2007年武汉市中考数学试题及答案

合集下载

07年中考数学答案

07年中考数学答案

2007年上海市初中毕业生统一学业考试数学试卷答案要点与评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分.2.第一大题只要求直接写出结果,每个空格填对得3分,否则得零分;第二大题每题选对得4分,不选、错选或者多选得零分;17题至25题中右端所注的分数,表示考生正确做对这一步应得分数,评分时,给分或扣分均以1分为单位. 答案要点与评分标准一、填空题(本大题共12题,满分36分) 1.3 2.2()a a b - 3.1(1)x x + 4.1 5.2x ≥ 6.2 7.3x =-8.3y x = 9.AFD EFC △∽△(或EFC EAB △∽△,或EAB AFD △∽△) 10.1 11.2- 12.答案见图1二、选择题(本大题共4题,满分16分) 13. C 14.B 15.D 16.B 三、(本大题共5题,满分48分) 17.解:由30x ->,解得3x <. ····················································································· 3分由43326x x+>-,解得1x >-. ·························································································· 3分 ∴不等式组的解集是13x -<<.························································································· 1分 解集在数轴上表示正确. ······································································································· 2分 18.解:去分母,得23(21)(1)0x x x x -+-+=, ···························································· 3分 整理,得23210x x --=, ··································································································· 2分 解方程,得12113x x ==-,. ······························································································ 2分经检验,11x =是增根,213x =-是原方程的根,∴原方程的根是13x =-. ·················· 2分 19.解:(1)如图2,作BH OA ⊥,垂足为H , ······························································ 1分在Rt OHB △中,5BO = ,3sin 5BOA ∠=,3BH ∴=. ··························································································································· 2分图14OH ∴=.……………………………… 1分∴点B 的坐标为(43),.……………………2分 (2) 10OA =,4OH =,6AH ∴=.………………1分 在Rt AHB △中,3BH =,AB ∴= 1分cos AH BAO AB ∴∠==2分 20.(1)小杰;1.2. ··································································································· 2分,2分(2)直方图正确. ················································································································· 3分 (3)0~1. ······························································································································ 3分 21.解:[解法一]设2003年和2007年的药品降价金额分别为x 亿元、y 亿元. ············· 1分 根据题意,得226543540269y x x y =⎧⎨++++=⎩………………………………………………………………分………………………………………………分解方程组,得2220120x y =⎧⎨=⎩………………………………………………………………………分………………………………………………………………………分答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·································· 1分 [解法二]设2003年的药品降价金额为x 亿元, ···································································· 1分 则2007年的药品降价金额为6x 亿元. ················································································ 2分 根据题意,得5435406269x x ++++=. ······································································· 2分 解方程,得20x =,6120x ∴=. ······················································································ 4分 答:2003年和2007年的药品降价金额分别为20亿元和120亿元. ·································· 1分 四、(本大题共4题,满分50分) 22.解:(1)设二次函数解析式为2(1)4y a x =--, ······················································· 2分二次函数图象过点(30)B ,,044a ∴=-,得1a =. ···················································· 3分 ∴二次函数解析式为2(1)4y x =--,即223y x x =--. ·············································· 1分 (2)令0y =,得2230x x --=,解方程,得13x =,21x =-. ································· 2分∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. ························································· 2分 平移后所得图象与x 轴的另一个交点坐标为(40),. ··························································· 2分23.(1)证明:DE AC ∥, BCA E ∴∠=∠. ·················································································································· 1分 CA 平分BCD ∠, 2BCD BCA ∴∠=∠, ·········································································································· 1分 2BCD E ∴∠=∠, ··············································································································· 1分x又2B E ∠=∠ , B BCD ∴∠=∠. ·················································································································· 1分∴梯形ABCD 是等腰梯形,即AB DC =. ········································································ 2分 (2)解:如图3,作AF BC ⊥,DG BC ⊥, 垂足分别为F G ,,则AF DG ∥.