磁致伸缩传感器

合集下载

磁致伸缩位移传感器的故障处理

磁致伸缩位移传感器的故障处理

磁致伸缩位移传感器的故障处理磁致伸缩位移传感器是一种用于测量物体位移的传感器,它是通过磁致伸缩效应来工作的。

该传感器的故障处理是非常重要的,因为它在许多应用中扮演着关键角色。

在本文中,我们将讨论磁致伸缩位移传感器的常见故障及其处理方法。

常见故障磁致伸缩位移传感器的常见故障包括:1.电源问题:传感器的电源接触不良或电源线短路等问题会导致传感器不能正常工作。

2.脏污问题:传感器的工作中需要使用磁场,而磁场会被各种颗粒、尘埃污染。

长时间不清洁会导致磁场减弱,影响传感器的测量准确性。

3.信号问题:传感器有时无法发送正确的信号,导致数据不准确、不稳定等问题。

这可能与传感器本身的设计有关,或是由于线路接触不良、信号干扰等原因引起的。

处理方法电源问题处理传感器的电源问题,首先需要检查传感器所使用的电源线、插头和接头是否有磨损或许多氧化物。

检查连接是否牢固、是否接触良好,以确保电源线的正常供电有了保障。

如果需要更换电源线/插头/接头,要确保存在匹配和良好的质量。

脏污问题处理传感器的脏污问题,首先需要在擦拭前关闭传感器。

使用干净的布或纸擦拭传感器,避免使用含有化学品的清洁剂,以防止对传感器材料的损坏。

如有顽固污垢,可以使用软刷子轻刷。

信号问题处理传感器的信号问题,要先检查传感器的线路是否接触良好、是否有无用连接等问题。

使用正确的连接线仔细连接。

目前,也出现了无线连接的传感器,避免线路接触不良、信号干扰等问题。

同时,如果传感器的信号引脚严重氧化,可以使用一些特殊的清洁剂进行处理。

注意事项在处理磁致伸缩位移传感器故障时,需要注意以下几点:1.传感器是一种非常精密的仪器,因此处理时要非常细心,避免对其材料造成损害。

2.处理前,需要开关关闭传感器并拔掉电源插头,以防止受到电击。

3.要遵循传感器制造商的使用说明书,阅读其注意事项。

4.避免在使用时,该传感器受到高温、酸碱和强磁场的影响。

结论磁致伸缩位移传感器是一种非常重要的传感器,但在使用过程中常常出现故障。

磁致伸缩位移传感器安装标准

磁致伸缩位移传感器安装标准

磁致伸缩位移传感器安装标准
磁致伸缩位移传感器的安装标准如下:
1.选择合适的安装位置。

应安装在干燥、无尘、无腐蚀性气体的地方,远离高温环境和振动源。

同时,应确保传感器在安装过程中不受外力影响,以免损坏敏感部件。

2.固定传感器。

根据传感器的安装方式,选择合适的固定方法将传感器固定在安装板上。

在固定过程中,应注意不要使传感器受到过大的压力或摩擦力。

3.连接传感器与其他设备。

如果需要将磁致伸缩位移传感器与其他设备连接,可以使用相应的连接器和电缆进行连接。

在连接过程中,应注意接头的清洁和紧固力度,以免影响信号传输质量。

磁致伸缩位移传感器工作原理_磁致伸缩位移传感器使用注意事项

磁致伸缩位移传感器工作原理_磁致伸缩位移传感器使用注意事项

磁致伸缩位移传感器工作原理_磁致伸缩位移传感器使用注意事项1.磁致伸缩材料(MFC):磁致伸缩位移传感器的核心是一种特殊的材料,称为磁致伸缩材料。

当磁场通过磁致伸缩材料时,会产生应变效应,即材料的长度会发生变化。

这个效应是基于磁性颗粒在外加磁场作用下的定向排列和运动。

2.磁场感应:当外加磁场施加在磁致伸缩材料上时,磁场的强度会影响磁致伸缩材料的长度。

石墨烯可以通过生长在一块多晶硅衬底上的一层石墨进行实现。

由于石墨二维,磁场在它上面的作用导致电子受到强烈的定域束缚和孤对偶,从而使磁致伸缩材料的长度发生微小的改变。

3.引导电流:为了使磁致伸缩材料产生显著的位移,通常需要在材料中通过一定的电流。

这个引导电流是通过一个绕在磁致伸缩材料周围的线圈产生的,在磁致伸缩材料上产生一个磁场,并改变材料的长度。

4.位移测量:磁致伸缩位移传感器测量的是磁致伸缩材料的长度变化,依靠测量线圈的电感变化来实现。

通常,传感器中的线圈和一个补偿线圈组成一个桥电路。

当位移发生时,线圈中的电感将发生变化,从而引起桥电路的不平衡。

通过测量桥电路的不平衡程度,可以得到磁致伸缩材料的位移。

1.温度影响:磁致伸缩位移传感器的性能受到温度的影响较大,应尽量避免将传感器暴露在过高或过低的温度环境中。

同时,应注意传感器的温度补偿特性,以确保测量结果的准确性。

2.磁场干扰:磁致伸缩位移传感器是通过磁场来产生位移的,因此传感器周围的外部磁场会对传感器的测量结果造成干扰。

应尽量将传感器远离强磁场或者通过屏蔽措施来减小磁场干扰。

3.安装位置:传感器的安装位置对测量结果的准确性有很大影响。

应尽量避免传感器受到过大的外力或振动,同时保持传感器与被测物体之间的固定距离。

4.防护措施:磁致伸缩位移传感器通常是一种精密仪器,应注意防护措施,避免传感器受到湿度、灰尘等外部环境的影响。

5.线路连接:在连接传感器的线路时,应注意正确连接线圈和桥电路,避免接触不良或短路等问题。

磁致伸缩位移传感器

磁致伸缩位移传感器

概述磁致伸缩位移(液位)传感器,通过内部非接触式的测控技术精确地检测活动磁环的绝对位置来测量被检测产品的实际位移值的;该传感器的高精度和高可靠性已被广泛应用于成千上万的实际案例中。

高精度和高可靠性已被广泛应用于成千上万的实际案例中。

由于作为确定位置的活动磁环和敏感元件并无直接接触,因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响。

