、场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正可负; D 、以上说法都不正确。
[ ] 1. C解释:A 答案点电荷可能有正负;B 答案场强是矢量2、 关于高斯定理的理解有下面几种说法,其中正确的是 A 、如果高斯面内无电荷,则高斯面上E处处为零; B 、如果高斯面上E处处不为零,则该面内必无电荷;C 、如果高斯面内有净电荷,则通过该面的电通量必不为零;D 、如果高斯面上E处处为零,则该面内必无电荷。
[ ] 2. C解释:A 答案通量为零不一定场强为零;D 答案考虑等量异号电荷,可以使得处处为零。
3、 在静电场中,下列说法中哪一个是正确的?A 、带正电荷的导体,其电势一定是正值;B 、等势面上各点的场强一定相等;C 、场强为零处,电势也一定为零;D 、场强相等处,电势梯度矢量一定相等。
[ ] 3. D解释:A 答案电势是个相对值,要参考零电势的选择。
4、 如图所示,在电荷为Q -的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为1r 和2r ,则移动过程中电场力做的功为 A 、012114Q r r πε⎛⎫-- ⎪⎝⎭; B 、012114qQ r r πε⎛⎫- ⎪⎝⎭;C 、012114qQ r r πε⎛⎫-- ⎪⎝⎭; D 、()0214qQ r r πε-- [ ]4. C解释:电场力做功等于电势能差,注意正负号。
5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 5. D解释:由高斯定理依次求出各部分场强即可。
大学物理A答案
四川师范大学 13级 工程造价 专业 ( 本科层次半脱产)2012—2013学年度第一学期期末考试 《大学物理》课程试卷(A) 参考答案及评分标准 1、 选择题 1-5:BACDB 6-10:DBCCC 11-15:ABDBC 2、 判断题 1、√ 2、× 3、× 4、√ 5、× 3、 填空题 1、地球的重力(引力) 2、惯性 小 3、 4 4、224x y += 5、 200 4、 计算题 1、 解:(1)21(35)(34)2r t i t t j =+++- ……………………………………4分 (2)21[(35)(34)]2dr d t i t t j dt dt υ==+++- …………………………………5分 3(3)i t j =++ ……………………………………………………………6分 当1t =s 时,有(34)i j υ=+ 米/秒…………………………………………7分5υ== 4arctan 3θ=……………………………………………8分 (3)[3(3)]d d a i t j j dt dt υ==++= …………………………………10分 1a = 方向沿y 轴的方向………………………………………………12分 2、 解:由题意可得020υ=米/秒,物品作平抛运动, 则有201(1)2(2)H gt S t υ⎧=⎪⎨⎪=⎩ ………………………………………………8分由(1)得t=10.1s 代入(2)可得S=202米………………………………11分 则在202米处投放物品………………………………………………………12分3、 解:(1)2624/d t rad s dt θω===……………………………………………3分21224/d t r a d s dt ωβ===…………………………………………6分 (2) 4.8/R m s υω==……………………………………………………8分 22115.2/n a R m s ω==……………………………………………10分24.8/t a R m s β==……………………………………………12分5、 简答题答:可以平衡(2分)。
大学物理A1慕课答案深大
大学物理A1慕课答案深大1、21.关于声现象,下列说法正确的是()[单选题] *A.人听到声音是否响亮只跟发声体发声时的振幅有关B.人们可以用声学仪器接收到超声波判断地震的方位和强度C.倒车雷达是利用回声定位探测车后的障碍物(正确答案)D.用大小不同的力敲击同一音叉是为了探究音调与频率的关系2、59.在“人面桃花相映红”这句诗中,用光学知识解释桃花红的原因是()[单选题]* A.桃花自己能发出红光B.桃花反射红光(正确答案)C.桃花吸收红光D.以上说法都不对3、2.高空雨滴下落的运动是自由落体运动.[判断题] *对错(正确答案)4、图66是我国早期的指南针——司南,是把天然磁石磨成勺子的形状,把它放在水平光滑的“地盘”上,东汉学者王充在《论衡》中记载:“司南之杓(用途),投之于地,其柢(握柄)指南”。
下列说法中正确的是()[单选题]A. 司南握柄端是磁石的北极B. 司南握柄端指向地磁场的南极C. 地磁场的北极在地理的北极附近D. 司南握柄端指南是由于受到地磁场的作用(正确答案)5、1.速度在数值上等于单位时间内通过的路程.[判断题] *对错(正确答案)6、3.实验前要平衡小车受到的阻力.[判断题] *对错(正确答案)7、空中运动的足球,若所受力都消失,它将静止在空中[判断题] *对错(正确答案)答案解析:空中运动的足球所受合力为零时将做匀速直线运动8、39.甲物体的密度是2×103kg/m3,乙物体的密度是3×103kg/m3,若从甲乙中各取30g 混合在一起制成丙物体,假设混合前后总体积保持不变,则丙物体的密度是()[单选题] *A.5×103kg/m3B.5×103kg/m3C.6×103kg/m3D.4×103kg/m3(正确答案)9、2.车轴处经常涂一些润滑油,以减小接触面粗糙程度来减小摩擦力.[判断题] *对(正确答案)错10、30.小霖发现夏天爸爸开车时,需要打开汽车的空调给车内降温。
大学物理a考试题及答案
大学物理a考试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^4 m/sC. 3×10^2 m/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这个定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t的关系是什么?A. h = gtB. h = 1/2 gt^2C. h = 1/2 gtD. h = gt^2答案:B4. 波长为λ的光波在介质中的波速为v,该介质的折射率n是多少?A. n = λ/vB. n = v/λD. n = c/v答案:D5. 一个电路中包含一个电阻R和一个电感L,当电流I通过时,电感的电动势EMF是多少?A. EMF = -I * L * di/dtB. EMF = I * L * di/dtC. EMF = -I * R * di/dtD. EMF = I * R * di/dt答案:A6. 根据热力学第一定律,一个系统吸收了热量Q,对外做了功W,系统的内能U变化是多少?A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W - QD. ΔU = W + Q答案:A7. 一个质量为m的物体在两个相互垂直的力F1和F2的作用下做直线运动,这两个力的合力F是多少?A. F = √(F1^2 + F2^2)B. F = F1 + F2C. F = |F1 - F2|D. F = (F1^2 + F2^2) / (F1 + F2)答案:A8. 一个电子在电场中受到的电场力是F,电子的电荷量是e,电场强度E是多少?A. E = F/eC. E = F * eD. E = 1/e * F答案:A9. 一个理想的气体经历一个等压过程,气体的温度T和体积V之间的关系是什么?A. T ∝ VB. T ∝ 1/VC. T ∝ V^2D. T ∝ √V答案:A10. 根据麦克斯韦方程组,电场E和磁场B在真空中的关系是什么?A. ∇ × E = -∂B/∂tB. ∇ × B = -∂E/∂tC. ∇ × E = ∂B/∂tD. ∇ × B = ∂E/∂t答案:A二、填空题(每题3分,共30分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度是______ m/s²。
大学物理AⅠ刚体定轴转动习题答案及解法
《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。
1环的质量分布均匀。
2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。
长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。
(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。
(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。
(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。
大学物理学专业《大学物理(一)》综合练习试题A卷 附答案
姓名班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…考试须知:123 一、填空题(共10小题,每题2分,共20分)1、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
2、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为(SI).在0到 4 s 的时间间隔内, (1) 力F 的冲量大小I=__________________. (2) 力F 对质点所作的功W =________________。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a )是________气分子的速率分布曲线;曲线(c )是________气分子的速率分布曲线。
5、一圆锥摆摆长为I 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角,则: (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________。
