不等式的实际应用--含答案

合集下载

不等式组应用题及答案

不等式组应用题及答案

不等式组应用题及答案篇一:不等式(组)应用题类型及解答(包含各种题型)一元一次不等式(组)应用题类型及解答1. 分配问题1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

3、把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二、比较问题1、某校王校长暑假将带领该校市级三好学生去北京旅游。

甲旅行社说如果校长买全票一张,则其余学生可享受半价优惠,乙旅行社说包括校长在内全部按全票价的6折优惠(按全票价的60%收费,且全票价为1200元)①学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(写出表达式)②当学生数是多少时,两家旅行社的收费一样???就学生数x 讨论哪家旅行社更优惠。

③就学生数x讨论哪家旅行社更优惠。

2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存款能超过王刚的存款。

基本不等式及其应用(优秀经典专题及答案详解)

基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

不等式的实际应用题

不等式的实际应用题

不等式的实际应用一、在车站开始检票时,有a( a > 0 )名旅客在候车室排队等候检票进站,检票开始后,任有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?解:设旅客增加速度为x 人/分;检票的速度为 y 人/分,至少要同时开放n 个检票口,依题意有a+3x=30ya+10x=210y a+5x 5ny ⎧⎨⨯≤⎩解得 n≥3.5又只能取正整数,故n=4二、 为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?解:(1)乙种树每棵200元,丙种树每棵23×200=300(元). (2)设购买乙种树x 棵,则购买甲种树2x 棵,丙种树(1000-3x)棵, 根据题意,得 200×2x+200x+300(1000-3x)=210000, 解得x=300,∴2x=600,1000-3x =100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵. (3)设购买丙种树y 棵,则购买甲、乙两种树共 (1000-y)棵,根据题意,得200(1000-y)+300y ≤210000+10120, 解得:y ≤201.2 ∵y 为正整数,∴y 取201.答:丙种树最多可以购买201棵. .三、 某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分(1)小明考了68分,那么小明答对了多少道题? (2)小亮获得二等奖(70~90分),请你算算小亮答对了几道题?解:(1)设小明答对了x 道题 依题意得:68)20(35=--x x 解得16=x答:小明答对了16道题(2)解:设小亮答对了y 道题依题得⎩⎨⎧≤--≥--90)20(3570)20(35y y y y因此不等式组的解集为43184116≤≤y ∵y 是正整数 ∴17=y 或18答:小亮答对了17道题或18道题四、.某商场用3600元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120 元,售价138 元;乙种商品每件进价100 元,售价120 元。

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。

不等式的应用带答案

不等式的应用带答案

不等式(组)的实际应用AB两种品牌的教学设备,这两种教学设备的进价和售价如,1.某商场销售表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。

AB两种品牌的教学设备各多少套?(1)该商场计划购进,A种设备的购进数减少(2)通过市场调研,该商场决定在原计划的基础上,BBA种设备减少种设备的购进数量,已知种设备增加的数量是量,增加的数量的1.5倍。

若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?解答:ABxy套,,套,两种品牌的教学设备分别为(1)设该商场计划购进{1.51.2660.150.29,解得:{2030,AB两种品牌的教学设备分别为20套,30答:该商场计划购进套;,AaBa套,1.5套,则种设备购进数量增加(2)设种设备购进数量减少aa)?69,1.5(20?)+1.2(30+1.5a?10,解得:A种设备购进数量至多减少10套。

答:2.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。

星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方。

已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨。

(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?解答:xy一辆小型渣土运输车一次运输(1)设一辆大型渣土运输车一次运输吨,吨,{23315670,解得{85.即一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨;(2)由题意可得,xy辆、设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为辆,yy?2,?148 2085 ,{164或{173或{182解得.故有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆。

中考数学复习之一次不等式的实际应用(含答案)

中考数学复习之一次不等式的实际应用(含答案)