此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。

传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。

由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。

提高检测的可靠性和使用寿命。

工作原理磁致伸缩位移(液位)传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。

测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。

测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。

快被电子室所检测到。

由于这个应变机械波脉冲信号在波导管内的传输时间和活动磁环与电子室之间的距离成正比,通过测量时间,就可以高度精确地确定这个距离。

由于输出信号是一个真正的绝对值由于输出信号是一个真正的绝对值,,而不是比例的或放大处理的信号而不是比例的或放大处理的信号,,所以不存在信号漂移或变值的情况不存在信号漂移或变值的情况,,更无需定期重标。

更无需定期重标。

技术参数测量对象测量对象::位置、速度(绝对速度),可测量1~2个位置个位置测量范围测量范围:50 mm :50 mm :50 mm~~8000mm零点可调范围零点可调范围:100%F.S :100%F.S输出方式输出方式: :电流电流:4:4:4~~20mA,20mA,最大负载电阻最大负载电阻最大负载电阻 600 600Ω电压电压:0:0:0~~10VDC 010VDC 0~~5VDC,5VDC,最低负载最低负载最低负载>5K >5K Ω精 度:分辨率分辨率::采用采用 16Bit D/A 16Bit D/A 16Bit D/A 转换,转换,转换,0.0015%F.S 0.0015%F.S 0.0015%F.S(最小(最小1μm )非线性:<±0.015%F.S(最小±50μm )重复精度:<±0.002%F.S(最小±3μm )迟 滞:<0.002%F.S.温度系数:<0.007%F.S./℃ 温度系数:<0.007%F.S./℃更新时间测量范围更新时间测量范围:<0.5ms/m :<0.5ms/m供电电源:+24VDC±10% 供电电源:+24VDC±10%工作电流工作电流:<50m A :<50m A工作温度工作温度:-40:-40:-40~+85℃ ~+85℃ ~+85℃储存温度储存温度:-40:-40:-40~+100℃ ~+100℃ ~+100℃零点零点//跨度调整跨度调整:100%:100%:100%有效行程(最小范围有效行程(最小范围25mm 25mm))分辨率分辨率:16bit,0.0015%(:16bit,0.0015%(:16bit,0.0015%(最小最小10um)线性度线性度:<+0.01%:<+0.01%:<+0.01%满量程满量程满量程((最小最小+50um) +50um)重复精度重复精度:<+0.001%:<+0.001%:<+0.001%满量程满量程满量程((最小最小+2.5um) +2.5um)滞 后:<4um刷新周期刷新周期:0.5ms :0.5ms 达到1200mm/1.0ms 达到2400mm/纹 波:2.0ms 达到4800mm/5.0ms 达到7600mm 行程长度行程长度速度测量速度测量:<0.01%:<0.01%:<0.01%满量程满量程满量程范 围:0.025m/s 至10m/s误 差:<0.5%分辨率分辨率:0.1mm/s :0.1mm/s刷新周期刷新周期::(ms ms)见位置测量)见位置测量)见位置测量温度系数温度系数:<30ppm/0C :<30ppm/0C结构材质测杆结构测杆结构::刚性测杆结构、外置一体式结构;刚性测杆结构、外置一体式结构;测杆材质测杆材质::不锈钢不锈钢 316 316 316、铝型材、铝型材、铝型材测杆耐压:≤34MPa(位移);液位:由所选浮子承压决定测杆耐压:≤34MPa(位移);液位:由所选浮子承压决定电子仓外壳电子仓外壳::铝合金铝合金安装接口安装接口::螺纹连接、固定座螺纹连接、固定座出线方式出线方式::直出电缆线、航空插头直出电缆线、航空插头防护等级防护等级:IP65:IP65:IP65(可根据要求定制(可根据要求定制(可根据要求定制 IP67 IP67 IP67 或或 IP68 IP68))产品特点及应用领域产品特点* * 内部非接触式测量内部非接触式测量内部非接触式测量* * 性能价格比高性能价格比高性能价格比高* * 多种输出方式可供选择多种输出方式可供选择多种输出方式可供选择* * 防浪涌、防射频干扰防浪涌、防射频干扰防浪涌、防射频干扰磁致伸缩的工作原理图* * 不需定期标定和维护不需定期标定和维护不需定期标定和维护* * 安装方便安装方便安装方便* * 高精度、高稳定性、高可靠性高精度、高稳定性、高可靠性高精度、高稳定性、高可靠性* * 使用寿命长使用寿命长使用寿命长* * 具有输入电源反向极性保护功能具有输入电源反向极性保护功能具有输入电源反向极性保护功能* * 结构精巧、环境适应性强结构精巧、环境适应性强结构精巧、环境适应性强* * 隔离防爆型(可选)隔离防爆型(可选)隔离防爆型(可选)应用领域(位移)* * 伺服液压油缸活塞位置反馈或预置伺服液压油缸活塞位置反馈或预置伺服液压油缸活塞位置反馈或预置* * 研磨机械位置反馈或预置研磨机械位置反馈或预置研磨机械位置反馈或预置* * 木材加工定位控制木材加工定位控制木材加工定位控制磁致伸缩位移传感器磁致伸缩位移传感器(4(4张)* * 水轮机导叶开度的检测与控制水轮机导叶开度的检测与控制水轮机导叶开度的检测与控制* * 纸张和塑料薄膜成型纸张和塑料薄膜成型纸张和塑料薄膜成型* * 挤注模具机械挤注模具机械挤注模具机械* * 吹塑吹塑吹塑* * 工程机械工程机械工程机械* * 金属成型金属成型金属成型//剪切冲压剪切冲压* * 其它机械定位和位移检测其它机械定位和位移检测其它机械定位和位移检测* * 水坝闸门水坝闸门水坝闸门* * * 伺服汽缸活塞位置反馈或预置伺服汽缸活塞位置反馈或预置伺服汽缸活塞位置反馈或预置* * 铸锻机床位移控制铸锻机床位移控制铸锻机床位移控制* * 注塑机模板定位与监测注塑机模板定位与监测注塑机模板定位与监测* * 汽轮机气阻阀门开度的检测与控制汽轮机气阻阀门开度的检测与控制汽轮机气阻阀门开度的检测与控制* * 玻璃压制玻璃压制玻璃压制* * 塑料机械改造塑料机械改造塑料机械改造* * 气动缸气动缸气动缸* * 钢材滚压钢材滚压钢材滚压* * 食品加工食品加工食品加工* * 港口机械港口机械港口机械* * 船舶舵机伺服系统船舶舵机伺服系统船舶舵机伺服系统应用领域(液位)可广泛应用于石油、化工、水利、制药、食品、饮料等行业的各种液罐的液位计量和控制,航天加油系统、汽车加油系统、柴油加油系统及各种液压罐、水文监测、水处理等。