6、两个同振动方向、同频率、振幅均为A 的简谐振动合成后振幅仍为A ,则两简谐振动的相位差为_______ 。
7、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
8、质点p 在一直线上运动,其坐标x 与时间t 有如下关系:(A 为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.9、一平面余弦波沿Ox 轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
大学物理A2复习题(附答案)
大学物理A2复习题一、选择题:1. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]2. 一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [ ]4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 =A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]5.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]6.一质点沿x 轴作简谐振动,振动方程为 )312cos(1042π+π⨯=-t x (SI). 从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A)s 81 (B) s 61 (C) s 41 (D)s 31 (E) s 21 [ ]7.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1 (C) T 12/(D) T 1 /2 (E) T 1 /4 [ ]8.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为(A) g m x m T 122∆π= . (B) gm x m T 212∆π=. (C) g m x m T 2121∆π=. (D) gm m x m T )(2212+π=∆. [ ] 9.一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4.10.两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2.(C) 落后π . (D) 超前π.[ ]11.在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]12. 若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]13.一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y π-π= (SI),则(A) 其波长为0.5 m . (B) 波速为5 m/s .(C) 波速为25 m/s . (D) 频率为2 Hz . [ ]14. 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]15.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]16.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大.(B) 动能为零,势能为零.(C) 动能最大,势能最大.(D) 动能最大,势能为零.[]17.一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大.(B) 动能为零,势能为零.(C) 动能最大,势能最大.(D) 动能最大,势能为零.[]18.在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ .(B) 3λ /4.(C) λ /2.(D) λ /4.[]19.在波长为λ的驻波中,两个相邻波腹之间的距离为(A) λ /4.(B) λ /2.(C) 3λ /4.(D) λ .[]20.在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同.(B) 振幅不同,相位相同.(C) 振幅相同,相位不同.(D) 振幅不同,相位不同.[]21.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.[]22. 在真空中波长为λ的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B两点相位差为3π,则此路径AB的光程为(A) 1.5 λ.(B) 1.5 λ/ n.(C) 1.5 n λ.(D) 3 λ.[]23.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则(A) 干涉条纹的宽度将发生改变.(B) 产生红光和蓝光的两套彩色干涉条纹.(C) 干涉条纹的亮度将发生改变.(D) 不产生干涉条纹.[]24.在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变.(B) 向上平移,且间距不变.(C) 不移动,但间距改变.(D) 向上平移,且间距改变.[]25.在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.[]26. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则(A)干涉条纹的间距变宽.(B)干涉条纹的间距变窄.(C)干涉条纹的间距不变,但原极小处的强度不再为零.(D)不再发生干涉现象.[]27.两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃慢慢地向上平移,则干涉条纹(A) 向棱边方向平移,条纹间隔变小.(B) 向棱边方向平移,条纹间隔变大.(C) 向棱边方向平移,条纹间隔不变.(D) 向远离棱边的方向平移,条纹间隔不变.(E) 向远离棱边的方向平移,条纹间隔变小.[]28.两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的(A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移.[]29.把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环(A)向中心收缩,条纹间隔变小.(B)向中心收缩,环心呈明暗交替变化.(C)向外扩张,环心呈明暗交替变化.(D)向外扩张,条纹间隔变大.[]30.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑.(B) 变疏.(C) 变密.(D) 间距不变.[]31.在单缝夫琅禾费衍射实验中波长为 的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]32.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a=4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个.(B) 4 个.(C) 6 个.(D) 8 个.[]33.波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2.(B) λ.(C) 2λ.(D) 3 λ.[]34.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]35.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]36.在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[]37.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]38.一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,距离中央明纹最近的是(A) 紫光.(B) 绿光.(C) 黄光.(D) 红光.[]39. 测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉.(B) 牛顿环.(C) 单缝衍射.(D) 光栅衍射.[]40.设光栅平面、透镜均与屏幕平行.则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.[]41. 一束光强为I 0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I 为(A) 4/0I 2 . (B) I 0 / 4.(C) I 0 / 2. (D)2I 0 / 2. [ ] 42.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. [ ]43.在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强.(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹. [ ]44.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加.(B) 光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D) 光强先增加,然后减小,再增加,再减小至零. [ ]45.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2. (B) 1 / 3.(C) 1 / 4. (D) 1 / 5. [ ]二、填空题:1.