遗传算法1

合集下载

GA1-遗传算法介绍

GA1-遗传算法介绍
2016/3/27 3
自然选择学说
计算机系
自然选择学说认为,生物要生存下去,就必须进行生存斗 争。生存斗争包括种内斗争、种间斗争以及生物与无机环境之 间的斗争三个方面。在生存斗争中,具有有利变异(mutation)的 个体容易存活下来,并且有更多的机会将有利变异传给后代, 具有不利变异的个体容易被淘汰,产生后代的机会也少得多。 因此,凡是在生存斗争中获胜的个体都是对环境适应性比较强 的。达尔文把这种在生存斗争中适者生存、不适者淘汰的过程 叫做自然选择。达尔文的自然选择学说表明,遗传和变异是决 定生物进化的内在因素。
计算机系
• 如何借鉴?
– 对于一个优化问题,一定数量的候选解(生命个 体)被表示为抽象的数字串(染色体),通过进 化向更好的解发展。 – 一开始,生命个体完全随机产生,之后一代一代 的进化,在进化过程中的每一代,每一个个体的 适应程度被评价,通过自然选择和变异产生新的 生命群体,该群体就是下一代的个体。
遗传算法 —一种基于仿生学的计算方法
计算机系
什么是遗传算法 (Genetic Algorithm)
• 生物进化
– 生命自从在地球上诞生以来,就开始了漫长的生 物演化历程,低级、简单的生物类型逐渐发展为 高级、复杂的生物类型。这一过程已经由古生物 学、胚胎学和比较解剖学等方面的研究工作所证 实。生物进化的原因自古至今有着各种不同的解 释,其中被人们广泛接受的是达尔文的自然选择 学说。
2016/3/27
4
计算机系
• • • •
环境 生物性状(表现型) 染色体-基因 适应能力-强壮、弱小
2016/3/27
5
遗传算法的起源
计算机系
20世纪60年代中期,美国Michigan(密西 根)大学的John Holland提出了位串编码技 术,这种编码既适合于变异又适合杂交操 作,并且他强调将杂交作为主要的遗传操 作。随后,Holland将该算法用于自然和人 工系统的自适应行为的研究之中,并于 1975年出版其开创性的著作《Adaptation in Natural and Artificial Systems》。后来, Holland与他的学生们将该算法加以推广并 应用到优化及机器学习等问题之中,而且 正式定名为遗传算法。遗传算法的通用编 码技术及简单有效的遗传操作为其广泛的 应用和成功奠定了基础。

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法

遗传算法

1 遗传算法1.1 遗传算法的定义遗传算法(GeneticAlgorithm,GA)是近多年来发展起来的一种全新的全局优化算法,它是基于了生物遗传学的观点,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

它通过自然选择、遗传、复制、变异等作用机制,实现各个个体的适应性的提高,从而达到全局优化。

遗传算法151解决一个实际问题通常都是从一个种群开始,而这个种群通常都是含有问题的一个集合。

这个种群是由一定数目的个体所构成的,利用生物遗传的知识我们可以知道这些个体正好组成了我们知道的染色体,也就是说染色体是由一个个有特征的个体组成的。

另外我们还知道,遗传算法是由染色体组成,而染色体是由基因组成,可以这么说,基因就决定了个体的特性,所以对于遗传算法的最开始的工作就需要进行编码工作。

然后形成初始的种群,最后进行选择、交叉和变异的操作。

1.2遗传算法的重要应用在现实应用中,遗传算法在很多领域得到很好的应用,特别是在解决多维并且相当困难的优化问题中时表现出了很大的优势。

在遗传算法的优化问题的应用中,其中最为经典的应用就是我们所熟悉的函数优化问题,它也是对遗传算法的性能进行评价的最普遍的一种算法;另外的一个最重要的应用,也就是我们本文所研究的应用—组合优化问题,一般的算法很难解决组合优化问题的搜索空间不断扩大的局面,而组合优化问题正好是解决这种问题的最有效的方法之一,在本文的研究中,比如求解TSP问题、VRP问题等方面都得到了很好的应用;另外遗传算法在航空控制系统中的应用、在图像处理和模式识别的应用、在生产调度方面的应用以及在工人智能、人工生命和机器学习方面都得到了很好的应用。

其实在当今的社会中,有关于优化方面的问题应用于各行各业中,因此有关于优化问题已经变得非常重要,它对于整个社会的发展来说都是一个不可改变的发展方向,也是社会发展的一个非常重要的需要。

1.3 遗传算法的特点遗传算法不同于传统的搜索与优化方法,它是随着问题种类的不同以及问题规模的扩大,能以有限的代价来很好的解决搜索和优化的方法。

遗传算法

遗传算法

遗传算法遗传算法是一种借鉴生物遗传和进化机制寻求最优解的计算方法。

该方法模拟生物进化中的复制、交换、变异等过程,并通过模拟自然选择压力的方式推动问题解集向最优解方向移动。

遗传算法为解决多种难以采用传统数学方法求解的复杂问题提供了新的思路。

1. 遗传算法的发展历史研究者采用计算机模拟生物进化过程并解决优化问题的尝试始于20世纪40至50年代。

20世纪60年代中期,美国密歇根大学的Holland教授提出了位串编码技术,这种编码技术适用于变异操作和交叉操作,他指出在研究和设计人工自适应系统时可借鉴生物遗传的机制,以群体的方式进行自适应搜索。