中考数学复习之一次不等式的实际应用(含答案)1. 为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A. 16个B. 17个C. 33个D. 34个2. 甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3∶2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了.这是因为()A. 商贩A的单价大于商贩B的单价B. 商贩A的单价等于商贩B的单价C. 商贩A的单价小于商贩B的单价D. 赔钱与商贩A、商贩B的单价无关3. 2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm.某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为____________cm.4. 东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,每套悠悠球的售价至少是多少元?5. 为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?6. 为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好..全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?7. 某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:(1)求甲、乙两种型号蓝牙音箱的销售单价;(2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台?8. (2018娄底)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台.已知每台A型设备日处理能力为12吨,每台B型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买A、B两种设备的方案;(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠,问:采用(1)设计的哪种方案,使购买费用最少,为什么?9. 某地2015年为做好“精准扶贫”工作,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每天补助5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.10.某中学展开了“保护环境,绿化校园”主题月活动,在校团委的倡议下,全校师生共捐款4363元用于购买桂花树和丁香树绿化校园.(1)若购买5棵桂花树和4棵丁香树需花费410元,购买3棵桂花树和2棵丁香树需花费230元,求桂花树和丁香树的单价;(2)按校团委规划,准备购买桂花树和丁香树共100棵,且购买桂花树的数量不少于34棵,请你分析有哪几种购买方案.参考答案:1-2 AA3. 554. 解:(1)设第一批悠悠球每套的进价是x 元,根据题意,得1.5×500x =900x +5,解得x =25,经检验,x =25是原方程的解,且符合题意,答:第一批悠悠球每套的进价是25元;(2)设每套悠悠球售价为a 元,根据题意,得(50025+90025+5)a -(500+900)≥(500+900)×25% 解得a ≥35,答:每套悠悠球的售价至少是35元.5. 解:(1)设改建后绿化区的面积为x 亩,则休闲区的面积为20%x 亩,根据题意得,x +20%x =162,解得x =135,∴休闲区的面积为135×20%=27,答:改建后的绿化区的面积为135亩,休闲区的面积为27亩;(2)设绿化区的面积为x 亩,则休闲区的面积为(162-x )亩,根据题意得35000x +25000(162-x )≤5500000,解得x ≤145,答:绿化区的面积最多可以达到145亩.6. 解:(1)设每辆大客车的座位数为x 个,每辆小客车的座位数为y 个,根据题意得⎩⎨⎧x -y =15 4x +6y =310, 解得⎩⎨⎧x =40y =25, 答:每辆大客车的座位数为40个,每辆小客车的座位数为25个;(2)设租用小客车a 辆,则租用大客车(10-a )辆,根据题意得40(10-a )+25a ≥310+40,解得a ≤103,∵a 为整数,∴a 的最大值为3.答:最多租用小客车3辆.7. 解:(1)设甲种型号蓝牙音箱的销售单价为x 元,乙种型号蓝牙音箱的销售单价为y 元,根据题意得,⎩⎨⎧3x +7y =21605x +14y =4020, 解得⎩⎨⎧x =300y =180. 答:甲种型号蓝牙音箱的销售单价为300元,乙种型号蓝牙音箱的销售单价为180元;(2)设甲种型号的蓝牙音箱采购a 台,根据题意得,240a +140(30-a )≤6000,解得a ≤18.答:甲种型号的蓝牙音箱最多能采购18台.8. 解:(1)设购买A 型设备x 台,则购买B 型设备(10-x )台,根据题意得,12x +15(10-x )≥140,解得 x ≤103,∵x 为非负整数,∴x 可取值为0,1,2,3,∴共有4种方案:①A 型0台,B 型10台;②A 型1台,B 型9台;③A 型2台,B 型8台;④A 型3台,B 型7台;(2)方案①:A 型0台,B 型10台时,购买费用为4.4×10=44万元,∴44×90%=39.6万元, 方案②:A 型1台,B 型9台时,购买费用为3×1+4.4×9=42.6万元,∴42.6×90%=38.34万元,方案③:A 型2台,B 型8台时,购买费用为3×2+4.4×8=41.2万元,∴41.2×90%=37.08万元,方案④:A 型3台,B 型7台时,购买费用为3×3+4.4×7=39.8万元,∴采用方案③A 型2台,B 型8台时,购买费用最少.9. 解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得:1280(1+x )2=1280+1600,解得x =0.5或x =-2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得,∵1000×8×400=3200000<5000000,∴a >1000,∴1000×8×400+(a -1000)×5×400≥5000000,解得a ≥1900,答:2017年该地至少有1900户享受到优先搬迁租房奖励.10.解:(1)设桂花树的单价为x 元,丁香树的单价为y 元,根据题意得,⎩⎨⎧5x +4y =4103x +2y =230, 解得⎩⎨⎧x =50y =40, 答:桂花树和丁香树的单价分别为50元和40元;(2)设购买a 棵桂花树,则购买(100-a )棵丁香树,则有50a +40(100-a )≤4363, 解得a ≤36.3,∵a ≥34且a 为正整数,∴a =34,35,36,∴共有3种购买方案,方案一:购买桂花树34棵,丁香树66棵;方案二:购买桂花树35棵,丁香树65棵;方案三:购买桂花树36棵,丁香树64棵;答:有三种购买方案;分别是购买桂花树34棵,丁香树66棵;购买桂花树35棵,丁香树65棵;购买桂花树36棵,丁香树64棵.。