在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.2.用40N的力拉一轻弹簧,可使其伸长20 cm .此弹簧下应挂__________kg 的物体,才能使弹簧振子作简谐振动的周期T = 0.2π s .3.一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为 x = ________________________(SI).4. 一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.5.两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________.6.两质点沿水平x 轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点.它们总是沿相反方向经过同一个点,其位移x 的绝对值为振幅的一半,则它们之间的相位差为______________.7.一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动周期为______________________.8.一竖直悬挂的弹簧振子,自然平衡时弹簧的伸长量为x 0,此振子自由振动的周期T = ____________________________.9. 一物体同时参与同一直线上的两个简谐振动:)314c o s (05.01π+π=t x (SI) , )324cos(03.02π-π=t x (SI) 合成振动的振幅为__________________m .10.两个同方向同频率的简谐振动,其振动表达式分别为:)215c o s (10621π+⨯=-t x (SI) , )25c o s (10222π-⨯=-t x (SI) 它们的合振动的振辐为_____________,初相为____________.11. A ,B 是简谐波波线上距离小于波长的两点.已知,B 点振动的相位比A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ________________m .12.一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .13.频率为100 Hz 的波,其波速为250 m/s .在同一条波线上,相距为0.5 m 的两点的相位差为________________.14.已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.15.一列平面简谐波沿x 轴正向无衰减地传播,波的振幅为 2×10-3 m ,周期为0.01 s ,波速为400 m/s . 当t = 0时x 轴原点处的质元正通过平衡位置向y 轴正方向运动,则该简谐波的表达式为____________________.16.已知某平面简谐波的波源的振动方程为t y π=21sin 06.0 (SI),波速为2 m/s .则在波传播前方离波源5 m 处质点的振动方程为_______________________.17.两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.18.两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21c o s (2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.19.简谐驻波中,在同一个波节两侧距该波节的距离相同的两个媒质元的振动相位差是________________.20.在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.21.用波长为λ的单色光垂直照射置于空气中的厚度为e 折射率为1.5的透明薄膜,两束反射光的光程差δ =________________________.22.在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e .波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=_______________________.23.在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距___________.24.在双缝干涉实验中,若使单色光波长减小,则干涉条纹间距_________________.25.用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=_______________.26.波长为λ的平行单色光垂直照射到折射率为n 的劈形膜上,相邻的两明纹所对应的薄膜厚度之差是____________________.27.在双缝干涉实验中,若两缝的间距为所用光波波长的N 倍,观察屏到双缝的距离为D ,则屏上相邻明纹的间距为_______________ .28.在双缝干涉实验中,双缝间距为d ,双缝到屏的距离为D (D >>d ),测得中央零级明纹与第五级明之间的距离为x ,则入射光的波长为_________________.29.用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是__________.30.用半波带法讨论单缝衍射条纹中心的条件时,与中央明条纹旁第二个明条纹中心相对应的半波带的数目是__________.31.惠更斯-菲涅耳原理的基本内容是:波阵面上各面积元所发出的子波在观察点P 的_________________,决定了P 点的合振动及光强.32.惠更斯引入__________________的概念提出了惠更斯原理,菲涅耳再用______________的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.33.波长为λ的单色光垂直投射于缝宽为a ,总缝数为N ,光栅常数为d=a+b 的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为__________________.34.若光栅的光栅常数d=a+b 、缝宽a 和入射光波长λ都保持不变,而使其缝数N 增加,则光栅光谱的同级光谱线将变得____________________________.35.一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第_____________级和第____________级谱线.36. 一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a 与不透明部分宽度b 相等,则可能看到的衍射光谱的级次为___________________.37.当一衍射光栅的不透光部分的宽度b 与透光缝宽度a 满足b = 3a 关系时,衍射光谱中第_______________级谱线缺级.38.若在某单色光的光栅光谱中第三级谱线是缺级,则光栅常数与缝宽之比a b a /)(+ 的各种可能的数值为__________________.39. 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由α1转到α2,则转动前后透射光强度之比为________________.40.要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过__________块理想偏振片.在此情况下,透射光强最大是原来光强的___________倍 .41.布儒斯特定律的数学表达式为______________,式中________________为布儒斯特角,______________为折射媒质对入射媒质的相对折射率.42. 当一束自然光以布儒斯特角入射到两种媒质的分界面上时,就偏振状态来说反射光为____________________光,其振动方向__________于入射面.43.假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.44.光的干涉和衍射现象反映了光的________性质.光的偏振现像说明光波是_______波.45.一束光线入射到单轴晶体后,成为两束光线,沿着不同方向折射.这样的现象称为双折射现象.其中一束折射光称为寻常光,它________________________定律;另一束光线称为非常光,它____________________定律.三、简答题:1.什么是机械振动?2.什么是简谐振动?3.机械波产生的必备条件是什么?4.纵波与横波的区别是什么?5.机械波干涉的条件是什么?6.什么叫半波损失?7.哪些仪器是依据几何光学原理制成的?8.获得相干光的方法有哪些?9.薄膜干涉可分几类? 10.牛顿环和劈尖属于哪一种干涉? 11.何谓半波带法? 12.简述惠更斯-菲涅耳原理。
大学物理A活页作业答案
练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.练习2 质点动力学(一)参考答案1.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。