70年代中期,Holland提出遗传算法的模式定理(Schema Theorem),奠定了遗传算法的理论基础。

11967年,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,2设计了遗传算法执行策略和性能评价指标。

他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指标则仍是目前衡量遗传算法优化性能的主要手段。

1989年,Goldberg出版专著“Genetic Algorithm in Search, Optimization, and Machine learning”3。

该书全面阐述了遗传算法的基本原理及应用,并系统总结了遗传算法的主要研究成果。

该书对遗传算法科学基础的奠定做出了重要贡献。

1991年,Davis编辑出版了专著“Handbook of Genetic Algorithms”,该书中介绍了遗传算法在工程技术和社会生活中的大量应用实例。

41992年,美国斯坦福大学的Koza出版专著“Genetic Programming, on the Programming of Computers by Means of Natural Selection”,在此书中,他将遗传算法应用于计算机程序的优化设计和自动生成,并在此基础上提出遗传编程(Genetic Programming, GP)的概念5。

遗传算法的基本操作

遗传算法的基本操作

遗传算法的基本操作1 遗传算法遗传算法(Genetic Algorithm,简称 GA)是一种染色体基因行为模拟的进化计算算法,它是一种基于自然选择和遗传变异进化机制的计算智能方法,是从生物学进化规律探索求解各种复杂问题的一种工具。

遗传算法是一种元胞自动机入门级的人工智能技术,能够解决各种复杂的最优化问题。

2 遗传算法的基本操作遗传算法的基本操作主要包括以下几个步骤:1.初始化种群:分配种群中每个个体的基因型,对种群中每个染色体随机分布互不相同的基因,成功分配染色体。

2.测试种群:评估种群中各个个体的适应度。

3.挑选进化操作:根据适应度值大小,选择优秀个体留入下一代。

4.变异和交叉:执行变异操作和交叉操作,以旧的种群基因组为基础生成新的基因组,以挑选某几代作为新的种群。

5.使用适应度值:重新计算每个个体的适应度,建立新的种群,获取最优解。

3 遗传算法在工程中的应用遗传算法可以完成多种实现最优解的工程问题,如最易支付路径分析、公路交叉路口路径优化、货物运输路线最优解、拆线问题等等。

随着科学技术的进步,遗传算法也广泛应用于其他领域,如通信网络结构优化、模式识别、系统自控等,使利用遗传算法工程化运用更加广泛,受到计算机应用研究者的追捧。

4 遗传算法的优势遗传算法有着诸多优势:1. 遗传算法可以解决非线性多变量优化问题;2. 遗传算法没有预定义的搜索空间,能够自动根据变量的取值范围搜索最优解;3. 能够处理连续和离散的优化变量;4. 遗传算法可实现并行化搜索,可大大提高计算速率;5. 遗传算法可以从全局最优出发搜索;6. 遗传算法擅长解非凸优化问题,比如有多个局部最优;7. 遗传算法可以应用于大规模复杂的优化问题。

遗传算法的运行效率不高,一般在解决工程优化问题时,常会伴随其他技术或工具,比如模糊技术、神经网络等,共同完成相应的优化工作。

此外,为了确保在种群的进化过程中保持正确的进化方向,必须了解其精准的适应度函数,为此必须提供明确的评价函数,这是关键性任务。

遗传算法的步骤

遗传算法的步骤

遗传算法的步骤遗传算法是一种基于自然选择和遗传机制的优化算法,它模拟了生物进化的过程,通过不断地迭代和优化,寻找最优解。

下面将介绍遗传算法的步骤。

1. 初始化种群遗传算法的第一步是初始化种群,即随机生成一组初始解。

这些解可以是随机生成的,也可以是根据问题的特点和经验生成的。

种群的大小和组成对算法的效果有很大的影响,一般来说,种群越大,搜索空间越广,但计算时间也会增加。

2. 选择操作选择操作是遗传算法的核心步骤之一,它模拟了自然选择的过程。

在选择操作中,根据适应度函数的值,选择一部分优秀的个体作为下一代的父代。

适应度函数的设计非常重要,它决定了个体的生存能力和繁殖能力。

3. 交叉操作交叉操作是遗传算法的另一个核心步骤,它模拟了生物的交配过程。

在交叉操作中,从父代中选择两个个体,通过交叉操作生成新的个体。

交叉操作的方式有很多种,如单点交叉、多点交叉、均匀交叉等。

4. 变异操作变异操作是遗传算法的最后一步,它模拟了生物的突变过程。

在变异操作中,对新生成的个体进行一定的变异操作,以增加搜索空间和避免陷入局部最优解。

变异操作的方式也有很多种,如位变异、反转变异、插入变异等。

5. 重复迭代遗传算法的迭代过程是不断重复选择、交叉和变异操作的过程,直到达到预设的停止条件。

停止条件可以是达到最大迭代次数、达到最优解或达到一定的误差范围等。

在迭代过程中,每一代的种群都会不断进化和优化,直到找到最优解。

遗传算法是一种非常有效的优化算法,它模拟了生物进化的过程,通过不断的选择、交叉和变异操作,寻找最优解。

在实际应用中,需要根据问题的特点和经验来选择适当的参数和操作方式,以达到最优的效果。

《遗传算法详解》课件

《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率

遗传算法的基本原理(1)