均值不等式的应用(习题+标准答案)

均值不等式的应用(习题+标准答案)

均值不等式的应⽤(习题+标准答案)均值不等式的应⽤(习题+答案)————————————————————————————————作者:————————————————————————————————⽇期:均值不等式应⽤⼀.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最⼩值,当两个正数的和为定植时,可以求它们的积的最⼩值,正所谓“积定和最⼩,和定积最⼤”.(2)求最值的条件“⼀正,⼆定,三取等”(3)均值定理在求最值、⽐较⼤⼩、求变量的取值范围、证明不等式、解决实际问题⽅⾯有⼴泛的应⽤.应⽤⼀:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧:技巧⼀:凑项例1:已知54x <,求函数14245y x x =-+-的最⼤值。

3.4《不等式的实际应用》课时作业(人教B版必修5)

3.4《不等式的实际应用》课时作业(人教B版必修5)

3.4不等式的实际应用一、选择题(每题5分,共20分)1.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处【解析】 设仓库建在离车站x km 处,则土地费用y 1=k 1x,运输费用y 2=k 2x 把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45, 故总费用y =20x +45x ≥220x ·45x =8, 当且仅当20x =45x 即x =5时等号成立. 【答案】 A2.银行计划将某资金给项目M 和N 投资一年,其中40%的资金给项目M,60%的资金给项目N ,项目M 能获得10%的年利润,项目N 能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户,为了使银行年利润不小于给M 、N 总投资的10%而又不大于总投资的15%,则给储户的回扣率最小值为( )A .5%B .10%C .15%D .20% 【解析】 设给储户的回扣率为x ,由题意:⎩⎪⎨⎪⎧0.4×0.1+0.6×0.35-x ≥0.10.4×0.1+0.6×0.35-x ≤0.15, 解得0.1≤x ≤0.15,故x 的最小值是0.1=10%.【答案】 B3.天文台用3.2万元买一台观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的日平均耗资最少)为止,一共使用了( )A .600天B .800天C .1 000天D .1 200天【解析】 日平均耗资为3 2000+n ·12·⎝⎛⎭⎫5+n +4910n=3 2000n +n 20+9920≥2 3 2000n ·n 20+9920=80+9920,当且仅当3 2000n =n 20,即n =800时取等号. 【答案】 B4.用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( )A .85 cm 2B .610 cm 2C .355 cm 2D .20 cm 2【解析】 设三角形各边长为x 、y 、z ,且x 、y 、z ∈N +,则x +y +z =20.由于在周长一定的三角形中,各边长越接近的三角形面积越大,于是当三边长为7 cm 、7 cm 、6 cm 时面积最大,则S △=12×6×72-32=610(cm 2),故选B.【答案】 B二、填空题(每题5分,共10分)5.建造一个容积为8 m 2,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元.【解析】 设池底长x m ,则宽4xm , 总造价y =(4x +16x)×80+4×120 ≥24x ·16x×80+480=1 760, 当且仅当4x =16x即x =2时等号成立. 【答案】 1 7606.某省每年损失耕地20万亩,每亩耕地价格24 000元,为了减少耕地损失,决定以每年损失耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,则t 的取值范围是____. 