解:(1)mM m )(m 00+=+===μμ联立方程得:g m M N NT T g (2)(1)(2)BA NBA f A PCA NA PBgMm m m M T gMm m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到利用)()(0''0'0)1(μ6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d v v =- ∴ ⎰⎰=-=-vv v vvvd d ,d d 0tt m K t m K ∴ mKt /0e -=v v(2) 求最大深度 解法一: txd d =vt x mKt d ed /0-=vt x m Kt tx d e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二:xm t x x m t mK d d )d d )(d d (d d vvv v v ===- ∴ v d Kmdx -=v v d d 0max⎰⎰-=K mx x ∴ K m x /0max v =练习3 刚体力学(一)参考答案1. B2. C挂重物时, mg -T = ma =mR β, TR =J β,P =mg由此解出 JmR mgR+=2β而用拉力时, mg R = J β' JmgR=/β 故有 β'>β3. ma 2 ,21 ma 2 , 21ma 2 . 4. 4.0rad/s5. 质量为m 1, m 2 ( m 1 > m 2)的两物体,通过一定滑轮用绳相连,已知绳与滑轮间无相对滑动,且定滑轮是半径为R 、质量为 m 3的均质圆盘,忽略轴的摩擦。
大学物理A2期末总复习题及答案
大学物理A2期末总复习题及答案一、大学物理期末选择题复习 1.运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确答案D2.对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是( )(A) 只有(1)是正确的 (B) (1) (2)是正确的(C) (1) (3)是正确的 (D) (2) (3)是正确的答案C3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A ) 角速度从小到大,角加速度不变(B ) 角速度从小到大,角加速度从小到大(C ) 角速度从小到大,角加速度从大到小(D ) 角速度不变,角加速度为零答案C4.下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零答案B5.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C6. 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A )它的加速度的方向永远指向圆心,其速率保持不变(B )它受到的轨道的作用力的大小不断增加(C )它受到的合外力大小变化,方向永远指向圆心(D )它受到的合外力大小不变,其速率不断增加答案 B7. 图示系统置于以14a g =的加速度上升的升降机内,A 、B 两物体质量相同均为m ,mA 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为( )(A )58mg (B )12mg (C )mg (D )2mg答案 A8. 有两个倾角不同、高度相通、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( )(A )物块到达斜面低端时的动量相等(B )物块到达斜面低端时动能相等(C )物块和斜面(以及地球)组成的系统,机械能不守恒(D )物块和斜面组成的系统水平方向上动量守恒答案 D9. 有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力距一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力距可能是零;(3)当这两个力的合力为零时,它们对轴的合力距也一定是零;(4)当这两个力对轴的合力距为零时,它们的合力也一定为零。
大学物理A 练习题 第8章《光的偏振》答案
第8章 光的偏振一、选择题1(B),2(B),3(B),4(A),5(B),二、填空题(1). 2, 1/4(2). 1/ 2(3). I 0 / 2, 0(4). 1.48 tan560(5). 遵守通常的折射,不遵守通常的折射. 传播速度,单轴三、计算题1. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏 振片后的光强 I 1=I 0 / 2.透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5°2. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2I 2=I 1cos 260°=I 0 / 83. 如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).解:(1) 经P 1后,光强I 1=21I 0 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 0 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16得 cos α=1 / 2 即 α =60°4.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33;tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°.四研讨题1. 为了得到线偏振光,就在激光管两端安装一个玻璃制的“布儒斯特窗”(见图),使其法线与管轴的夹角为布儒斯特角。
复旦大学大学物理A电磁学期末试卷及答案
复旦大学 大学物理A 电磁学一、选择题:〔每题3分,共30分〕1. 关于高斯定理的理解有下面几种说法,其中正确的选项是:〔A〕如果高斯面上E处处为零,则该面内必无电荷。
〔B〕如果高斯面内无电荷,则高斯面上E处处为零。
〔C〕如果高斯面上E处处不为零,则该面内必有电荷。
〔D〕如果高斯面内有净电荷,则通过高斯面的电通量必不为零〔E 〕高斯定理仅适用于具有高度对称性的电场。
[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:〔A〕1P 和2P 两点的位置。
〔B〕1P 和2P 两点处的电场强度的大小和方向。
〔C〕试验电荷所带电荷的正负。
〔D〕试验电荷的电荷量。
[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:〔A〕C B A E E E >>,C B A U U U >> 〔B〕C B A E E E <<,C B A U U U << 〔C〕C B A E E E >>,C B A U U U <<〔D〕C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:〔A〕场强不等,电位移相等。
〔B〕场强相等,电位移相等。
〔C〕场强相等,电位移不等。
〔D〕场强、电位移均不等。
[ ] 5. 图中,Ua-Ub 为:〔A〕IR -ε 〔B〕ε+IR〔C〕IR +-ε 〔D〕ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:〔A〕BI a 221 〔B〕BI a 2341 〔C〕BI a2 〔D〕0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当到达稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:〔A〕4; 〔B〕2; 〔C〕1; 〔D〕1/2 [ ] 8. 在如下图的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R 为Ω90,电源电动势为V 40,电源内阻可忽略。
大学物理A(一)课件第七章 稳恒磁场习题及答案
第七章 练习题1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B、3B 表示,则O点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B. (C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B.3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]5、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll B d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.IBxOR (D )Bx O R(C )BxO R (E )电流筒6、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动.(D) 离开大平板向外运动.7、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.8、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l Id 所受的安培力F d 的大小为____,方向________.9、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B的方向在水平面内,导线中电流方向如图所示,当导 线所受磁力与重力平衡时,导线中电流I =___________________.10、图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表____________________的B ~H 关系曲线.b 代表____________________的B ~H 关系曲线.c 代表____________________的B ~H 关系曲线.11、AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)12、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.I 1I 2IlI dIB13、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.14、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案:一 选择题1、D2、A3、D4、B5、D6、B7、2ln 20πIaμ 