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理磁致伸缩位移传感器(Magnetorestrictive Displacement Sensor)是一种能够测量物体位移的传感器。

它基于磁致伸缩效应,通过测量由磁体产生的磁场中磁器件的变化,来确定物体的位移。

磁致伸缩效应是指当磁性材料处于外加磁场中时,会发生形状和尺寸的变化。

这种变化是由于外加磁场引起磁性材料的磁矩重新排列所致。

具体来说,在磁场的作用下,磁性材料的磁矩会由于磁场的作用而重新排列,导致材料的长度和体积发生微小的变化。

当磁致伸缩杆处于外加磁场中时,磁致伸缩效应会导致磁致伸缩杆的长度发生微小的变化。

这个变化会导致探头上的磁场也发生相应的改变。

探头上的磁场是通过电流在传感器内部流过时在磁体上产生的。

测量磁致伸缩位移传感器的位移需要使用一个传感器电路进行分析。

这个电路主要由一个驱动电路和一个接收电路组成。

驱动电路主要负责通过传递电流来产生磁场,而接收电路则是负责测量探头上的磁场的变化。

驱动电路通常会通过在磁致伸缩杆上施加短脉冲电流来产生磁场。

这个磁场会沿着磁致伸缩杆的长度方向扩展。

同时,接收电路会测量探头上的磁场,这个磁场是受到磁致伸缩杆长度变化的影响的。

测量位移时,接收电路会测量磁致伸缩杆上磁场的两个特征:主磁场和包络线。

主磁场是磁致伸缩杆上磁场的强度,它与磁致伸缩杆的长度成比例。

包络线则是磁场的分布情况,它的变化与磁致伸缩杆的形状变化有关。

通过测量主磁场和包络线的变化,可以确定磁致伸缩杆的位移。

具体的测量方法可以通过对接收电路输出信号的分析来实现。

一些常见的分析方法包括使用频谱分析器、放大器和数据采集系统来测量磁场的变化。

总之,磁致伸缩位移传感器是一种基于磁致伸缩效应的传感器。

通过测量磁致伸缩杆上的磁场的变化,可以确定被测物体的位移。

这种传感器在很多领域中都有广泛的应用,例如测量机械运动、控制系统和自动化设备。

磁致伸缩位移传感器的工作原理

磁致伸缩位移传感器的工作原理

磁致伸缩位移传感器的工作原理
磁致伸缩位移传感器是一种基于磁敏效应的位移测量装置,主要用于测量目标物体的位移或位移的变化。

传感器由磁致伸缩材料(Magnetostrictive Material),驱动磁场发生器(Magnetostrictive Waveguide),测量导绳(Measure Rope)、磁场传感器(Magnetic Field Sensor)和计量电子器件等构成。

其工作原理如下:
1. 驱动磁场:驱动磁场发生器产生一个磁场,通过磁致伸缩材料传递到目标物体上。

2. 磁致伸缩效应:目标物体上的磁致伸缩材料受到驱动磁场的作用,发生磁致伸缩效应。

即在磁场的作用下,磁致伸缩材料的尺寸会发生微小的变化,产生一个微小的形变。

这个形变一般是微米级别的。

3. 传感器感应:磁致伸缩材料伸缩时,磁场传感器感应到磁场的变化。

磁场传感器可以是基于霍尔效应、磁电阻效应等的传感器,用于检测磁场的变化。

4. 信号处理:传感器将感知到的磁场变化信号转换成与目标物体位移相关的电信号。

这个电信号可以是电压、电流或其他形式的信号。

5. 位移计算:通过测量导绳测量目标物体上磁致伸缩材料伸缩的长度,结合信号处理得到的电信号,可以计算出目标物体的位移或位移的变化。

总的来说,磁致伸缩位移传感器利用磁致伸缩效应将目标物体的位移转化为磁场的变化,再通过磁场传感器和信号处理部分将磁场变化转化为电信号,最终可以得到目标物体的位移。

磁致伸缩传感器

磁致伸缩传感器

无内置式
Analog: 69mm SSI: 69mm DP: 96mm
最高 防护等级
指示灯
供货周期
售后服务
IP67 两个
8~10周

IP67

8~10周


8~10周





仅一个

IP68 两个 3~10个工作日 完善
与其他类型位移传感器比较
测量原理
电涡流式 LVDT 磁栅尺 光栅尺
电位计式 拉线式 磁致伸缩式
下一页
技术特点之六
● 内置光电隔离,有效防止共地干扰、静电干扰 ● 自恢复式保护功能,可同时保护控制器和传感器 ● 提供反极性30V、超压36V保护
下一页
技术特点之七
● 多目标、多液面、多界面的同时测量能力 ● 单传感器,超长检测距离,可达20米 ● 多传感器,任意长度组合功能
下一页
性能指标
测量范围 输出形式 供电电压 工作电流 负载特性 防护等级 测量死区 环境温度 存储温度 出线方式 电子仓材质 测杆材质 承压特性 螺纹接口
美国GEMCO公司.
意大利Eltra公司 瑞士ELCO公司
.意大利Gefran公司
与同类产品的性能比较
项目 分辨率 环境温度
接口形式
电子头长度
MTS
Analog: 69mm
1um -40℃~75 ℃ A,SSI,DP
SSI: 69mm
DP: 105mm
Analog: 57mm
Balluff 1um -40℃~85 ℃ A,SSI,DP
p 目前正在给国外著名品牌提供OEM产品 p 与MTS、巴鲁夫和TR等产—最短96小时 p 互换定制 —MTS、巴鲁夫、TR p 优质服务 —随时电话支持,必要时现场服务