【解析】 由题意得(20-52t )×2 4000×t %≥9 000, 化简得t 2-8t +15≤0解得3≤t ≤5.【答案】 3≤t ≤5三、解答题(每题10分,共20分)7.某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元,如果墙高为3 m ,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?【解析】 设房子的长为x m ,宽为y m ,总造价为t 元,则xy =12.t =3x ·1 200+3y ·800·2+5 800=1 200(3x +4y )+5 800≥1 200·212xy +5 800=34600(当且仅当3x =4y 时取等号).故最低总造价是34 600元.8.一批救灾物资随26辆汽车从某市以v km/h 的速度匀速直达灾区,已知两地公路线长400 km ,为了安全起见,两辆汽车的间距不得小于(v 20)2 km ,那么这批物资全部安全到达灾区,最少需要多少小时? 【解析】 第一辆汽车到达用400v h ,由题意每隔(v 20)2v h 到达一辆汽车, ∴400v +25×(v 20)2v =400v +v 16≥2400v ×v 16=10(h), 当且仅当400v =v 16,v =80 km/h 时取等号. ∴每辆汽车以80 km/h 的速度行驶,最少需10 h 这批物资全部安全到达灾区.9.(10分)工厂对某种原料的全年需要量是Q 吨.为保证生产,又节省开支,打算全年分若干次等量订购,且每次用完后可立即购买.已知每次订购费用是a 元.又年保管费用率是p ,它与每次购进的数量(x 吨)及全年保管费(S 元)之间的关系是S =12px .问全年订购多少次才能使订购费与保管费用之和最少?并求这个最少费用的和(为简便计算,不必讨论订购次数是否为整数).【解析】 设每次购进的数量为x 吨,则全年定购费用=a ·Q x ,全年保管费S =12px , 定购费与保管费之和y =a ·Q x +12px . 由于a ·Q x +12px ≥212paQ =2paQ , 当且仅当a ·Q x =12px ,即x =2aQp p时取等号, 即最优批量订购数为x 0=2aQp p(吨), 最小费用数为y min =2paQ (元),全年最佳定购次数n =Q x 0=2paQ 2a(次). 故全年订购2paQ 2a次,才能使全年的订购费用与保管费用之和最少,最少费用为2paQ 元.高$考じ试(题╬库。

高中数学人教B版必修5分层测评试题19不等式的实际应用含解析

高中数学人教B版必修5分层测评试题19不等式的实际应用含解析

<6%,
x+ 200
解得 x 的范围是 (100,400).
【答案】 (100,400) 8.如图 3-4-4,有一张单栏的竖向张贴的海报,它的印刷面积为 72 dm2(图 中阴影部分 ),上下空白各宽 2 dm,左右空白各宽 1 dm,则四周空白部分面积的 最小值是 ______dm2.
3
图 3-4-4
学业分层测评 (十九 ) 不等式的实际应用
(建议用时: 45 分钟 )
[ 学业达标 ]
一、选择题
1.某出版社,如果以每本 2.50 元的价格发行一种图书, 可发行 80 000 本.如
果一本书的定价每升高 0.1 元,发行量就减少 2 000 本,那么要使收入不低于 200
000 元,这种书的最高定价应当是 ( )
物的运输费用与仓库到车站距离成正比. 如果在距离车站 10 km 处建仓库, 则土
地费用和运输费用分别为 2 万元和 8 万元,那么要使两项费用之和最小, 仓库应
建在离车站 ( )

A .5 km 处
B.4 km 处
C.3 km 处
D.2 km 处
【解析】
设仓库建在离车站
x km 处,则土地费用
k1 y1= x (k1≠0),运输费
图 3-4-6 (1)要使矩形 AMPN 的面积大于 32 平方米,则 DN 的长应在什么范围内? (2)当 DN 的长度为多少时,矩形花坛 AMPN 的面积最小?并求出最小值 .【导 学号: 33300101】 【解】 (1)设 DN 的长为 x(x> 0)米, 则|AN|=(x+2)米. ∵||DANN||= ||DAMC||,
耗,决定按销售收入的
t%征收木材税, 这样每年的木材销售量减少