8、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)9、)/(lB mg10、铁磁质、 顺磁质、 抗磁质 11、解:AA '线圈在O 点所产生的磁感强度002502μμ==AAA A r I NB (方向垂直AA '平面)CC '线圈在O 点所产生的磁感强度 005002μμ==CCC C r I N B (方向垂直CC '平面)O 点的合磁感强度 42/1221002.7)(-⨯=+=C AB B B T B 的方向在和AA '、CC '都垂直的平面内,和CC '平面的夹角︒==-4.63tg1AC B B θC A12、解:利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 xiB π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμbb a x+π=ln20δμ 方向垂直纸面向里.13、解: ===l NI nI H /200 A/m===H H B r μμμ0 1.06 T14、解:由安培环路定理:∑⎰⋅=iI l Hd0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2rI H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r rI H ---π=)1(2222322200RR R r rIH B ---π==μμr >R 3区域: H = 0,B = 0。
《大学物理A》力学部分习题解答
第一章1.2、质点在平面上运动,已知其位置矢量的表达式为22at bt =+r i j (式中a ,b 为常数),则质点做 (A )、匀速直线运动; (B )、变速直线运动; (C )、抛物线运动; (D )、一般曲线运动。
[ ]解:d d 22,22d d at bt a b t t ==+==+r v v i j a i j ,bab a x y ===22tan α为常数,故质点做变速(加速度大小恒定,方向不变)直线运动,选(B )。
1.4、某物体的运动规律为t kv dtdv2=,式中k 为大于零的常数。
当t=0时,其初速度为0v ,则速度v 和时间t 的函数的关系是(A )、0221v kt v +=; (B )、0221v kt v +-=;(C )、021211v kt v +=; (D )、21211v kt v +-=。
解题思路:通过分离变量,可求得速度v 和时间t 的函数的关系⎰⎰+===∴=vv tv kt v tdt k v dv ktdt v dv t kv dt dv 00202221211,,,Θ,故选(D )。
1.5、一个质点沿X 轴作直线运动,其运动学方程为3212863t t t X -++=,则 (1)质点在0t =时刻的速度0v = ,加速度0a = ; (2)加速度为0时,该质点的速度v = 。
解:(1)261636v t t =+-,当t=0时,V 0=6m/s ;1672a t =-,加速度a 0= 2/16s m (2)当0a =时,1672a t =-,s t 22.07216==v =s m /8.7)7216(3672161662=⨯-⨯+ 1.7、一运动质点的速率v 与路程s 的关系为21v s =+。
(SI ),则其切向加速度以S 来表达的表达式为:s 来表达的表达式为:t a = 。
解: ()23222122t dv dsa s sv s s s s dt dt====+=+。
《大学物理A》(2)期末复习题+答案
大学物理2期末复习题2. 在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量s E dS ∫⋅G G 的值仅取决于高斯面内电荷的代数和,而与面外电荷无关。
G 5. 半径为R 的半球面置于场强为E 的均匀电场中,其对称轴与场强方向一致,如图所示。
则通过该半球面的电场强度通量为2R E π4. 一电量为Q 的点电荷固定在空间某点上,将另一电量为q 的点电荷放在与Q 相距r 处。
若设两点电荷相距无限远时电势能为零,则此时的电势能r14qQ W 0e πε=。
5.两同心导体球壳,内球壳带电量+q ,外球壳带电量-2q ,静电平衡时,外球壳的电荷分布为:内表面q −; 外表面q −。
7. 一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变? 【 B 】(A) 电容器的电容量;(B) 两极板间的场强;(C) 两极板间的电势差; (D) 电容器储存的能量。
1、已知一真空平行板电容器,极板面积为S,两极板间的距离为d ,极板上的电荷面密度分别为0σ±;求:(1)极板间的电场强度;(2)极板间的电势差;(3)电容;(4)电容器的储能。
2、一圆柱形真空电容器由半径分别为和的两同轴圆柱导体面所构成,单位长度上的电荷分别为1R 2R λ±,且圆柱的长度l 比半径大得多。
2R 求:(1)电容器内外的场强分布;(2)电容器内外的电势分布;(3)电容器的电容;(4)极板间的电场能量。
解:(1)电场分布:02020211=>=<<=<E R r r E R r R E R r πελ(2)电势分布:211012122023ln 2ln 20R r R U R R R r R U r r R U λπελπε<=<<=>= (3)极板间的电势差:201ln 2R U R λπε=电容:0212ln l C R R πε=(4)电场能量:2201ln 4e R l W R λπε= 3、真空中的球形电容器的内、外半径分别为和,所带电荷量分别为1R 2R Q ±。
大学物理课后习题答案.A1-11
University Physics AINo. 11 Kinetic TheoryClass Number Name I .Choose the Correct Answer1. Which type of ideal gas will have the largest value for C P -C V ? ( D )(A) Monatomic (B) Diatomic (C) Polyatomic (D) The value will be the same for all. Solution:The difference between the molar specific heat at constant pressure and that at constant volume is equal to the universal gas constant: C P -C V = R .2. What would be the most likely value for C T , the molar heat capacity at constant temperature? ( D )(A) 0 (B) 0< C T < C V (C) C V <C T <C P (D)C T =∞ Solution: Using the definition of the molar specific heat: TQ n C molar d d 1= , so when T = constant, the molar heat capacity is C T =∞.3. Which of the following speeds divides the molecules in a gas in thermal equilibrium so that half have speeds faster, and half have speeds slower? ( B )(A) v p (B) v av (C) v rms (D)Non of the above. Solution:According to the physical meaning of rms av and ,,v v v p , non of them divides the molecules in a gas so that half have speeds faster, and half have speeds slower.4. Which of the following speeds corresponds to a molecule with the average kinetic energy?( C )(A) v p (B) v av (C) v rms (D)Non of the above Solution: The average kinetic energy is 221v m KE ave =, and for 2v v rms =, we have 221rms ave mv KE =, Then the answer is (C).II. Filling the Blanks1. The number of particles in a cubic millimeter of a gas at temperature 273 K and 1.00 atm pressure is2.69×1016 . To get a feeling for the order of magnitude of this number, the age of the universe in seconds assuming it is 15 billion years old is 4.37×1017 s .Solution:The number of particles is A nN N =nRT PV =Q1623951069.2273315.81002.610110013.11×=×××××××===∴−A A N RT PV nN N The age of the universe in seconds is )s (1037.46060243651015179×=×××××2. A sample of oxygen gas (O 2) is at temperature 300 K and 1.00 atm pressure. One molecule, with a speed equal to the rms speed, makes a head-on