在Rt AFB △中,tg 2B =,2AF BF ∴=.…………1分又AB 222AB AF BF =+,2254BF BF ∴=+,得1BF =.……………………1分同理可知,在Rt DGC △中,1CG =.……………1分 AD BC ∥,DAC ACB ∴∠=∠.又ACB ACD ∠=∠ ,DAC ACD ∴∠=∠,AD DC ∴=.DC AB ==AD ∴······················································································ 1分 AD BC ∥,AF DG ∥,∴四边形AFGD是平行四边形,FG AD ∴= ······ 1分2BC BF FG GC ∴=++=. ···················································································· 1分 24.(1)解: 函数(0my x x=>,m 是常数)图象经过(14)A ,,4m ∴=. ··············· 1分 设BD AC ,交于点E ,据题意,可得B 点的坐标为4a a ⎛⎫ ⎪⎝⎭,,D 点的坐标为40a ⎛⎫ ⎪⎝⎭,,E 点的坐标为41a ⎛⎫⎪⎝⎭,, ·········································································································· 1分1a > ,DB a ∴=,44AE a=-. 由ABD △的面积为4,即14442a a ⎛⎫-= ⎪⎝⎭, ······································································ 1分 得3a =,∴点B 的坐标为433⎛⎫ ⎪⎝⎭,. ···················································································· 1分(2)证明:据题意,点C 的坐标为(10),,1DE =, 1a > ,易得4EC a=,1BE a =-, 111BE a a DE -∴==-,4414AE a a CEa-==-. ···································································· 2分图3BE AEDE CE ∴=. ······················································································································· 1分 DC AB ∴∥. ······················································································································· 1分 (3)解:DC AB ∥,∴当AD BC =时,有两种情况: ①当AD BC ∥时,四边形ADCB 是平行四边形,由(2)得,1BE AEa DE CE==-,11a ∴-=,得2a =. ∴点B 的坐标是(2,2). ···································································································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得422k b k b =+⎧⎨=+⎩,解得26.k b =-⎧⎨=⎩,∴直线AB 的函数解析式是26y x =-+. ··········································································· 1分 ②当AD 与BC 所在直线不平行时,四边形ADCB 是等腰梯形,则BD AC =,4a ∴=,∴点B 的坐标是(4,1). ························································· 1分 设直线AB 的函数解析式为y kx b =+,把点A B ,的坐标代入,得414.k b k b =+⎧⎨=+⎩,解得15k b =-⎧⎨=⎩,∴直线AB 的函数解析式是5y x =-+. ············································································· 1分 综上所述,所求直线AB 的函数解析式是26y x =-+或5y x =-+. 25.(1)证明:如图4,连结OB OP ,,O 是等边三角形BPQ 的外心,OB OP ∴=, ································································ 1分圆心角3601203BOP ∠==. 当OB 不垂直于AM 时,作OH AM ⊥,OT AN ⊥,垂足分别为H T ,. 由360HOT A AHO ATO ∠+∠+∠+∠=,且60A ∠=,90AHO ATO ∠=∠= ,120HOT ∴∠= .BOH POT ∴∠=∠. ··········································································································· 1分 Rt Rt BOH POT ∴△≌△. ······························································································· 1分 OH OT ∴=.∴点O 在MAN ∠的平分线上. ·································································· 1分当OB AM ⊥时,36090APO A BOP OBA ∠=-∠-∠-∠=.即OP AN ⊥,∴点O 在MAN ∠的平分线上.综上所述,当点P 在射线AN 上运动时,点O 在MAN ∠的平分线上.(2)解:如图5,AO 平分MAN ∠,且60MAN ∠= ,30BAO PAO ∴∠=∠= . ··································································································· 1分由(1)知,OB OP =,120BOP ∠=,30CBO ∴∠= ,CBO PAC ∴∠=∠.BCO PCA ∠=∠ ,AOB APC ∴∠=∠. ········································································ 1分 ABO ACP ∴△∽△. AB AO AC AP∴=.AC AO AB AP ∴= .4y x ∴=. ·························································· 1分 定义域为:0x >. ················································································································ 1分(3)解:①如图6,当BP 与圆I相切时,AO = ·················································· 2分 ②如图7,当BP 与圆I相切时,AO =; ································································· 1分 ③如图8,当BQ 与圆I 相切时,0AO =. ······································································· 2分图6()P A图7M图8图4图5。