不等式应用专项训练练习题含答案

不等式应用专项训练练习题含答案

基本不等式专项训练(应用题)1、某自助餐店每天的顾客人数在50至130人之间,顾客人数x (人)与顾客的消费总额y(元)之间近似地满足关系100002402-+-=x x y .那么顾客的人均消费额最高为多少元.2、某商店经销某种洗衣粉,其年销售总量为6000包,每包进价为2.8元,销售价为3.4元,全年分若干次进货,每次进货均为x 包,已知每次进货运输劳务费为62.5元,全年的保管费为x 23元.为了使全年总利润最大,每次应该进货多少包? 3、(2008年广东文科高考题)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为(10)x x ≥层,则每平方米的平均建筑费用为56048x +(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)4、国际上钻石的重量计量单位为克拉.已知某种钻石的价值v (美元)与其重量ω(克拉)的平方成正比.现欲把一颗重量为a 克拉的钻石切割成两颗钻石,问当它们的重量比为何值时,价值损失的比率最大. 注:价值损失的比率原有价值现有价值原有价值-=,在切割过程中的重量损耗忽略不计. 5、一批救灾物质随17列火车以h vkm /的速度匀速直达km 400外的灾区,为了安全起见,两列火车的间距不得小于km v 2)20(,求这批物质运送到灾区最小需要多少小时。

6、渔场中鱼群的最大养殖量是m 吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量.已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲率乘积成正比,比例系数为)0(>k k 。

(1)写出y 关于x 的函数关系式,并指出这个函数的定义域;(2)求鱼群年增长量的最大值;7、某单位决定投资3200元建一仓库(长方体状)高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,为使s 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?8、(2009湖北高考题)围建一个面积为3602m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/2m ,新墙的造价为180元/2m ,设利用的旧墙的长度为x (单位:元)。

一元一次不等式的实际问题

一元一次不等式的实际问题

一元一次不等式的实际问题一元一次不等式是数学中常见的一种形式,可以用来描述现实生活中的很多实际问题。

在本文中,我们将探讨一元一次不等式的应用,介绍一些实际问题,并给出相应的解决方法。

1. 简单的一元一次不等式问题首先,我们来看一个简单的一元一次不等式问题。

假设某人的年收入为x万元,他的生活开销为y万元。

已知他的年收入在5万至10万元之间,生活开销不能超过年收入的30%。

我们可以用以下不等式来描述这个问题:5 ≤ x ≤ 10y ≤ 0.3x其中,第一个不等式表示年收入的范围,第二个不等式表示生活开销不能超过年收入的30%。

解决这个问题的方法是找到满足这两个不等式的解集。

根据第一个不等式,x的取值范围是[5, 10],根据第二个不等式,y的取值范围是[0, 0.3x]。

因此,满足两个不等式的解集可以表示为:5 ≤ x ≤ 100 ≤ y ≤ 0.3x这个解集表示了满足条件的年收入和生活开销的取值范围。

2. 一元一次不等式在实际问题中的应用一元一次不等式可以应用于很多实际问题中,例如经济学、物理学、工程学等领域。

下面我们来看一些具体的例子。

例子1:生产成本与产量的关系假设某个工厂的生产成本和产量之间存在如下关系:生产成本每增加一单位,产量将减少2单位。

已知当生产成本为1000万元时,产量为5000单位。

我们可以用以下不等式来描述这个问题:x ≥ 1000y ≤ 5000 - 2(x - 1000)其中,x表示生产成本(单位:万元),y表示产量(单位:单位)。

解决这个问题的方法是找到满足不等式的生产成本和产量的取值范围。

根据第一个不等式,生产成本的取值范围是[x ≥ 1000],根据第二个不等式,产量的取值范围是[y ≤ 5000 - 2(x - 1000)]。

因此,满足两个不等式的解集可以表示为:x ≥ 1000y ≤ 5000 - 2(x - 1000)这个解集表示了满足条件的生产成本和产量的取值范围。

不等式的应用(带答案)