磁致伸缩线性位移传感器的工作原理

磁致伸缩线性位移传感器的工作原理

磁致伸缩线性位移传感器的工作原理1.磁致伸缩效应:磁致伸缩效应是指在外加磁场作用下,磁致伸缩材料会产生长度的变化。

这种材料一般为具有磁性的金属合金,如钴铁合金和镍铁合金。

当外加磁场施加到磁致伸缩材料上时,材料中的磁矩会与磁场相互作用,从而使材料发生形变。

这种形变可以是线膨胀(正磁致伸张)或线收缩(负磁致伸缩),具体取决于材料的特性和磁场的方向。

2.霍尔效应:霍尔效应是指当电流通过磁场作用下的半导体材料时,会产生电势差。

磁致伸缩传感器通常采用霍尔元件作为位移测量的敏感元件,具有良好的灵敏度和稳定性。

这种传感器的霍尔元件由P型半导体和N型半导体组成,在磁场的作用下,通过适当的连接方式,可以测量出电势差的大小和方向。

基于上述原理,磁致伸缩线性位移传感器的工作流程如下:1.传感器的霍尔元件和磁致伸缩材料分别连接到电路中,形成电路回路。

2.当外加电流通过霍尔元件时,霍尔元件产生的电势差与磁场的强度和方向成正比。

3.当外加磁场施加到磁致伸缩材料上时,材料发生形变,其长度发生变化。

4.磁致伸缩材料的形变导致霍尔元件受到压力或张力的作用,从而影响霍尔元件所产生的电势差。

5.通过测量霍尔元件产生的电势差,可以间接地得知磁致伸缩材料的形变情况,从而推导出物体的位移。

需要注意的是,磁致伸缩线性位移传感器在实际应用中需要进行校准,以提高测量的准确性和精度。

传感器的校准过程一般包括获取传感器的标准输出信号和实际位移值之间的对应关系,通过标定曲线或者数学模型来实现。

同时,传感器还要考虑外界磁场干扰、温度变化和机械振动等因素对测量精度的影响,采取相应的措施来进行抗干扰和稳定性优化。

《磁致伸缩直线位移传感器弹性波机理研究》

《磁致伸缩直线位移传感器弹性波机理研究》

《磁致伸缩直线位移传感器弹性波机理研究》篇一一、引言磁致伸缩直线位移传感器(Magnetostrictive Linear Position Sensor)作为一种重要的位移测量装置,具有高精度、高稳定性和高响应速度等特点,广泛应用于各种自动化系统和工业测量中。

该传感器利用磁致伸缩效应(Magnetostrictive effect)原理,通过测量磁性材料在磁场作用下的伸缩变化,实现位移的精确测量。

本文旨在研究磁致伸缩直线位移传感器的弹性波机理,分析其工作原理及影响因素,为进一步提高其测量精度和稳定性提供理论依据。

二、磁致伸缩效应及传感器结构磁致伸缩效应是指磁性材料在磁场作用下发生伸缩变形的现象。

磁致伸缩直线位移传感器主要由磁性材料、传感器线圈、永磁体等部分组成。

当传感器线圈中通过电流时,会产生磁场,该磁场与永磁体相互作用,使磁性材料发生伸缩变形。

这种变形量与电流大小及方向密切相关,从而实现了位移的测量。

三、弹性波机理研究1. 弹性波的产生与传播在磁致伸缩直线位移传感器中,当磁场作用于磁性材料时,材料内部会产生应力波,即弹性波。

这种弹性波以一定的速度在材料内部传播,并引起材料的伸缩变形。

弹性波的产生与传播受材料性质、磁场强度及频率等因素的影响。

2. 弹性波的传播特性弹性波在传播过程中具有特定的传播速度和传播路径。

传播速度与材料密度、弹性模量等性质有关。

此外,传播路径还会受到传感器结构、外界干扰等因素的影响。

因此,了解弹性波的传播特性对于提高传感器的测量精度和稳定性具有重要意义。

3. 影响因素分析(1)材料性质:磁性材料的性质对弹性波的产生与传播具有重要影响。

不同材料的密度、弹性模量等性质不同,导致弹性波的传播速度和传播路径存在差异。

因此,选择合适的磁性材料是提高传感器性能的关键。

(2)磁场强度与频率:磁场强度和频率直接影响弹性波的产生与传播。

增大磁场强度或提高频率,可提高传感器的响应速度和测量范围。

MTS磁致伸缩位移传感器介绍

MTS磁致伸缩位移传感器介绍

MTS磁致伸缩位移传感器介绍MTS磁致伸缩位移传感器是一种用于测量机械系统中位置或位移变化的传感器。

该传感器利用磁致伸缩(Magnetorestrictive)效应的原理,实现对线性位移的测量。

以下是对MTS磁致伸缩位移传感器的详细介绍。

1.磁致伸缩效应磁致伸缩效应是指当一些磁性材料处于磁场中时,它们会发生尺寸变化的现象。

MTS磁致伸缩位移传感器利用这种效应来测量位移。

传感器本身包含一个磁性杆或磁性线圈和一个磁致伸缩材料(通常是铁镍合金)构成的测量杆。

当传感器施加外部磁场时,磁致伸缩材料会发生长度的微小变化,这个变化可以被传感器测量出来。

2.传感器构造MTS磁致伸缩位移传感器通常由测量杆、螺母、固定杆和电子单元组成。

测量杆是由磁致伸缩材料制成的,能够伸缩并测量位移。

螺母连接在测量杆的一端,用于支撑和调整测量杆的位置。

固定杆连接在螺母的另一端,将传感器固定在测量对象上。

电子单元位于传感器的一端,负责接收和处理传感器测量的位移信号。

3.工作原理当外部磁场作用在磁致伸缩传感器上时,测量杆中的磁致伸缩材料会产生微小的变化。

这种变化由电子单元感应,并转换为电信号输出。

电子单元中的传感器电路会测量和记录这个位移信号,并将其转换为数字信号或模拟信号用于后续数据处理。

4.优点和应用-高精度:磁致伸缩效应本身具有很高的精度,因此MTS传感器能够提供高度准确的位移测量。

-可靠性:传感器的构造简单且稳定,具有较高的可靠性和长寿命。

-多功能:传感器可用于各种不同的应用领域,如机械工程、汽车制造、航空航天等。

-机械工程:用于测量机械系统的位置或位移变化,监控机械结构的偏差和拉伸等参数。

-汽车制造:用于车辆悬挂系统的位移测量、转向系统的位置反馈等。

-航空航天:用于测量飞机机翼、尾翼等部件的位移和形变,确保飞行器的稳定性和安全性。

-建筑工程:用于测量建筑物结构的振动和变形,确保结构的稳定性和安全性。

总之,MTS磁致伸缩位移传感器具有高精度、可靠性和多功能的特点,广泛应用于多个不同领域中的位移测量和控制方面。

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理磁致伸缩位移传感器是一种常用于测量微小位移的传感器,它利用磁致伸缩效应来实现对被测物体位移的测量。