遗传算法的基本原理(1)
一一对应。
4.1 遗传算法的基本描述
4.1.3 遗传编码
根据模式定理,De Jong进一步提出了较为客观明确的 编码评估准则,称之为编码原理。具体可以概括为两 条规则:
1)有意义积木块编码规则:编码应易于生成与所求问题 相关的短距和低阶的积木块。
2)最小字符集编码规则:编码应采用最小字符集,以使 问题得到自然、简单的表示和描述。
akl 0,1
表示精度为x (v u) /(2L 1) 。
将个体又从位串空间转换到问题空间的译码函数 : {0,1}L [u, v]
的公式定义为:
xk
(ak1, ak2 ,, akL )
u
vu 2L 1
ቤተ መጻሕፍቲ ባይዱ
(
L j 1
akj
2L
j
)
4.1 遗传算法的基本描述
对于n维连续函数f (x), x (x1, x2 ,, xn ), xi [ui , vi ](i 1,2,, n) ,
操作后的期望数量为 n pn 。其它个体的期望数量按等差序
列计算
j
j1
n 1
,j
(
j
1)
( ) n 1
(
j
1,)
故现在排序选择概率为
ps (a
j
)
1 n
(
( )
n 1
(
j
1)),
j 1,2,, n
4.1.6 遗传算子
一、选择(selection)算子
4、联赛选择(tournament selection) • 基本思想:从当前群体中随机选择一定数量的个体(放回或者不
4.1.6 遗传算子
一、选择(selection)算子

遗传算法的详解及应用

遗传算法的详解及应用

遗传算法的详解及应用遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传过程的算法。

在人工智能和优化问题中得到了广泛的应用。

本文将详细介绍遗传算法的基本原理和优化过程,并探讨它在实际应用中的价值和局限性。

一、遗传算法的基本原理遗传算法的基本原理是通过模拟生物进化的过程来寻找一个问题的最优解。

在遗传算法中,优秀的解决方案(也称为个体,Individual)在进化中拥有更高的生存几率,而劣质的解决方案则很快被淘汰。

在遗传算法的过程中,每个个体由若干个基因组成,每个基因代表某种特定的问题参数或者状态。

通过遗传算法,我们可以找到问题最优的解或者其中一个较优解。

遗传算法的基本流程如下:1. 初始化群体(Population):首先,我们需要随机生成一组初始解作为群体的个体。

这些个体被称为染色体(chromosome),每一个染色体都由一些基因(gene)组成。

所以我们可以认为群体是由很多染色体组成的。

2. 选择操作(Selection):选择运算是指从群体中选出一些个体,用来繁殖后代。

其目的是让优秀的个体留下更多的后代,提高下一代的平均适应度。

在选择操作中,我们通常采用轮盘赌选择(Roulette Wheel Selection)法、锦标赛(Tournament)法、排名选择(Ranking Selection)法等方法。

3. 交叉操作(Crossover):交叉运算是指随机地从两个个体中选出一些基因交换,生成新的染色体。

例如,我们可以将染色体A和B中的第三个基因以后的基因交换,从而产生两个新的染色体。

4. 变异操作(Mutation):变异运算是指随机改变染色体中的个别基因,以增加多样性。

例如,我们随机将染色体A的第三个基因改变,从而产生一个新的染色体A'。

5. 适应度评估(Fitness Evaluation):适应度评估是指给每一个个体一个适应度分数,该分数是问题的目标函数或者优化函数。

用Python实现遗传算法(GA)(一)

用Python实现遗传算法(GA)(一)

用Python实现遗传算法(GA)(一)用Python实现遗传算法(GA)(一)遗传算法(Genetic Algorithm,GA)是一种模拟生物进化过程的优化算法。

它模拟了自然界中的遗传、交叉和变异等操作,通过不断优化种群中的个体来找到问题的最优解。

在本篇文章中,我们将用Python实现一个简单的遗传算法。

首先,我们需要定义问题的适应度函数。

适应度函数用来评估每个个体的优劣程度,它决定了个体在繁殖中的概率。

在这个例子中,我们将解决一个简单的函数最小化问题,即找到函数f(x)=x^2的最小值。

我们可以定义适应度函数如下:```pythondef fitness_function(x):return x**2```接下来,我们需要定义种群的初始化函数。

种群是由一组个体组成的,每个个体都表示问题的一个解。

在这个例子中,我们将随机生成一组初始解作为种群的初始状态。

```pythonimport randomdef initialize_population(population_size, chromosome_size): population = []for _ in range(population_size):chromosome = [random.randint(0, 1) for _ inrange(chromosome_size)]population.append(chromosome)return population```然后,我们需要定义选择操作。

选择操作用来根据个体的适应度值选择出下一代的个体。

常用的选择操作包括轮盘赌选择和排名选择等。

在这个例子中,我们将使用轮盘赌选择。