不等式的应用(带答案)

不等式(组)的实际应用1.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。

(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍。

若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?解答:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,{1.51.2660.150.29,解得:{2030,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,1.5(20a)+1.2(30+1.5a)⩽69,解得:a⩽10,答:A种设备购进数量至多减少10套。

2.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将会给乘客带来美的享受。

星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方。

已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨。

(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?解答:(1)设一辆大型渣土运输车一次运输x吨,一辆小型渣土运输车一次运输y 吨,{23315670,解得{85.即一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨;(2)由题意可得,设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x辆、y 辆,2085y⩾148y⩾2,解得{182或{173或{164,故有三种派车方案,第一种方案:大型运输车18辆,小型运输车2辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆。

中考数学重难点突破专题三:方程、不等式的实际应用问题试题(含答案)

中考数学重难点突破专题三:方程、不等式的实际应用问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题三 方程、不等式的实际应用问题类型1 方程(组)、不等式的应用问题1.(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2,答:甲队胜了8场,负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5,∵a 为整数,∴a 最小=6,答:乙队在初赛阶段至少要胜6场.2.(2017·玉林)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.解:(1)设购买A 种花木x 棵,B 种花木y 棵,则:⎩⎪⎨⎪⎧x +y =10050x +100y =8000,解得:⎩⎪⎨⎪⎧x =40y =60,答:购买A 种花木40棵,B 种花木60棵;(2)设购买A 种花木a 棵,则购买B 种花木(100-a)棵,根据题意,得:100-a ≥a ,解得:a ≤50,设购买总费用为W ,则W =50a +100(100-a)=-50a +10000,∵W 随a 的增大而减小,∴当a =50时,W 取得最小值,最小值为7500元,3.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少 kg?解:(1)设批发西红柿x kg ,西兰花y kg.由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元). 答:两种蔬菜当天全部售完一共能赚960元钱.(2)设批发西红柿a kg ,由题意得(5.4-3.6)a +(14-8)×1520-3.6a 8≥1050.解得a ≤100. 答:该经营户最多能批发西红柿100 kg.类型2 方程(组)、不等式与函数的应用问题4.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?解:(1)设每吨水的政府补贴优惠价和市场调节价分别为a 元,b 元.依题意得⎩⎪⎨⎪⎧12a +12b =42,12a +8b =32.解得⎩⎪⎨⎪⎧a =1,b =2.5. 答:每吨水的政府补贴优惠价1元,市场调节价2.5元.(2)当0≤x ≤12时,y =x.当x >12时,y =12+2.5(x -12),即y =2.5x -18.∴y =⎩⎪⎨⎪⎧x (0≤x ≤12)2.5x -18(x >12) (3)当x =26时,y =2.5×26-18=65-18=47(元).答:小黄家三月份应交水费47元.5.某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141.解得{x =30,y =27.答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x ≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180.∴y =⎩⎪⎨⎪⎧30x (0<x ≤20)21x +180(x >20) (3)设购进玩具z 件(z >20),则乙种玩具消费27z 元;当27z =21z +180,则z =30.所以当购进玩具正好30件,选择购其中一种即可;当27z >21z +180,则z >30.所以当购进玩具超过30件,选择购甲种玩具省钱;当27z <21z +180,则z <30.所以当购进玩具多于20件少于30件,选择购乙种玩具省钱.6.(2017·郴州)某工厂有甲种原料130 kg ,乙种原料144 kg .