该传感器具有测量范围广、精度高、响应速度快等优点,因此在工业自动化控制、机械制造、航空航天等领域得到了广泛的应用。

磁致伸缩位移传感器的原理是利用磁致伸缩效应来实现对位移的测量。

磁致伸缩效应是指当磁性材料处于外加磁场中时,其长度会发生变化的现象。

这种现象是由于磁性材料内部的磁矩在外加磁场的作用下重新排列而引起的。

当外加磁场增大时,磁性材料的长度会随之增加,反之则会减小。

利用这一原理,磁致伸缩位移传感器可以通过测量磁性材料的长度变化来实现对位移的测量。

磁致伸缩位移传感器通常由磁性材料、线圈和测量电路组成。

磁性材料可以是铁氧体、镍铁合金等材料,它们具有较大的磁致伸缩效应。

线圈通常被包裹在磁性材料的外部,当线圈中通以电流时,会在磁性材料中产生磁场,从而引起磁性材料的长度变化。

测量电路则用于测量线圈中的电流变化,进而计算出磁性材料的长度变化,从而得到被测物体的位移信息。

磁致伸缩位移传感器的工作原理可以简单概括为,当被测物体发生位移时,磁性材料的长度会发生变化,从而导致线圈中的电流发生变化;测量电路通过测量线圈中的电流变化来得到位移信息。

由于磁致伸缩效应的特性,磁致伸缩位移传感器具有高灵敏度、高分辨率和快速响应的特点,因此在工业自动化控制系统中得到了广泛的应用。

总之,磁致伸缩位移传感器利用磁性材料的磁致伸缩效应来实现对位移的测量,具有测量范围广、精度高、响应速度快等优点,适用于工业自动化控制、机械制造、航空航天等领域。

希望本文对磁致伸缩位移传感器的工作原理有所帮助。

磁致伸缩传感器原理

磁致伸缩传感器原理

磁致伸缩传感器原理
磁致伸缩传感器是一种常见的物理传感器,它利用磁致伸缩效应来测量物体的形变或位移。

其工作原理可以简单分为以下几个步骤:
1. 磁致伸缩材料:磁致伸缩传感器通常由磁致伸缩材料制成,如铁磁合金。

这种材料在外加磁场作用下会发生形变,即沿着磁场方向伸长或缩短。

2. 磁场感应:传感器会产生一个磁场,并将其施加到磁致伸缩材料上。

这个磁场可以由一个磁体或电磁铁产生。

3. 磁致伸缩效应:当施加磁场时,磁致伸缩材料会发生形变。

其沿着磁场方向伸长或缩短的程度与施加的磁场强度成正比。

4. 位移测量:通过测量磁致伸缩材料的形变,可以推导出物体的位移或形变。

这可以通过附加在磁致伸缩材料上的传感器来实现,如应变片、电阻片或感应线圈等。

5. 信号处理:传感器产生的位移信号通常是微弱的,需要经过放大、滤波和数字化等处理,以便进行进一步的分析和应用。

总的来说,磁致伸缩传感器利用施加磁场后磁致伸缩材料的形变来测量物体的位移或形变。

它具有高精度、高灵敏度和快速响应的特点,广泛应用于工业自动化、测量仪器、机器人和医疗设备等领域。

磁致伸缩位移传感器课件

磁致伸缩位移传感器课件
磁致伸缩位移传感器课件
目 录
• 磁致伸缩位移传感器概述 • 磁致伸缩位移传感器的组成与结构 • 磁致伸缩位移传感器的性能指标 • 磁致伸缩位移传感器的安装与调试 • 磁致伸缩位移传感器的使用与维护 • 磁致伸缩位移传感器的发展趋势与展望
01 磁致伸缩位移传感器概述
定义与工作原理
定义
磁致伸缩位移传感器是一种非接触式位移测量仪器,通过测量磁场变化来检测 物体的位移。
等方面的需求将增长。
医疗与健康领域
磁致伸缩位移传感器在医疗器械 、康复设备等领域的应用将逐渐 增多,助力医疗健康行业的技术
进步。
对未来发展的影响与价值
促进智能制造发展
磁致伸缩位移传感器作为智能制造的关键传感器之一,其技术创 新和应用拓展将推动智能制造产业的升级和发展。
提高生产效率和安全性
磁致伸缩位移传感器的高精度测量和智能化发展有助于提高生产过 程的自动化水平和安全性,减少人工干预和误差。
环境适应性
工作温度
是指传感器正常工作时所处的环境温 度范围。磁致伸缩位移传感器的温度 范围较宽,能够在较宽的温度范围内 正常工作。
抗干扰能力
是指传感器对周围环境的干扰因素的 抵抗能力。磁致伸缩位移传感器具有 较强的抗干扰能力,能够在较为复杂 的环境中正常工作。
04 磁致伸缩位移传感器的安 装与调试
安装注意事项
确保传感器安装位置无强烈震动和磁场干扰
磁致伸缩位移传感器对震动和磁场干扰敏感,因此应选择平稳、无磁场干扰的位置进行安 装。
正确连接电源和信号线
确保电源和信号线的连接牢固,避免出现接触不良或短路的情况。
调整安装支架高度
根据实际需要,调整安装支架的高度,以确保传感器与被测物体之间的距离合适。