```pythondef roulette_wheel_selection(population, fitness_values):total_fitness = sum(fitness_values)probabilities = [fitness / total_fitness for fitness in fitness_values]cumulative_probabilities = [sum(probabilities[:i+1]) for i in range(len(probabilities))]selected_population = []for _ in range(len(population)):random_number = random.randomfor i in range(len(cumulative_probabilities)):if random_number <= cumulative_probabilities[i]:selected_population.append(population[i])breakreturn selected_population```接下来,我们需要定义交叉操作。

遗传算法及应用

遗传算法及应用
C = π1 · · · πu−1πuπu+1 · · · πv−1πvπv+1 · · · π102 其中,2 ≤ u < v ≤ 101, 2 ≤ πu < πv ≤ 101, 颠倒u 与 v 之间目标的顺序,此时的新 路径为:
Cnew = π1 · · · πu−1πvπv−1 · · · πu+1πuπv+1 · · · π102 记
表 1: 生物遗传概念在遗传算法中的对应关系
生物遗传概念 适者生存 个体 染色体 基因 适应性 种群 交配 变异
遗传算法中的作用 算法停止时,最优目标值的解有最大的可能被留住 解 解的编码 解中每一分量的特征 适应度函数值 根据适应度函数值选取的一组解 通过交配原则产生一组新解的过程 编码的某一分量发生变化的过程
种群大小:M = 50 最大代数:G = 1000 交叉率: pc = 1,交叉概率为 1 能保证种群的充分进化。 变异率: pm = 0.1, 一般而言,变异发生的可能性较小。 (1) 编码策略 采用十进制编码,用随机数列ω1ω2 · · · ω102作为染色体,其中0 < ωi < 102, i = 2, 3, · · · , 101, ω1 = 0, ω102 = 1 每一个随机序列都和种群中的一个个体相对应。 例如一个 9 目标问题的一个染色体为
经度 纬度 30.3313 6.9348 10.1584 12.4819 31.4847 8.9640 38.4722 20.1731 0.9718 28.1477 50.2111 10.2944 48.2077 16.8889 41.8671 3.5667 27.7133 5.0706 4.9568 8.3669 49.2430 16.7044 11.5812 14.5677 26.7213 28.5667 0.7775 6.9576 18.5245 14.3598 52.5211 15.7957 50.1156 23.7816 19.9857 5.7902 52.8423 27.2880 28.7812 27.6659 33.6490 0.3980 36.9545 23.0265 39.7139 28.4203 36.9980 24.3992 41.1084 27.7149

遗传算法的主要步骤

遗传算法的主要步骤

遗传算法的主要步骤遗传算法(Genetic Algorithm, GA)是一种启发式优化算法,模拟了生物进化中的选择、交叉和突变等操作,通过解码染色体,使用自然选择机制来进行优化问题的。