现用这两种原料生产出A ,B 两种产品共30件.已知生产每件A 产品需甲种原料5 kg ,乙种原料4 kg ,且每件A 产品可获利700元;生产每件B 产品需甲种原料3 kg ,乙种原料6 kg ,且每件B 产品可获利900元.设生产A 产品x 件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A ,B 两种产品的方案有哪几种;(2)设生产这30件产品可获利y 元,写出y 关于x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.解:(1)根据题意得:⎩⎪⎨⎪⎧5x +3(30-x )≤1304x +6(30-x )≤144,解得18≤x ≤20,∵x 是正整数,∴x =18、19、20,共有三种方案:方案一:A 产品18件,B 产品12件,方案二:A 产品19件,B 产品11件,方案三:A 产品20件,B 产品10件; (2)根据题意得:y =700x +900(30-x)=-200x +27000,∵-200<0,∴y 随x 的增大而减小,∴x =18时,y 有最大值,y 最大=-200×18+27000=23400元.答:方案一利润最大,最大利润为23400元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业18 不等式的实际应用时间:45分钟 满分:100分课堂训练1.某工厂第一年产量为A ,第二年产量的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b2 B .x ≤a +b2 C .x >a +b2D .x ≥a +b2【答案】 B【解析】 由题设有A (1+a )(1+b )=A (1+x )2,即x =1+a1+b -1≤1+a +1+b 2-1=a +b2. ~2.设产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -(0<x <240,x ∈N +),若每台产品的售价为25万元,则生产者不亏本时(销售收入不少于总成本)的最低产量是( )A .100台B .120台C .150台D .180台【答案】 C【解析】 设利润为f (x )万元,则f (x )=25x -(3 000+20x -=+5x -3 000,令f (x )≥0,则x ≥150,或x ≤-200(舍去),所以生产者不亏本时的最低产量是150台.3.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次.一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.【答案】 20【解析】 每年购买次数为400x次,∴总费用为400x·4+4x ≥2 6 400=160,当且仅当1 600x=4x ,即x =20时等号成立.故x =20.:4.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为,同时预计年销售量增加的比例为.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为保证本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内【分析】 根据题意,分别求出出厂价和投入成本、年销售量,然后代入利润的表达式求出利润函数,最后构造不等式求解出满足要求时,投入成本增加的比例x 的范围.【解析】 (1)依题意得y =[×(1+-1×(1+x )]×1 000×(1+(0<x <1).整理,得:y =-60x 2+20x +200(0<x <1). (2)要保证本年度的年利润比上年度有所增加,】当且仅当⎩⎪⎨⎪⎧y --1×1 000>00<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >00<x <1,解不等式组,得0<x <13.答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足0<x <.课后作业一、选择题(每小题5分,共40分)1.某居民小区收取冬季供暖费,根据规定,住户可以从以下两种方案中任选其一:(1)按照使用面积缴纳,每平方米4元;(2)按照建筑面积缴纳,每平方米3元.李明家的使用面积是60平方米.如果他家选择第(2)种方案缴纳供暖费较少,那么他家的建筑面积最多不超过( )A .70平方米B .80平方米C .90平方米D .100平方米,【答案】 B【解析】 根据使用面积李明家应该缴纳的费用为60×4=240元.设李明家的建筑面积为x 平方米,则根据题意得3x <240 , ∴x <80,∴建筑面积不超过80平方米时,满足题意. 2.一个车辆制造厂引进一条摩托车整车装配流水线,该流水线生产的摩托车数量x 辆与创造的价值y 元之间关系为y =-4x 2+440x ,那么它在一个星期内大约生产________辆摩托车才能创收12 000元以上( )A .(50,60)B .(100,120)C .(0,50)D .(60,120)【答案】 A|【解析】由题意-4x2+440x>12 000,∴x2-110x+3 000<0,即x(110-x)>3 000.把选项中的端点值代入验证得只有A正确.3.制作一个面积为1m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(够用,又耗材量少)是( ) A.4.6m B.4.8mC.5m D.5.2m【答案】C、【解析】设三角形两直角边长分别为a m,b m,则ab=2,周长L=a+b+a2+b2≥2ab+2ab=(2+2)·ab,当且仅当a=b时等号成立,即L≥2+22≈,故应选C.4.若a、b、m∈R+,a<b,将a g食盐加入到(b-a)g水中,所得溶液的盐的质量分数为p1,将(a+m)g食盐加入到(b-a)g水中,所得溶液的盐的质量分数为p2,则( )A.p1<p2B.p1=p2C.p1>p2D.