磁致伸缩位移传感器工作原理

磁致伸缩位移传感器工作原理

磁致伸缩位移传感器工作原理磁致伸缩位移传感器是一种常用的位移测量装置,其工作原理基于磁致伸缩效应。

磁致伸缩效应是指在磁场中,某些材料会发生长度变化的现象。

磁致伸缩位移传感器利用这一效应,通过测量材料长度的变化来获得被测量物体的位移信息。

磁致伸缩位移传感器通常由磁致伸缩材料、磁场发生器和传感器三部分组成。

磁致伸缩材料是磁致伸缩位移传感器的核心部件,其具有特殊的物理性质,能够对外加磁场作出响应。

当磁场发生器产生磁场时,磁致伸缩材料内部的磁性颗粒会在磁场的作用下发生定向排列,从而引起材料的长度变化。

传感器部分是用于测量磁致伸缩材料长度变化的装置。

常见的传感器有磁敏电阻、霍尔元件等。

磁敏电阻是一种电阻随长度变化的元件,它的电阻值与磁致伸缩材料的长度成正比。

当磁致伸缩材料发生长度变化时,磁敏电阻的电阻值也会相应变化,通过测量电阻值的变化可以得到被测量物体的位移信息。

霍尔元件则是一种根据磁场强度变化产生电压信号的元件,通过测量霍尔元件的电压信号变化可以得到位移信息。

磁致伸缩位移传感器的工作原理可以通过以下步骤来描述:首先,磁场发生器产生一个磁场,作用于磁致伸缩材料上。

磁致伸缩材料内部的磁性颗粒在磁场的作用下发生定向排列,导致材料长度发生变化。

然后,传感器测量磁致伸缩材料长度的变化。

对于磁敏电阻传感器,测量其电阻值的变化;对于霍尔元件传感器,测量其电压信号的变化。

最后,通过将测量到的电阻值或电压信号转换为与位移相关的物理量,即可得到被测量物体的位移信息。

磁致伸缩位移传感器具有许多优点,如精度高、响应速度快、可靠性好等。

它广泛应用于机械制造、航空航天、自动化控制等领域,用于测量各种物体的位移、振动、形变等参数。

例如,在机械制造中,磁致伸缩位移传感器可以用于测量机械零件的位移,以实现对机械装置的控制和监测。

在航空航天领域,磁致伸缩位移传感器可以用于测量飞机翼展的变化,以实现对飞机的飞行状态进行监测和控制。

磁致伸缩位移传感器是一种基于磁致伸缩效应工作的位移测量装置。

磁致伸缩位移传感器的工作原理

磁致伸缩位移传感器的工作原理

磁致伸缩位移传感器的工作原理磁致伸缩(Magnetostrictive)位移传感器是一种常用于测量物体位移的传感器。

它利用了材料在磁场的作用下产生相应的形变,将这种形变转换为电信号,从而实现对物体位移的测量。

其工作原理可以分为磁致伸缩效应和差动变压原理两个方面。

首先,磁致伸缩效应是磁致伸缩位移传感器的关键原理之一、该效应是指磁性材料在磁场的作用下,在磁场方向上发生变化。

当磁场方向与其磁畴方向平行时,材料内部会出现磁畴的重排,磁畴的重排会导致材料的形变。

此时,磁致伸缩材料就会沿磁场方向发生形变,即产生磁致伸缩效应。

磁致伸缩位移传感器利用这种效应,通过测量材料形变的大小,来确定物体的位移。

其次,磁致伸缩位移传感器还利用差动变压原理实现物体位移的测量。

在磁致伸缩位移传感器中,通常会采用两个磁致伸缩材料,一个作为传感器材料,另一个作为参考材料。

这两个材料被固定在同一物体上,并且分别通过交流电源供电。

当加到这两个材料上的电流通过时,会在它们内部产生一个交变磁场。

这个交变磁场会使得这两个材料分别发生形变,形成两个相对移动的磁致伸缩杆。

其中一个磁致伸缩杆上带有一个用于产生磁场的磁极。

而这个磁极与另一个磁致伸缩杆相对静止,通过这个相对位移的变化,来测量物体的位移。

当物体的位移发生变化时,导致传感器材料和参考材料上的形变程度也会发生变化。

由于这两个磁致伸缩杆之间的瞬时相对位移的变化是线性的,所以传感器材料和参考材料上的形变差值也是相应线性变化的。

这种形变差值可以通过检测传感器电路中的电压信号来实现。

电路中通常会有一个电感元件,当通过交变电流时,会产生感应电势。

这个电势与传感器材料和参考材料之间的形变差值成正比,通过测量电压信号的大小,就能够确定物体的位移。

总结起来,磁致伸缩位移传感器利用磁致伸缩效应和差动变压原理实现对物体位移的测量。

它通过测量磁致伸缩材料的形变大小来确定位移,并将这种形变转换为电信号进行输出。

这种传感器可以应用于很多领域,例如工业自动化、机械设备等。

《磁致伸缩直线位移传感器弹性波机理研究》范文

《磁致伸缩直线位移传感器弹性波机理研究》范文

《磁致伸缩直线位移传感器弹性波机理研究》篇一一、引言磁致伸缩直线位移传感器作为一种重要的测距工具,具有广泛的应用场景。

本文将对这种传感器的工作原理进行详细阐述,特别关注其内部的弹性波机理。

磁致伸缩直线位移传感器主要是基于磁致伸缩效应以及弹波动力学的相关理论来运作,这两者的相互关系使得传感器的精确性和灵敏度得到了很大的提高。

本文的目的是为了深化我们对磁致伸缩直线位移传感器的工作原理的理解,特别是对其弹性波机理的深入探讨。

二、磁致伸缩效应与弹性波磁致伸缩效应是指某些物质在磁场的作用下,其长度或体积会发生变化的现象。

磁致伸缩直线位移传感器正是利用了这一特性,通过测量磁性材料在磁场变化时的长度变化来推算出位移。

在这个过程中,弹性波的传播起着关键的作用。

弹性波是物体在受到外力作用后产生的应力波,其传播速度和振幅与物体的材料性质、形状和尺寸等因素有关。

在磁致伸缩直线位移传感器中,当磁场发生变化时,磁性材料会产生应力,这种应力会以弹性波的形式在材料中传播。

三、磁致伸缩直线位移传感器的弹性波机理磁致伸缩直线位移传感器的弹性波机理主要涉及三个部分:磁场变化、磁致伸缩效应和弹性波的传播与接收。

首先,外部磁场的变化会引起磁性材料的磁致伸缩效应,即材料的长度或体积发生变化。

这种变化会产生应力,应力在材料中以弹性波的形式传播。

这种弹性波的传播速度、振幅和方向等信息都是可以用于推算出位移的重要参数。

其次,为了捕捉这种弹性波并转换为可测量的电信号,传感器中需要安装有相应的接收装置。

这些接收装置能够感应到弹性波的变化并将其转换为电信号,从而实现了位移的测量和输出。

四、实验研究与理论分析为了深入理解磁致伸缩直线位移传感器的弹性波机理,我们进行了大量的实验研究并进行了理论分析。

通过改变磁场强度、频率和方向等参数,我们观察到了不同的弹性波传播特性和传感器输出特性。

同时,我们也通过建立数学模型和仿真模拟等方法对这一过程进行了理论分析。

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理
磁致伸缩位移传感器是一种常用于测量物体位移的传感器。