下面是遗传算法的主要步骤:1.初始化种群在遗传算法开始之前,首先需要初始化一个种群。

种群是由一定数量的个体组成的集合,每个个体代表问题的一个潜在解,也称为染色体。

染色体可以是一个二进制字符串、一个整数数组,或者其他形式,具体取决于问题的特点。

种群的数量通常较大,以保证有足够的空间。

2.适应度评估对于每个染色体,需要计算它的适应度评估函数的值。

适应度函数即问题的目标函数,用来衡量染色体的优劣程度。

适应度高的染色体能获得较高的生存概率,从而更有可能被选择用于繁殖后代。

3.选择操作选择操作是基于染色体的适应度进行的。

适应度高的染色体被选中作为父代,繁殖后代。

选择操作有多种策略,例如轮盘赌选择、锦标赛选择等。

轮盘赌选择是最常用的策略之一,其中染色体被选中的概率与其适应度成正比。

锦标赛选择则是随机选择几个染色体,然后从中选择适应度最高的作为父代。

4.交叉操作交叉操作是指通过染色体的重组来产生后代染色体。

通过选择两个父代染色体,从一个或多个交叉点划分染色体,然后交叉两个染色体的片段来生成新的子代染色体。

这种操作模拟了生物进化中的基因重组现象。

5.突变操作突变操作模拟了生物进化中的基因突变。

在一些情况下,即使经过选择和交叉操作,种群仍然无法达到最优解。

突变操作通过随机改变染色体的一个或多个基因值来引入新的变异染色体。

突变概率通常较低,以避免太过频繁地破坏种群的多样性。

6.更新种群通过选择、交叉和突变操作,生成了一批新的后代染色体。

新生成的染色体被添加到种群中,并用来替换旧的染色体。

这样,种群经过一段时间的演化后,逐渐趋于最优解。

7.终止条件判断遗传算法通常通过设定一个终止条件来确定算法的结束。

终止条件可以是达到一定的迭代次数,或者当种群中的最优解的适应度达到一定的阈值时终止。

遗传算法求解函数最大值最小值

遗传算法求解函数最大值最小值

遗传算法是一种模拟自然选择和遗传机制的优化搜索算法,它能够通过模拟生物进化的过程来寻找最优解。

在数学和计算领域,遗传算法被广泛应用于求解函数的最大值和最小值问题。

1. 遗传算法的基本原理遗传算法是一种基于裙体的优化算法,它模拟了自然界中的优胜劣汰和随机性变异的过程。

其基本原理包括遗传、变异、选择和适应度评价。

1.1 遗传:遗传算法通过模拟生物的交配过程来产生新的个体,其中将两个个体的染色体交叉并产生新的后代。

1.2 变异:遗传算法引入随机性的变异操作,以增加搜索空间的多样性,使算法不至于陷入局部最优解。

1.3 选择:个体的适应度评价后,根据一定的选择策略选择出部分个体作为下一代的种裙,通常适应度高的个体有更大的概率被选择。

1.4 适应度评价:遗传算法通过适应度函数对个体进行评价,以确定个体在种裙中的适应度。

适应度函数通常是需要优化的函数。

2. 遗传算法在求解函数最大值和最小值问题中的应用遗传算法作为一种全局搜索算法,具有寻找函数最大值和最小值的能力。

对于一个给定的函数,遗传算法能够在较短的时间内找到该函数的全局最优解。

2.1 函数最大值求解:对于函数的最大值求解问题,可以将函数的负值作为适应度函数,通过遗传算法来求解负值最小化的问题,从而达到求解函数最大值的目的。

2.2 函数最小值求解:对于函数的最小值求解问题,则可以直接将函数的值作为适应度函数,通过遗传算法来求解函数最小值问题。

3. 遗传算法在实际应用中的优势遗传算法作为一种全局搜索算法,在求解函数最大值和最小值问题中具有以下优势:3.1 并行性:遗传算法能够并行处理多个个体,从而加速搜索过程,尤其适合于复杂的高维优化问题。

3.2 全局搜索能力:遗传算法不容易陷入局部最优解,能够在较短的时间内找到函数的全局最优解。

3.3 适应性强:遗传算法能够适应不同类型的函数和问题,具有较强的通用性。

4. 遗传算法在求解函数最大值和最小值问题中的应用实例以下是一些实际应用中遗传算法在求解函数最大值和最小值问题中的应用实例:4.1 Rosenbrock函数最小值求解:Rosenbrock函数是一个经典的优化测试函数,遗传算法在求解Rosenbrock函数的最小值时具有良好的表现。

遗传算法教程GA1

遗传算法教程GA1

遗传算法教程GA1遗传算法教程GA1遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法。

它基于达尔文的进化论思想,通过模拟自然选择、交叉和变异等操作,逐步优化问题的解。

遗传算法在解决复杂的优化问题上表现出色,被广泛应用于工程、经济、计划和设计等领域。

首先,遗传算法的基本思想是通过不断迭代的方式,从一个种群中选择出适应度较高的个体,并通过交叉和变异操作产生新的个体,逐步逼近最优解。

这个种群由一组编码个体组成,每个个体对应问题的一个可能解。

种群的进化过程类似于自然界中的进化过程,通过模拟自然选择、交叉和变异等操作,使种群逐渐进化,直到找到最优解。

具体来说,遗传算法的步骤如下:1.初始化种群:随机生成一组初始个体,即问题的可能解,构成初始种群。

2.评估适应度:对每个个体进行评估,计算其适应度值。

适应度值反映了个体对问题的解的优劣程度,通常通过目标函数来计算。

3.选择操作:根据适应度值选择一定数量的个体作为父代,用于后续的交叉和变异操作。

通常采用轮盘赌选择方法,适应度较高的个体被选中的概率较大。

4.交叉操作:从选择的父代中随机选择两个个体,通过交叉操作生成新的个体。

交叉操作模拟了基因的组合,将父代的染色体进行交换和重组,产生新的染色体。

5.变异操作:对新生成的个体进行变异操作,以增加种群的多样性。

变异操作模拟了基因的突变,通过改变个体染色体中的一个或多个基因值,产生新的个体。

6.更新种群:将新生成的个体加入种群中,替代适应度较低的个体。

这样,种群逐渐进化,适应度较高的个体越来越多。

7.判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。

如果满足终止条件,则算法结束,返回最优解;否则,返回第3步进行下一次迭代。

通过上述步骤的迭代操作,遗传算法能够逐渐逼近最优解,找到问题的较好解。

它具有全局能力强、适用于多样的问题、易于并行计算等优点,但也存在参数选择困难、收敛速度慢等问题。

遗传算法

遗传算法

遗传算法一、遗传算法的简介及来源1、遗传算法简介遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《自然系统和人工系统的自适应》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