中考黄冈真题 2007年湖北省黄冈市中考数学试题及答案

中考黄冈真题    2007年湖北省黄冈市中考数学试题及答案

2007年湖北省黄冈市中考数学试题及答案一、填空题(共6小题,满分24分)1.(9分)计算:﹣(﹣2)=;|﹣|=;=.2.(3分)计算:=.3.(3分)计算:2sin60°=.4.(3分)将x3﹣xy2分解因式的结果为.5.(3分)一个圆锥形容器的底面半径为12cm,母线长为15cm,那么这个圆锥形容器的高为cm.6.(3分)将边长为8cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD的中心经过的路线长是cm.二、选择题(共9小题,满分30分)7.(3分)下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a38.(3分)下列各图中,∠1>∠2的是()A.B.C.D.9.(3分)下列运算中,错误的是()A.B.C.D.10.(3分)将不等式组的解集在数轴上表示出来,正确的是()11.(3分)在下面的四个几何体中,它们各自的左视图与主视图不全等的是()A.B.C.D.12.(3分)已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(天),平均每天工作的时间为t(小时),那么能正确表示d与t之间的函数关系的图象是()A.B. C.D.13.(4分)下列说法正确的是()A.9的算术平方根是3B.设a是实数,|a|﹣a的值可能是正数,也可能是负数C.P(2,﹣3)关于原点的对称点的坐标(﹣2,﹣3)D.抛物线y=x2﹣x﹣6的顶点在第三象限14.(4分)如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法不正确的是()A.七(3)班外出步行的有8人B.七(3)班外出的共有40人C.在扇形统计图中,步行人数所占的圆心角度数为82°D.若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约150人15.(4分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论中错误的有()三、解答题(共8小题,满分66分)16.(6分)如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.17.(6分)某城区中学5月份开展了与农村偏远学校“手拉手”的活动.九(3)班苗苗同学积极响应学校的号召,用自己的零花钱买了圆珠笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元.你知道苗苗同学买了圆珠笔和钢笔各多少支吗?18.(7分)在5月27日结束的第49届世界乒乓球锦标赛中,男子单打决赛在我国选手马琳和五励勤之间展开,双方苦战七局,最终五励勤以4:3获得胜利,七局比分分别如下表:(1)请将七局比分的相关数据的分析结果,直接填入下表中(结果保留两个有效数字).(2)中央电视台在此次现场直播时,开展了“短信互动,有奖竞猜”活动,凡是参与短信互动且预测结果正确的观众,都能参加“乒乓大礼包”的投资活动,据不完全统计,有32320名观众参与了此次短信互动活动,其中有50%的观众预测王励勤获胜.刘敏同学参加了本次“短信互动”活动,并预测了王励勤获胜,如果从中抽取20名幸运观众,并赠送“乒乓达大礼包“一份,那么刘敏同学中奖的概率有多大?19.(7分)如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD•BC=OB•BD.20.(7分)传销是一种危害极大的非法商业诈骗活动,国家是明令禁止的.参与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗投资人,谎称“每位投资者每投资一股450元,买到一件价值10元的商品后,另外可得到530元的回报,每一期投资到期后,若投资人继续投资,下一期追加的投资股数必须是上一期的2倍”.退休的张大爷先投资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股后时,被告知该公司破产了.(1)假设张大爷在该公司破产的前一期停止投资,他的投资回报率是多少?(回报率=)(2)试计算张大爷在参与这次传销活动中共损失了多少元钱?21.(7分)张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).(1)分别求“合”、“冲”、“东方照”、“西方照”时,地球与火星的距离(结果保留准确值);(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明你的(注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)22.(11分)我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842万元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?23.