elastic collision with your nose. Ouch! The magnitude of the impulse imparted to your schnozzle is 5.14×10-23 Kg m/s .Solution:The speed of an oxygen molecule is )m/s (59.483)1032300315.83()3(2/132/1=×××===−M RT v v rms Using the Impulse-Momentum Theorem, the magnitude of the impulse imparted to the schnozzle is )m/s Kg (1014.51002.659.483103222223233⋅×=××××===∆=−−−v N M mv P I A3. When helium atoms have an rms speed equal to the escape speed from the surface of the Earth (v escape = 11.2 km/s), the temperature is 2.01×104 K .Solution: According to the problem 2/1)3(MRT v rms = So the temperature is )K (1001.2315.83104)102.11(343232×=××××==−R M v T rms4 The rms speed of hydrogen gas (H 2) at temperature 300 K in the atmosphere is 1.93×103 km/s . Compare it with the escape speed from the Earth (11.2 km/s). Since hydrogen is the least massive gas, hydrogen molecules will have the highest rms speeds at a given temperature. How can this calculation explain why there is essentially no hydrogen gas in the atmosphere of the Earth?Solution:The rms speed of hydrogen gas is)m/s (1093.1)102300315.83()3(32/132/1×=×××==−M RT v rms The rms speed of hydrogen gas is less than the escape speed from the Earth (11.2 km/s). Since hydrogen is the least massive gas, hydrogen molecules have the highest rms speeds at a given temperature. Hydrogen have highest escape rate in the atmosphere of the Earth, so there is very few hydrogen gas in the atmosphere of the Earth.5. The average kinetic energy of a particle in a gas at temperature T is given by Equation 14.13: kT KE ave 23=, or kT v m 23212=. The special theory of relativity states that there is an upper limit on the speed of an particle: the speed of light c = 3.00 × 108 m/s. For a gas of hydrogen atoms, the immediately preceding equation implies an upper limit on the temperature. The absolute temperature such that 〈v 2〉 for a gas of hydrogen atoms is equal to the square of the speed of light is4.35×1036 K . In fact, there is no upper limit on the temperature; so the classical expression for the kinetic energy cannot be valid for speeds approaching the speed of light.Solution:According to the problem 〈v 2〉 = c 2, so)K (1035.41038.13)103(10233362328322×=×××××===−−k mc k v m TIII. Give the Solutions of the Following Problems1. Consider helium gas at temperature 300 K near the surface of the Earth.(a) Calculate the average kinetic energy of one of the helium atoms.(b) Calculate the gravitational potential energy of a single helium atom near the surface of the Earth. Choose the zero of gravitational potential energy to be infinitely far away from the Earth.(c) What is the absolute value of the ratio of the gravitational potential energy of the helium atom to its average kinetic energy? Is it justifiable to neglect the gravitational potential energy in theory? Why or why not?Solution:(a) The average kinetic energy of one of the helium atoms is)J (1021.63001038.123232123−−×=×××==kT KE ave (b) The gravitational potential energy of a single helium atom near the surface of the Earth is )J (1016.410374.681.91002.6104196233−−×−=×××××−=−=Earthgrav mgR PE(c) The absolute value of the ratio is671021.61016.42119=××=−−ave grav KE PE It is justifiable to neglect the gravitational potential energy in theory. As the average kinetic energy is a statistical value for the whole system regardless the gravitational potential energy.2. A well-insulated 4.00 liter box contains a partition dividing the box into two equal volumes as shown in Figure 1. Initially, 2.00 g of molecular hydrogen gas (H 2) at 300 K is confined to the left-hand side of the partition, and the other half is a vacuum.(a) What is the rms speed of the particles in the gas? (b) What is the initial pressure of the gas?(c) The partition is removed or broken suddenly, so that the gas now iscontained throughout the entire box. Assume that the gas is ideal. Does the temperature of the gas change? What is the change in theinternal energy of the system? (d) When the gas reaches equilibrium, what is the final pressure?Solution:(a) The rms speed of the particles in the gas is)m/s (1093.1)102300315.83()3(32/132/1×=×××==−M RT v rms (b) Using the equation of state for an ideal gas:RT M m nRT PV == So the initial pressure of the gas is)Pa (1025.1102102300315.81026333×=××××××==−−−V RT M m P (c) The temperature is not changed. The internal energy of the system is not changed too.