遗传算法模仿了生物的遗传、进化原理, 并引用了随机统计理论。

在求解过程中, 遗传算法从一个初始变量群体开始, 一代一代地寻找问题的最优解, 直至满足收敛判据或预先设定的迭代次数为止。

它是一种迭代式算法。

2、遗传算法的基本原理遗传算法是一种基于自然选择和群体遗传机理的搜索算法, 它模拟了自然选择和自然遗传过程中发生的繁殖、杂交和突变现象。

在利用遗传算法求解问题时, 问题的每个可能的解都被编码成一个“染色体”,即个体, 若干个个体构成了群体( 所有可能解) 。

在遗传算法开始时, 总是随机地产生一些个体( 即初始解) , 根据预定的目标函数对每个个体进行评价, 给出了一个适应度值。

基于此适应度值, 选择个体用来繁殖下一代。

选择操作体现了“适者生存”原理, “好”的个体被选择用来繁殖, 而“坏”的个体则被淘汰。

然后选择出来的个体经过交叉和变异算子进行再组合生成新的一代。

这一群新个体由于继承了上一代的一些优良性状,因而在性能上要优于上一代, 这样逐步朝着更优解的方向进化。

因此, 遗传算法可以看作是一个由可行解组成的群体逐代进化的过程。

3、遗传算法的一般算法(1)创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样,在那里问题的初始状态已经给定了。

(2)评估适应度对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。

遗传算法详解ppt课件

遗传算法详解ppt课件

遗传算法的特点
同常规优化算法相比,遗传算法有以下特点: ① 遗传算法是对参数的编码进行操作,而非对参 数本身。 ② 遗传算法是从许多点开始并行操作,并非局限 于一点,从而可有效防止搜索过程收敛于局部最 优解。 ③ 遗传算法通过目标函数计算适值,并不需要其 它推导和附加信息,因而对问题的依赖性较小。
图5–3
遗传算法的工作原理示意图
标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法(genetic algorithms,简称GA)是人工智能 的重要分支,是基于达尔文进化论,在微型计算机上模拟 生命进化机制而发展起来的一门新学科。它根据适者生存、 优胜劣汰等自然进化规则来进行搜索计算和问题求解。对 许多用传统数学难以解决或明显失效的非常复杂问题,特 别是最优化问题,GA提供了一个行之有效的新途径。近 年来,由于遗传算法求解复杂优化问题的巨大潜力及其在 工业控制工程领域的成功应用,这种算法受到了广泛的关 注。
1. 复制
复制(又称繁殖),是从一个旧种群(old population) 中选择生命力强的字符串(individual string)产生新种群 的过程。或者说,复制是个体位串根据其目标函数f(即适 值函数)拷贝自己的过程。直观地讲,可以把目标函数f看 作是期望的最大效益的某种量度。根据位串的适值所进行 的拷贝,意味着具有较高适值的位串更有可能在下一代中 产生一个或多个子孙。显然,在复制操作过程中,目标函 数(适值)是该位串被复制或被淘汰的决定因素。