它利用磁致伸缩效应来实现位移的测量。

磁致伸缩位移传感器由磁性材料制成,通常包含一个磁致伸缩材料和一个霍尔效应传感器。

磁性材料具有磁性,可以通过施加磁场来改变其尺寸。

当施加外加磁场时,磁性材料会发生磁致伸缩效应,即在磁场的作用下材料会产生形变。

这个形变可以是线性的,与磁场的大小成正比。

霍尔效应传感器用于测量磁性材料的形变。

霍尔效应传感器工作原理是基于霍尔效应的,霍尔效应是指当电流通过导体时,同时存在磁场时,电子会受到磁场力的作用而发生偏转,导致电压差的产生。

霍尔效应传感器利用这个效应来测量磁性材料的形变。

当施加外加磁场时,磁性材料发生形变,导致磁场在磁性材料上发生变化。

这个变化会被霍尔效应传感器检测到,从而产生相应的电压信号。

通过测量电压信号的变化,可以计算出磁性材料的形变量,即物体的位移。

磁致伸缩位移传感器由于其简单可靠的原理和高精度的测量能力,在工业、航空航天和科学研究等领域得到广泛应用。

它可以用于测量各种物体的位移,例如机械零件的位移、液位的变化等。

磁致伸缩传感器的工作原理

磁致伸缩传感器的工作原理

磁致伸缩传感器的工作原理简介磁致伸缩传感器(Magnetostrictive Sensors)是利用材料的磁致伸缩效应制成的一种传感器。

通过材料中的磁致伸缩效应,将磁信号转换成了机械信号,实现接近、转角等多种物理量的测量。

工作原理磁致伸缩传感器的工作原理是基于材料的磁致伸缩效应。

当磁场作用于铁磁材料时,材料将发生磁畴的磁向重排,从而引起材料的长度、形态、硬度等发生变化。

因此,在磁致伸缩传感器内部,可以利用外加的磁场来制造磁场流动,并对材料的磁致伸缩效应进行测量。

磁致伸缩传感器的工作原理是基于磁固化材料(或磁致伸缩材料)在外磁场作用下的磁化过程来实现的。

其中,它通过一个大磁场和一个小磁场来实现测量。

小磁场作用于磁致伸缩材料(或磁固化材料)中的磁畴,使其产生很小的应许旋转和变形,并引起材料的应变(磁致伸缩),由此即产生了横纵声波的传播。

当声波沿磁致伸缩材料传播到达其中的金属薄膜时,反射的超声波返回发射器,从而产生了时间差(t1-t2),这个时间差可以通过计算获得距离差。

这样,当小磁场改变时,由磁致伸缩效应引起的应变程度也会随之变化,进而影响反射的超声波时间差的大小,从而实现了对物理量的测量。

磁致伸缩传感器的测量范围与材料的磁致伸缩系数Δl/l以及测量电子器的分辨力有关,通常范围在1mm以内。

应用磁致伸缩传感器的应用范围很广,主要应用在机械工程、化工、电子制造、医药等领域。

比如:•机械工程:用于测量液体、粉末、气体、弹性体等的密度、位置、重量、压强、流量、速度等;•化工:用于液体物料的流量、输送量、液位等;•电子制造:用于集成电路的焊接、测量等;•医药:用于测量人体(动物)的血压、心电、脉搏、呼吸、体温等。

结论磁致伸缩传感器是通过材料的磁致伸缩效应将磁信号转化成机械信号的传感器,主要用于测量物理量在多个领域的应用。

在实际应用中,需要根据不同的测量对象来选取合适的磁致伸缩传感器进行检测。

《磁致伸缩直线位移传感器弹性波机理研究》

《磁致伸缩直线位移传感器弹性波机理研究》

《磁致伸缩直线位移传感器弹性波机理研究》篇一一、引言磁致伸缩直线位移传感器(Magnetostrictive Linear Position Sensor)是一种重要的位置测量技术,广泛应用于各种自动化、智能化的设备和系统中。

本文将对磁致伸缩效应下的弹性波机理进行研究,以期进一步优化该类传感器的性能,提升其在各个领域的实用性。

二、磁致伸缩效应基础理论磁致伸缩效应指的是磁场对磁性材料产生机械形变的现象。

当磁性材料受到外部磁场的作用时,其长度会发生变化,这一变化是可逆的,即当磁场消失时,材料会恢复原状。

磁致伸缩直线位移传感器正是利用这一原理进行工作。

三、弹性波在磁致伸缩材料中的传播在磁致伸缩材料中,当磁场发生变化时,会产生弹性波。

这种弹性波的传播规律,是理解磁致伸缩直线位移传感器工作原理的重要部分。

这种波是一种在固体介质中传播的应力波,它是由介质中的微粒间相互作力的改变所引发的机械能传递过程。

在磁致伸缩材料中,弹性波的传播速度、振幅等参数受到多种因素的影响,包括材料的物理性质、磁场的变化速率和强度等。

这些因素将直接影响弹性波的传播特性,进而影响传感器的测量精度和响应速度。

四、弹性波机理在磁致伸缩直线位移传感器中的应用在磁致伸缩直线位移传感器中,弹性波的传播和接收是测量位移的关键步骤。

当传感器中的磁性材料受到外部磁场的作用时,产生的弹性波会沿着材料传播,并由另一端的接收器接收。

通过测量弹性波的传播时间和强度等信息,就可以得到外部磁场的变化,进而确定被测物体的位置。

此外,对于弹性波在传播过程中的损耗问题也是影响传感器性能的关键因素。

研究人员需要通过改善材料性质和改进结构来减少弹性波的损耗,以提高传感器的性能。

五、实验与数据分析为了进一步了解和研究磁致伸缩直线位移传感器的弹性波机理,我们进行了一系列实验和数据分析。

实验结果表明,在不同条件下,弹性波的传播速度和振幅都有所不同。

通过对这些数据进行分析和处理,我们可以更深入地理解磁致伸缩效应下的弹性波机理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