不确定【答案】A【解析】p1=ab,p2=a+mb+m,作差比较知p1<p2.5.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减少耕地损失,决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少52t万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,则t的取值范围是( )A .[1,3]B .[3,5] :C .[5,7]D .[7,9]【答案】 B【解析】 由题意列不等式24 000×(20-52t )×t %≥9 000,即24100(20-52t )t ≥9 ,所以t 2-8t +15≤0,解得3≤t ≤5,故当耕地占用税的税率为3%~5%时,既可减少耕地损失又可保证此项税收一年不少于9 000万元.6.某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10公里处建仓库,这两项费用y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A .5公里B .4公里C .3公里D .2公里【答案】 A【解析】 设仓库与车站距离为d ,则y 1=k 1d,y 2=k 2d ,由题意知: …2=k 110,8=10k 2,∴k 1=20,k 2=.∴y 1+y 2=20d+≥216=8,当且仅当20d=即d =5时,等号成立.∴选A.7.某汽车运输公司买一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N +)为二次函数关系(如图所示),则每辆客车营运的年平均利润最大时,劳动了( )A .3年B .4年C .5年D .6年…【答案】 C【解析】 设y =a (x -6)2+11, 由条件知7=a (4-6)2+11,∴a =-1. ∴y =-(x -6)2+11=-x 2+12x -25.∴每辆客车营运的年平均利润y x =-x 2+12x -25x =-(x +25x)+12≤-225+12=2,当且仅当x =25x,即x =5时等号成立,故选C.8.甲、乙两人同时从A 地到B 地,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到B 地 B .乙先到B 地C .两人同时到B 地D .谁先到B 地无法确定~【答案】 B【解析】 设从A 地到B 地的路程为S ,步行速度为v 1,跑步速度为v 2且v 1≠v 2,∴t 甲=S 2v 1+S 2v 2=S v 1+v 22v 1v 2,t 乙=2Sv 1+v 2,∴t 甲t 乙=v 1+v 224v 1v 2≥4v 1v 24v 1v 2=1, 当且仅当v 1=v 2时取等号.又∵v 1≠v 2,∴t 甲>t 乙,故乙先到,故选B. 二、填空题(每小题10分,共20分)!9.现有含盐7%的食盐水200 g ,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水x g ,则x 的取值范围是________.【答案】 (100,400)【解析】 由条件得:5%<200×7%+4%x200+x <6%,即5<200×7+4x 200+x<6.解得:100<x <400.所以x 的取值范围是(100,400).10.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.【答案】 80【解析】 由题意得平均每件产品生产准备费用为800x元.仓储费用为x8元,得费用和为800x +x 8≥2800x ·x8=20.,当800x =x8,即x =80时等号成立.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.某企业上年度的年利润为200万元,本年度为适应市场需求,计划提高产品档次,适度增加投入成本,投入成本增加的比例为x (0<x <1).现在有甲、乙两种方案可供选择,通过市场调查后预测,若选用甲方案,则年利润y 万元与投入成本增加的比例x 的函数关系式为y =f (x )=-20x 2+60x +200(0<x <1);若选用乙方案,则y 与x 的函数关系式为y =g (x )=-30x 2+65x +200(0<x <1).试根据投入成本增加的比例x ,讨论如何选择最合适的方案.【分析】 利用作差比较法比较f (x )与g (x )的大小. 【解析】 f (x )-g (x )=(-20x 2+60x +200)-(-30x 2+65x +200)=10x 2-5x .由10x 2-5x >0,解得x >12,或x <0(舍去).所以当投入成本增加的比例x ∈(0,12)时,选择乙方案;当投入成本增加的比例x ∈(12,1)时,选择甲方案;当投入成本增加的比例x =12时,选择甲方案或乙方案都可以.【规律方法】 解决实际问题时要注意未知数的取值范围,如本题中x ∈(0,1).12.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/时).假设汽油的价格是每升2元,而卡车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用. 【解析】 (1)行车所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x ,x ∈[50,100],所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x , 即x =1810时,上述不等式中等号成立,所以当x =1810时,这次行车的总费用最低,最低费用为2610元.。

相关文档
最新文档