遗传算法遗传代数-概述说明以及解释

遗传算法遗传代数-概述说明以及解释

遗传算法遗传代数-概述说明以及解释1.引言1.1 概述遗传算法是一种受自然选择原理启发的优化搜索算法,通过模拟生物进化的过程来寻找最优解。

遗传代数则是对遗传学中遗传因子传递与变异规律的描述和研究。

本文将探讨遗传算法和遗传代数之间的关系,以及它们在优化问题中的应用。

遗传算法的基本原理是通过利用遗传操作(选择、交叉和变异)来逐代演化种群中的个体,以期找到最优解。

遗传代数则是从遗传学的角度研究基因之间的相互作用与传递规律。

两者在概念上有共通之处,都涉及到基因的传递和变异过程。

本文将深入探讨遗传算法和遗传代数之间的联系,分析它们在优化问题中的应用,并展望未来它们在解决复杂问题上的潜力。

让我们一起探索遗传算法和遗传代数这两个引人注目的领域,了解它们之间的奥秘和关联。

json"1.2 文章结构": {"本文将分为三个部分来介绍遗传算法和遗传代数的相关内容。

第一部分将介绍遗传算法的基本原理,包括其工作原理和基本步骤。

第二部分将介绍遗传代数的概念,包括其起源和研究对象。

第三部分将探讨遗传算法与遗传代数之间的关系,阐述它们在实际应用中的联系和作用。

通过这三个部分的介绍,读者可以更深入地了解遗传算法和遗传代数的重要性和应用价值。

"}1.3 目的:本文的目的在于探讨遗传算法和遗传代数之间的关系,深入分析它们在计算机科学和优化问题中的应用。

通过对遗传算法和遗传代数的基本原理和概念进行解析,进一步探讨它们之间的联系和区别。

同时,本文旨在总结遗传算法的应用领域,并探讨遗传代数在遗传算法中的作用,从而展望未来在这一领域的发展方向。

通过本文的阐述,读者可以更加深入地了解遗传算法和遗传代数在优化问题中的作用,以及它们在实践中的应用价值和前景。

2.正文2.1 遗传算法的基本原理遗传算法是一种模拟生物进化过程的优化算法,其基本原理包括选择、交叉、变异和适应度评估四个步骤。

首先是选择过程,即根据种群中个体的适应度值,按照一定的选择机制选择出适应度较高的个体作为父代。

1遗传算法基本流程图

1遗传算法基本流程图

产 ( H) : 表示 在t 代种群中 存在模式x 的 个 体数目 ;
4 .遗传操作
选择 ( s e l e c t i o n )、交叉 ( c r o s s o v e r )和变异 ( m u t a t i o n )是
遗传算法中的三种基本遗传操作。下面分别加以 介绍。 1 ) 选择操作
东北师范大学硕士学位论文
选择 ( s e l e c t i o n ) ,根据染色体对应的适应度值和问题的要求, 筛选种群中的染色体,染色体的适应度越高,保存下来的概率越大, 反之则越小,甚至被淘汰。选择操作通常选用适应度比例法 ( 轮盘赌 方式) ,它是以适应度的大小为比例进行遗传过程中的父体选择,适应 度越高的个体被选中的机率就越大。也就是处于优势的个体有更多的 繁衍机会。具体做法是:首先计算群体中各个体的适应度,得相应的
东北师范大学硕士学位论文
图2 - 1遗传算法基本流程图 遗传算法搜索可能的特征空间来寻找高适应度的染色体,通过执 行选择、交叉和变异操作来完成它的搜索。在实际应用中,遗传算法 能够快速有效地搜索复杂、高度非线性和多维空间。 2 .3遗传算法的构成 遗传算法中包含了五个基本要素: ( 1 ) 编码;
. 是否到了预定算法的最大代数;
东北师范大学硕士学位论文
是否找到某个较优的染色体; 连续几次迭代后得到的解群中最好解是否变化等。

2 .4遗传算法的基本理论 遗传算法作为一种复杂问题的智能算法,它的理论基础是— 模 式定理和积木假说。
2 . 4 . 1模式定理
定义 1( 模式) :基于三值字符集{ 0 . 1 ,* }所产生的能描述具有某 些结构相似的 0 . 1 字符串集的字符串称作模式。 定义 2( 模式阶) :模式 H中确定位置的个数称作该模式的模式阶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 3 4 选择次数 1 1 0 2
011101 101011 011100 111001
选择结果
34 34 25 50
fi=143 fmax=50 f=35.75
交叉结果
0.24 0.24 0.17 0.35
变异点 4 5 2 6
配对情况
交叉点位置 1-2:2 3-4:4
变异结果
011101 111001 101011 111001
例:求下述二元函数的最大值:
max f(x1,x2)=x12+x22 s.t. x1 {1,2,3,4,5,6,7} x2 {1,2,3,4,5,6,7} (1) 个体编码 遗传算法的运算对象是表示个体的符号串,所以必须把变量 x1, x2 编码为一种 符号串。本题中,用无符号二进制整数来表示。 因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它 们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可 行解。 例如,基因型 X=101110 所对应的表现型是:x=[ 5,6 ]。 个体的表现型x和基因型X之间可通过编码和解码程序相互转换。
个体编号 1 2 3 4
交叉结果
变异点
4 5 2 6
变异结果
子代群体p(1)
011001 111101 101001 111011
011101 111111 111001 111010
011101 111111 111001 111010
对群体P(t)进行一轮选择、交叉、变异运算之后可得到新一代的群体p(t+1)。
• 初始种群
令种群中有 M 个个体,可随机产生 M 个数字 串构成初始种群。例如: 将数字串 1234…N 上的数字进行随机的交换
步骤二:适应度选择
• 适应度的计算
对于个体 j ,适应度为:
fj 1
1 5
2
l1 l2 l3 l4 l5
l
i 1
N
i

