函数连续 函数可微 函数可导 偏导数存在 偏导数连续之间的关系

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即设y=f(x)是一个单变量函数,如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。

如果一个函数在x0处可导,那么它一定在x0处是连续函数。

函数可导定义:

(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。

(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。连续函数可导条件:函数在该点的左右偏导数都存在且相等。

即就是一个函数在某一点求极限,如果极限存在,则为可导,若所得导数等于函数在该点的函数值,则函数为连续可导函数,否则为不连续可导函数2、连续

函数连续必须同时满足三个条件:函数在x0处有定义;x->x0极限limf(x)存在;x->x0时limf(x)=f(x0)

定理有:函数可导必然连续;不连续必然不可导。

定义:设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy 有关系Δy=A×Δx+ο(Δx)

其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx

当x= x0时,则记作dy∣x=x0.

可微条件:

必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在。

充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

4、可积函数定义

如果f(x)在[a,b]上的定积分存在,我们就说f(x)在[a,b]上可积。即f(x)是[a,b]上的可积函数。

函数可积的充分条件

定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。

定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。

可积的必要条件:

被积函数在闭区间上有界。

总结:

对于一元函数:

函数连续不一定可导例如y=|x|

可导一定连续即连续是可导的必要不充分条件,可导是连续的充分不必要条件

函数可导必然可微

可微必可导即可导是可微的必要充分条件

相关文档
最新文档