(d) Because it is so fast that the gas reaches equilibrium. So it is an adiabatic process. For T =300K and 2211V P V P =, So the final pressure is)Pa (1025.61041021025.153362112×=××××==−−V V P P3. A gas initially at temperature T i , pressure P i and volume V i has its pressure reduced to a final value P f via one of the following types of processes: (1) isochoric; (2) isothermal; (3) adiabatic. (a) Sketch each process schematically on a P -V diagram.(b) In which process is the work done by the gas zero? (c) In which process is the work done by the gas greatest? Gas Va(d) Show that the ratio of the absolute magnitude of the heat transfer to the gas during the isothermal process to that during the isochoric process isfi V i isochoric isothermalP P P c RP Q Q ln ∆= (e) In which process is the absolute magnitude of the change in the internal energy of the gas the greatest? Explain your reasoning.Solution:(a)(b) See the area under the curve of the graph, the work done by the gas is zero in isochoric process. (c) See the area under the curve of the graph, the work done by the gas is greatest in isothermal process.(d) For isothermal process: f f i i V P V P = So the heat transfer is fi i i fi isothermal P P nRT V V nRT Q ln ln == For isochoric process: fi f i T T P P = So the heat transfer is )(i f V isochoric T T nC Q −=fi f i T T P P =Q if i i f i T T T P P P −=−∴ i i if V isochoric T P P P nC Q ⋅−⋅=∴ Thus the ratio of the absolute magnitude of the heat transfer to the gas during the isothermal process to that during the isochoric process isPP ff i V i i f V fi i iii f V f i i isochoric isothermal P P P C RP P P C P P RP P T P P nC P P nRT Q Q ln )(ln )(ln ∆⋅=−⋅=−⋅= (e) For isothermal process: 01=∆U . Using the first law of thermodynamics, for an adiabatic process: 0=Q)(2i f V T T nC W U −==∆ For isochoric process: 0=W)(3i f V T T nC Q U −′==∆f f T T ′>Q32U U ∆>∆∴So the absolute magnitude of the change in the internal energy of the gas is the greatest in adiabatic process.4. An ideal gas experiences an adiabatic compression from P =122kpa, V =10.7m 3, T =-23.0°C to P =1450kpa, V =1.36m 3. (a) Calculate the value of γ. (b) Find the final temperature. (c) How many moles of gas are present? (d) What is the total translational kinetic energy per mole before and after the compression? (e) Calculate the ratio of the rms speed before to that after the compression. Solution:(a) For adiabatic process: γγf f i i V P V P =, Hence 2.136.17.10ln 1221450ln1221450)36.17.10()(==⇒=⇒=γγγi f f i P P V V , (b) Using the equation of state for an ideal gas:nRT PV =, we havef f f i i i T V P T V P = So the final temperature is )K (66.3777.1010122)23273(36.110145033=××−×××==ii i f f f V P T V P T(c) Using the equation of state for an ideal gas:nRT PV =, we have)mole (97.627)23273(315.87.10101223=−×××==RT PV n (d)The total translational kinetic energy per mole before and after the compression is)J (1096.266.37731.82397.62723)J (1096.125031.82397.627236after 6before ×=×××==×=×××==f i RT n KE RT n KE (e) The rms speed is 2/13(MRT v rms = Hence the ratio of the rms speed before to that after the compression is 81.0)66.37723273()(2/12/1=−==f i f rms i rms T T v v。
大学物理a考试题及答案详解
大学物理a考试题及答案详解一、选择题(每题4分,共20分)1. 以下哪个选项不是牛顿运动定律的内容?A. 物体的加速度与作用力成正比,与物体质量成反比B. 物体的加速度与作用力成正比,与物体质量成正比C. 作用力和反作用力大小相等,方向相反D. 力是改变物体运动状态的原因答案:B2. 光在真空中的传播速度是多少?A. 299,792 km/sB. 299,792 m/sC. 299,792 cm/sD. 299,792 mm/s答案:A3. 根据热力学第一定律,下列哪个选项是正确的?A. 系统内能的变化等于系统吸收的热量与对外做的功之和B. 系统内能的变化等于系统吸收的热量与对外做的功之差C. 系统内能的变化等于系统对外做的功与吸收的热量之和D. 系统内能的变化等于系统对外做的功与吸收的热量之差答案:B4. 以下哪个选项不是电磁波的特性?A. 电磁波可以在真空中传播B. 电磁波具有波粒二象性C. 电磁波的速度在所有介质中都是相同的D. 电磁波具有能量答案:C5. 根据麦克斯韦方程组,以下哪个选项是正确的?A. 变化的磁场可以产生稳定的电场B. 变化的电场可以产生稳定的磁场C. 变化的磁场可以产生变化的电场D. 变化的电场可以产生变化的磁场答案:C二、填空题(每题3分,共15分)1. 根据牛顿第二定律,物体的加速度 \( a \) 与作用力 \( F \) 和物体质量 \( m \) 的关系是 \( a = \frac{F}{m} \)。
2. 光年是天文学上用来表示距离的单位,1光年等于光在真空中一年内传播的距离,约为 \( 9.46 \times 10^{15} \) 米。
3. 热力学第二定律表明,不可能从单一热源吸热使之完全变为功而不产生其他影响。
4. 电磁波的波长 \( \lambda \)、频率 \( f \) 和光速 \( c \) 之间的关系是 \( c = \lambda f \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 学号 姓名第1章 质点运动学1-1 已知质点的运动方程为36t te e -=++r i j k 。
(1)求:自t =0至t =1质点的位移。
(2)求质点的轨迹方程。
解:(1) ()k j i 0r ρρρρ63++= ()k j e i e 1r -1ρρρρ63++= 质点的位移为()j e i e r ρρρ⎪⎭⎫ ⎝⎛-+-=331∆(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 3=xy 且6=z1-2运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为 [ D ] (A)dt dr (B)dt d r(C)dt d r (D)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx1-3如图所示,堤岸距离湖面的竖直高度为h ,有人用绳绕过岸边的定滑轮拉湖中的小船向岸边运动。
