【新人教版】九年级数学上册第24章《圆》教案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版九年级数学上册

第二十四章圆

24.1 圆的有关性质

24.1.1 圆

经历圆的概念的形成过程,理解圆.弧.弦等与圆有关的概念,了解等圆.等弧的概念.

重点

经历形成圆的概念的过程,理解圆及其有关概念.

难点

理解圆的概念的形成过程和圆的集合性定义.

活动1创设情境,引出课题

1.多媒体展示生活中常见的给我们以圆的形象的物体.

2.提出问题:我们看到的物体给我们什么样的形象?

活动2动手操作,形成概念

在没有圆规的情况下,让学生用铅笔和细线画一个圆.

教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定?

教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.

1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.

2.小组讨论下面的两个问题:

问题1:圆上各点到定点(圆心O)的距离有什么规律?

问题2:到定点的距离等于定长的点又有什么特点?

3.小组代表发言,教师点评总结,形成新概念.

(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);

(2)到定点的距离等于定长的点都在同一个圆上.

因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.)

活动3学以致用,巩固概念

1.教材第81页练习第1题.

2.教材第80页例1.

多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.

活动4自学教材,辨析概念

1.自学教材第80页例1后面的内容,判断下列问题正确与否:

(1)直径是弦,弦是直径;半圆是弧,弧是半圆.

(2)圆上任意两点间的线段叫做弧.

(3)在同圆中,半径相等,直径是半径的2倍.

(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)

(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.

2.指出图中所有的弦和弧.

活动5达标检测,反馈新知

教材第81页练习第2,3题.

活动6课堂小结,作业布置

课堂小结

1.圆.弦.弧.等圆.等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆.等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.2.证明几点在同一圆上的方法.

3.集合思想.

作业布置

1.以定点O为圆心,作半径等于2厘米的圆.

2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB 的中点.

求证:A,B,C,D四个点在以点O为圆心的同一圆上.

答案:1.略;2.证明OA=OB=OC=OD即可.

24.1.2 垂直于弦的直径

理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.

通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.

重点

垂径定理及其运用.

难点

探索并证明垂径定理及利用垂径定理解决一些实际问题.

一.复习引入

①在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径.

以点O 为圆心的圆,记作“⊙O”,读作“圆O”.

②连接圆上任意两点的线段叫做弦,如图线段AC ,AB ;

③经过圆心的弦叫做直径,如图线段AB ;

④圆上任意两点间的部分叫做圆弧,简称弧,以A ,C 为端点的弧记作“AC ︵”,读作“圆弧AC”或“弧AC ”.大于半圆的弧(如图所示ABC ︵)叫做优弧,

小于半圆的弧(如图所示AC ︵或BC ︵)叫做劣弧.

⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. ⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.

二.探索新知

(学生活动)请同学按要求完成下题:

如图,AB 是⊙O 的一条弦,作直径CD ,使CD⊥AB,垂足为M.

(1)如图是轴对称图形吗?如果是,其对称轴是什么?

(2)你能发现图中有哪些等量关系?说一说你理由.

(老师点评)(1)是轴对称图形,其对称轴是CD.

(2)AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵,即直径CD 平分弦AB ,并且平分AB ︵及ADB ︵.

这样,我们就得到下面的定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.

下面我们用逻辑思维给它证明一下:

已知:直径CD.弦AB ,且CD⊥AB 垂足为M.

求证:AM =BM ,AC ︵=BC ︵,AD ︵=BD ︵.

分析:要证AM =BM ,只要证AM ,BM 构成的两个三角形全等.因此,只要连接OA ,OB 或AC ,BC 即可.

证明:如图,连接OA ,OB ,则OA =OB ,

在Rt △OAM 和Rt △OBM 中,

∴Rt △OAM ≌Rt △OBM ,

∴AM =BM ,

∴点A 和点B 关于CD 对称,

∵⊙O 关于直径CD 对称,

相关文档
最新文档