4
3
被选中作为父个体的概率:
pj fj
f
个体编号 初始群体p(0) 1 2 3 4 总和 x1 x2 3 5 3 7 5 3 4 1 适值 占总数的百分比 选择次数 选择结果
011101 101011 011100 111001
34 34 25 50
143
0.24 0.24 0.17 0.35
1
1 1 0 2
011101 111001 101011 111001
[注意] 需要说明的是,表中有些栏的数据是随机产生的。这里为了更好地说明问题, 我们特意选择了一些较好的数值以便能够得到较好的结果,而在实际运算过程中 有可能需要一定的循环次数才能达到这个最优结果。
个体编号 初始群体p(0)
x1 x2 3 5 3 7 5 3 4 1
适值 fi(x1,x2)
占总数的百分比 fi / f
12345(1) 34512(3) 用群论描述
旋转操作
所有路径的集合形成一个二面体群 A 等价解构成一个正规子群 B
A 中陪集的数目为 2N
12345(1) 32154(3) 34215(3) 15234(1)
1 5 4 3 2 5 4 1
相同父个体交叉 不同子个体,且和父个体不同 1 2 3 5 4 3 2
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
选择操作为种群提供了演进的方向
• 交叉 --- 优优组合
交叉操作的作用在于汇集散布于不同 个体间的局部优势模式
• 变异 --- 寻找新模式
变异操作是种群向外扩展的触角(随机) 好的变异将保留,坏的淘汰
遗传算法的总体评价
• 优点 解决问题的方法具有普适性 全局收敛性(依概率收敛) 能解决的问题范围很广 • 不足 求得的解为近似的数值解 对于经典数学可以解决的问题,效率较低
• 个体编码:(假定要求小数点后两位) 将[0,10]划分为1024个小区间 210 1024
个体 个体 个体 个体 1 2 3 …… 1024 0000000000 0000000001 0000000010 1111111111
0
• 种群初始化: 随机生成m个10位二进制串
10
步骤二:选择
24% 0
24%
17% 3#
35% 4# 1
1#
2#
(5) 交叉运算 交叉运算是遗传算法中产生新个体的主要操作过程,它以某一概率相互交换某 两个个体之间的部分染色体。 本例采用单点交叉的方法,其具体操作过程是: • 先对群体进行随机配对; • 其次随机设置交叉点位置; • 最后再相互交换配对染色体之间的部分基因。
TSP问题的遗传算法求解
• • • • • 步骤一:个体编码及种群初始化 步骤二:适应度选择 步骤三:交叉操作 步骤四:变异操作 步骤五:重复二、三、四步,直至结束 令城市(点)数目为 N
步骤一:初始化
• 个体编码
取长度为N的数字串,串中数字互不重复,取 值范围为[1,N]之间的整数。则每一个数字串代 表一个个体,个体中数字出现的位置表征路径 中城市出现的顺序。
(6) 变异运算 变异运算是对个体的某一个或某一些基因座上的基因值按某一较小的概率进 行改变,它也是产生新个体的一种操作方法。 本例中,我们采用基本位变异的方法来进行变异运算,其具体操作过程是: • 首先确定出各个个体的基因变异位置,下表所示为随机产生的变异点位置, 其中的数字表示变异点设置在该基因座处; • 然后依照某一概率将变异点的原有基因值取反。
j 1
M
j
p
j
1
选择 M 次 重新生成种群
步骤三:交叉操作
• TSP中交叉算子的特点
要保证生成的解为有效解 从一个父个体中随机选取一段子串A,在另一个父个体 中将A中出现的数字去掉形成串B,AB为一个子串
此外还有多种交叉算子
步骤四:变异操作
• 常用的变异操作:
随机选取两个相邻位置的数字,交换其顺序。 51243(5) 51234(5)
遗传算法的思想
• Darwin的进化论 ---- “自然选择、适者生存” 特定环境的考验 • 种群中个体的选择 • 种群中的交叉繁殖 • 种群中个体的变异 上述操作反复执行,个体逐渐优化
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
• 定义适应度函数: f 1 10 | x e x 100|
0.4 0.1 0.1
为何取倒数?
• 选择(适应度较大的个体)
D A C
0.2 0.1 0.4
B
0.3
0.3
0.2
0.4
0.6
1.0
随机产生 [0,1]之间 的数 RN, 选择个体
C D
RN
0 RN 0.1 0.1 RN 0.4 0.4 RN 0.6 0.6 RN 1
fi=253 fmax=98 f=58.75
0.14 0.42 0.21 0.23
遗传算法的一个实例
• 求解方程: x10 e x 100 ( x 0)
将方程求解问题转化为生存问题:
解一定在[0,10]之间,将区间[0,10]划分成 若干个小区间,设想每个小区间为一个 生物个体,使下列表达式最小的个体有
个体编号 1 2 3 4 总和
子群体p(1)
x1 x2 3 7 7 7 5 7 1 2
适值
占总数的百分比
011101 111111 111001 111010
34 98 50 53
235
0.14 0.42 0.21 0.23
1
从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得 到了明显的改进。事实上,这里已经找到了最佳个体“111111”。
个体
A
B
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
步骤四:变异
• 变异操作 在个体中随机选择一位,改变该位的值
交叉和变异操作均以一定概率进行
步骤五
• 反复执行步骤二、三、四并记录最优个体 (适应度最大的个体) • 程序结束时,最优个体即为所求解 • 程序结束的判定 根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
选择运算(或称为复制运算)把当前群体中适应度较高的个体按某种规则或模型 遗传到下一代群体中。一般要求适应度较高的个体将有更多的机会遗传到下一代
群体中。
本例中,我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中 的数量。其具体操作过程是: • 先计算出群体中所有个体的适应度的总和 fi ( i=1.2,…,M ); • 其次计算出每个个体的相对适应度的大小 fi / fi ,它即为每个个体被遗传 到下一代群体中的概率, • 每个概率值组成一个区域,全部概率值之和为1; • 最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区 域内来确定各个个体被选中的次数。
遗传算法(GA)的肇始
“ 活的有机体是解决问题的专家。它们所表现出 来的各种才能足以使最好的计算机程序自惭形 秽。这种现象尤其令计算机科学家们感到痛楚。 计算机科学家们为了某种算法可能花费数月乃 至数年的脑力劳动,而有机体则能通过进化和 自然选择这样一种显然并非定向进行的机制获 得这种能力。” --- John Holland
x1 x2 3 7 7 7 5 7 1 2
1-2 3-4
011001 111101 101001 111011
011101 111111 111001 111010
子代群体p(1)
适值 fi(x1,x2)
相关文档
最新文档