设人以匀速率v 0收绳,绳不可伸长且湖水静止。
求:小船在离岸边的距离为s 时,小船的速率为多大?(忽略滑轮及船的大小)解:如图所示,在直角坐标系xOy 中,t 时刻船离岸边的距离为s x =,船的位置矢量可表示为()j i r ϖϖϖh x -+=船的速度为 i i r v ϖϖϖϖv dt dx dt d ===其中 22h r x -=所以 ()dt drhr r h r dt d dt dx v 2222-=-==因绳子的长度随时间变短,所以 0v dtdr-= 则 船的速度为i i v 022220ϖϖϖv s h s hr rv +-=--= 所以 船的速率为 022v sh s v +=1-4已知质点的运动方程为()()k j i r 5sin cos ++=ωt R ωt R (SI)。
求:(1)质点在任意时刻的速度和加速度。
(2)质点的轨迹方程。
解:(1)由速度的定义得()()j cos i sin ϖϖϖρωt ωR ωt ωR dtr d v +-==由加速度的定义得()()j sin cos 22ϖϖϖϖωt R ωi t R ωdtv d a --==ω(2) 由运动方程有 ωt R x cos =,ωt R y sin =,5=z 消t 得 质点的轨迹方程为 222R y x =+且5=z1-5 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为 [ B ](A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动1-6 一质点沿Ox ?轴运动,坐标与时间之间的关系为t t x 233-=(SI)。
则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。
解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=∆,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a 1-7 已知质点沿Ox?轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -⋅。
在t =0时,0=x v ,10=x m 。
求:(1)质点在时刻t 的速度。
(2)质点的运动方程。
解:(1) 由dtdv a xx =得 dt a dv x x =两边同时积分,并将初始条件t =0时,0=x v 带入积分方程,有⎰⎰⎰==t tx v x tdt dt a dv x3解得质点在时刻t 的速度为 223t v x =(2) 由dtdx v x =得 dt v dx x =两边同时积分,并将初始条件t =0时,10=x m 带入积分方程,有⎰⎰⎰==ttx xdt t dt v dx 021023 解得质点的运动方程为 32110t x +=1-8 一物体从空中由静止下落,已知物体下落的加速度与速率之间的关系为Bv A a -=(A ,B 为常数)。
求:物体的速度和运动方程。
解:(1)设物体静止时的位置为坐标原点,向下为y 轴正方向,则t =0时, v =0, y =0。
由dtv d a ϖϖ=得()dt Bv A adt dv -==整理得dt dv BvA =-1对方程两边同时积分,并将初始条件带入积分方程,有⎰⎰=-t vdt dv BvA 001解得物体的速率为 ()Bt BAv --=e 1 ,方向竖直向下 (2)由dtdy v =得 ()dt BAdy Bt --=e 1 对方程两边同时积分,并将初始条件带入积分方程,有()⎰⎰--=tBt ydt BAdy 0e 1 解得物体的运动方程为 ()1e 2-+=-Bt BAt B A y1-9一质点作半径r =5m 的圆周运动,其在自然坐标系中的运动方程为2212t t s +=(SI),求:t 为何值时,质点的切向加速度和法向加速度大小相等。
解:由运动方程得t dtdsv +==2 质点的切向加速度为 1==dtdv a t 质点的法向加速度为 ()5222t r v a n +== 当两者相等时,有()1522=+t解得时间t 的值为 )25(-=t s1-10 质点做半径为1m 的圆周运动,其角位置满足关系式325t θ+=(SI)。
t =1s 时,质点的切向加速度 12m·s -2 ,法向加速度 36m·s -2 ,总加速度 ·s -2 。
解:由运动方程325t θ+=得 角速度为12s 6-==t dt d θω , 角加速度为2s 12-==t dtd ωα t 时刻,质点的切向加速度的大小为t t R a t 12112=⨯==α2s m -⋅ 质点的法向加速度的大小为()42223616t t R ωa n =⨯==2s m -⋅ 质点的总加速度的大小为 ()()242223612t t a a a n t +=+=2s m -⋅将t =1s 代入上面方程,即可得到上面的答案。
班级 学号 姓名第2章 质点动力学2-1 质量为m 的质点沿Ox 轴方向运动,其运动方程为ωt A x sin =。
式中A 、ω均为正的常数,t 为时间变量,则该质点所受的合外力F 为 [ C ](A) x ωF 2= (B) m ωF -=x (C) x m ωF 2-= (D) x m ωF 2=解:因为 x t A dtx d a 2222sin ωωω-=-== 所以 x m ωma F 2-==2-2 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。
则物体加速度的大小为a = ,物体与水平面间的摩擦系数为μ= 。
解:设运动方向为正方向,由as v v 2202t =-得sv a 22-= (1)所以 加速度的大小为 sv a 22=因摩擦力是物体运动的合外力,所以ma mg N =-=-μμ将(1)式带入上式,得gsv 22=μ2-3如图所示,两个物体A 、B 的质量均为m =3kg ,物体A 向下运动的加速度1=a 2s m -⋅。
求物体B 与桌面间的摩擦力。
(绳的质量不计,且不可伸长)解:选地面为惯性参照系,采用隔离法对两物体进行受力分析,如图所示。
因绳质量不计,所以绳中各点张力处处相等。
根据牛顿第二定律,有B ma f T =- (1) A A ma T P =-2 (2)其中,mg P P B A ==。
两个物体A 、B 间坐标的关系为B A x y =2对上式求时间t 的二次导数,得B A a a =2 (3)将3个方程联立,可得7.2N =f2-4 一根长为l =的轻绳,一端固定在天花板上,另一端系一质量为m 的重物,如图所示。
重物经推动后,在一水平面内作匀速圆周运动,转速n =11s r -⋅。
这种装置叫作圆锥摆。
求这时绳和竖直方向所成的角度。
解:选地面为惯性参照系,对重物进行受力分析,重物受到绳子的拉力T 和重力()g P m =,如图所示。
重物作匀速圆周运动,加速度为向心加速度。
建立如图所示坐标系,根据牛顿第二定律,有 竖直方向: mg T =θcos (1) 水平方向: 2sin ωθmr T = (2) 由图可知,圆的半径θsin l r =,重物在圆周上运动的角速度大小为n πω2= (3)将上面三个方程联立,可得49704cos 22.ln g==πθ 查表得3160'︒=θ由此题可知,物体的转速n 越大,θ 越大,与重物的质量无关。
2-5 A 、B 两质点的质量关系为B A m m >,同时受到相等的冲量作用,则[ D ](A) A 比B 的动量增量少 (B) A 与B 的动能增量相等 (C) A 比B 的动量增量大 (D) A 与B 的动量增量相等提示:动量定理:合外力的冲量等于动量的增量。
2-6如图所示,一质量为、速率为101s m -⋅的小球,以与竖直墙面法线成︒45角的方向撞击在墙上,并以相同的速率和角度弹回。
已知球与墙面的碰撞时间为。
求在此碰撞时间内墙面受到的平均冲力。
解:按照图中所选坐标,1v 和2v 均在x 、y 平面内,由动量定理,小球在碰撞过程中所受的冲量为x x x mv mv t F 12-=∆y y y mv mv t F 12-=∆其中,θv v x cos 1-=,θv v x cos 2=,θv v y sin 1=,θv v y sin 2=。
即 θmv t F x cos 2=∆,0=y F 所以,小球受到的平均冲力为t mv F F x ∆θcos 2== 设F '为小球对墙面的平均冲力,根据牛顿第三定律,可知tmv F F ∆θcos 2-=-='= ? 即 墙面受到的平均冲力大小为,方向沿x 轴负向。
2-7 质量为2kg 的物体,在变力F (x )的作用下,从0=x 处由静止开始沿x 方向运动,已知变力F (x )与x 之间的关系为()⎪⎩⎪⎨⎧-=x xx F 230102 ()()()151010550≤≤≤≤≤≤x x x式中,x 的单位为m ,F (x )的单位为N 。
求:(1) 物体由0=x 处分别运动到5=x ,10,15m 的过程中,力F (x )所做的功各是多少?(2) 物体在5=x ,10,15m 处的速率各是多少?解:(1) 根据功的定义⎰•=21r F r r d W ϖϖ,得 x =5时,有 25255==⎰xdx W Jx =10时,有 7550251021055010=+=+=⎰⎰dx xdx W Jx =15时,有()1002575230151010515=+=-++=⎰dx x W W W J(2)根据动能定理k 21r E F W r r d ∆==⎰•ϖϖ,得021255-=mv W 所以,物体在x =5m 处的速率 -15s m 5⋅=v02121010-=mv W 所以,物体在x =10m 处的速率 -110s m 66.8⋅=v02121515-=mv W 所以,物体在x =15m 处的速率 -115s m 10⋅=vm2-8 如图所示,劲度系数1000=k 1m N -⋅的轻质弹簧一端固定在天花板上,另一端悬挂一质量为m = 2 kg 的物体,并用手托着物体使弹簧无伸长。