50mm~3000mm,或根据客户需要定制 4~20mADC、0~10VDC模拟信号、SSI、ModBus、CanBus和Profibus等
24V直流(-15%~+20%) 小于90mA(随量程大小变化) 电压输出时最大负载2mA,电流输出时最大负载800Ω
IP65、IP67、IP68(定制) 首端死区:50.8mm ,末端死区:63.5mm(可根据客户需要调整)
磁致伸缩线性位移/液位传感器
内容提要
基本概念
{编码器
测量特性
工作原理 测量轨迹 变送(输出)方式
磁致伸缩效应
魏德曼效应
检测原理
几个关键数据
结构示意
Power -+
Counter
Power
Reg
Start
D/A
Stop
检波线圈
波导材料 末端阻尼
检测过程
Power
-+
Counter
Power Reg
实时可靠的绝对位置测量
● 极小更新时间,500mm以下<0.5ms(2000Hz) ● 非接触式测量,永不磨损,检测精度始终如新 ● 绝对位移测量,不受掉电影响,替代旋转编码器 ● 独特的检测方式,几乎不受热胀冷缩影响 ● 核心部件经过耐久性测试、冲击测试、振动测试
下一页
技术特点之三
丰富多样的电气接口类型
Start
N
D/A
Stop
S
技术特点
技术特点之一
无可比拟的环境适应性
● 不锈钢管外壳,精密焊接处理,耐压、防尘、抗 污 ● 耐压圆管外壳可达34MPa(长期)/69MPa(峰值) ● 电气防护等级达到IP65、IP67、IP68(定制) ● 工作环境温度范围可达 -40℃~+85℃
下一页
技术特点之二
量程(mm)
1~8 2~600 100~5000 50~3000 100~2000 约2~3m 50~3000
测量精度 响应频率 测量方式
±1um

±0.1%~0.5% 高
±10~50um 高
0.02%~0.05% 高
0.05%~0.2% 低
0.25%~0.5% 中
±0.025%

非接触 接触 非接触 非接触 接触 接触 非接触
● 内置式采用M18×1.5国标螺纹安装 ● 外置式采用铝型材导轨形式,对应开口磁环或滑块 ● 航空插头型号与同类产品兼容,并有相同的线序 ● 更换时可仅替换电子头部分,毋须拆卸耐压测杆
下一页
技术特点之五
友好高效的人机界面
● LED灯,实时状态显示 ● 特有便携式诊断仪,可方便判断传感器状态 ● 手持式编程器,可任意设置量程内某点为任意值
美国GEMCO公司.
意大利Eltra公司 瑞士ELCO公司
.意大利Gefran公司
与同类产品的性能比较
项目 分辨率 环境温度
接口形式
电子头长度
MTS
Analog: 69mm
1um -40℃~75 ℃ A,SSI,DP
SSI: 69mm
DP: 105mm
Analog: 57mm
Balluff 1um -40℃~85 ℃ A,SSI,DP
DP输出
1~2个 直流电流:4~20mA,20~4mA
直流电压:0~10V,10~0V 16位D/A或满量程的0.0015%
1个
24、25、26位SSI信号 采用二进制或格雷码方式
可达0.001mm
1~3个 标准Profibus-DP信号
0.005mm
<满量程的±0.015% 或 ±0.06mm(以较大者为准)

不同液位计的使用性能对比
静压式
超声式
误差大
误差中等
不能
不能
不能
不能




简单
简单
一般
一般
雷达式 精度高 不能 不能 一般
耐磨损 绝对位移
能力
测量
环境要求
很强

较高易磨损Βιβλιοθήκη 是较高易磨损

较高
中等


易磨损


易磨损

较高
很强
好 适应恶劣环境
使用成本
高 低 高 高 低 中等 适中
与其他类型液位传感器比较
液位 界面 温度 稳定性 体积 安装 价格
钢带式 误差大 不能 不能
差 大 复杂 低
伺服式 精度高 不能 不能 一般 一般 复杂
无内置式
Analog: 69mm SSI: 69mm DP: 96mm
最高 防护等级
指示灯
供货周期
售后服务
IP67 两个
8~10周

IP67

8~10周


8~10周





仅一个

IP68 两个 3~10个工作日 完善
与其他类型位移传感器比较
测量原理
电涡流式 LVDT 磁栅尺 光栅尺
电位计式 拉线式 磁致伸缩式
<满量程的±0.002% 或与分辨率一样
<30ppm/℃
0.5ms(行程<500mm ) / 1.0ms(行程<2000mm ) / 2.0ms(行程<4500mm )
其他品牌介绍
德国TR公司. 美国MTS公司.
德国Balluff公司 德国Novotech公司. 德国P+F公司 德国Turck公司.
下一页
技术特点之六
● 内置光电隔离,有效防止共地干扰、静电干扰 ● 自恢复式保护功能,可同时保护控制器和传感器 ● 提供反极性30V、超压36V保护
下一页
技术特点之七
● 多目标、多液面、多界面的同时测量能力 ● 单传感器,超长检测距离,可达20米 ● 多传感器,任意长度组合功能
下一页
性能指标
测量范围 输出形式 供电电压 工作电流 负载特性 防护等级 测量死区 环境温度 存储温度 出线方式 电子仓材质 测杆材质 承压特性 螺纹接口
● 模拟量输出:4~20mA和0~10VDC ● SSI输出:24位、25位和26位,二进制或格雷码 ● Profibus总线:完善的gsd文件,可自由组态 ● Canbus总线:可直接与计算机PCI卡连接 ● Modbus总线:RS485/232转换器与计算机直连
下一页
技术特点之四
易拆易用的机械安装方式
电子仓:-40℃~+85℃,测杆:-40℃~+100℃ -40℃~+100℃,
直出电缆线或航空插头 铝合金型材,不锈钢304
不锈钢304 可达34MPa(峰值69MPa)
M18×1.5,M20×1.5
测量参数
测量参数 磁环个数
输出接口
分辨率 非线性度 重复精度 温度系数 更新时间
模拟量输出
SSI输出
SSI: 74mm
DP: 102mm
TR 5um -40℃~75 ℃ A,SSI
Gefran 5um -40℃~70 ℃ A,SSI
86.5mm
Eltra 5um -40℃~70 ℃ A,SSI
86.5mm
Turck TEC
5um -20℃~70 ℃ A,SSI 1um -40℃~85 ℃ A,SSI,DP
相关文档
最新文档