(15分)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,8),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动设t(0<t≤8)秒后,直线PQ交OB于点D.(1)求∠AOB的度数及线段OA的长;(2)求经过A,B,C三点的抛物线的解析式;(3)当a=3,OD=时,求t的值及此时直线PQ的解析式;(4)当a为何值时,以O,Q,D为顶点的三角形与△OAB相似?当a为何值时,以O,Q,D为顶点的三角形与△OAB不相似?请给出你的结论,并加以证明.2007年湖北省黄冈市中考数学试卷参考答案与试题解析一、填空题(共6小题,满分24分)1.(9分)(2007•黄冈)计算:﹣(﹣2)=2;|﹣|=;=.【分析】分别根据相反数、绝对值、负整数指数的定义求值即可.【解答】解:﹣(﹣2)=2;|﹣|=;=.故答案为2、、.【点评】此题主要考查了相反数,绝对值,负整数指数幂的定义,属较简单题目.相反数:只有符号不同的两个数叫互为相反数;绝对值:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;负整数指数幂等于正整数指数幂的倒数.2.(3分)(2007•黄冈)计算:=1.【分析】本题符合平方差公式可直接用平方差公式计算.【解答】解:原式=()2﹣22=5﹣4=1.【点评】此题较简单,关键是要熟悉平方差公式(a+b)(a﹣b)=a2﹣b2.3.(3分)(2007•黄冈)计算:2sin60°=.【分析】根据特殊角的三角函数值计算.【解答】解:2sin60°=2×=.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.4.(3分)(2007•黄冈)将x3﹣xy2分解因式的结果为x(x+y)(x﹣y).【分析】先提取公因式x,应再利用平方差公式继续进行因式分解.【解答】解:x3﹣xy2,=x(x2﹣y2),=x(x+y)(x﹣y).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用平方差公式进行二次分解因式.5.(3分)(2007•黄冈)一个圆锥形容器的底面半径为12cm,母线长为15cm,那么这个圆锥形容器的高为9cm.【分析】圆锥的高、母线及底面圆的半径恰好构成一个直角三角形,利用勾股定理求高即可.【解答】解:根据勾股定理,容器的高==9cm;故应填9.【点评】本题底面半径,圆锥的高,母线长构成直角三角形,利用勾股定理求解是解题的关键.6.(3分)(2007•黄冈)将边长为8cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD的中心经过的路线长是6πcm.【分析】将边长为8cm的正方形ABCD的对角线的一半是4cm,则正方形ABCD的中心经过的路线长就是3个半径为4,圆心角是90度的弧长,利用弧长公式即可求出.【解答】解:正方形的对角线长是8cm,翻动一次中心经过的路线是半径是对角线的一半为半径,圆心角是90度的弧.则中心经过的路线长是:=6πcm.【点评】本题的关键是弄清正方形ABCD的中心经过的路线长就是3个半径为4,圆心角是90度的弧长.二、选择题(共9小题,满分30分)7.(3分)(2013•天水)下列计算正确的是()【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.【点评】本题主要考查了同底数幂的除法,积的乘方,合并同类项,以及完全平方公式,是中学阶段的基础题目.8.(3分)(2007•黄冈)下列各图中,∠1>∠2的是()A.B.C.D.【分析】本题第一个,考查对顶角相等;第二个考查平行线的性质;第三个考查三角形的外角>任何一个和它不相邻的内角;第四个考查等腰三角形的性质,等边对等角.【解答】解:A、根据对顶角相等,可得∠1=∠2;B、根据平行线的性质和对顶角相等,可得∠1=∠2;D、根据等边对等角,可得∠1=∠2;C、因为三角形的外角>任何一个和它不相邻的内角,所以,∠1>∠2.故选C.【点评】把学习的定理与具体的图形相结合,才能真正理解.9.(3分)(2007•黄冈)下列运算中,错误的是()A.B.C.D.【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据【解答】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、=,故D错误.故选D.【点评】根据分式的基本性质,分子分母必须同乘一个非0的数或式子,同时在分式的变形中,还要注意符号法则,即分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.10.(3分)(2007•黄冈)将不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.【分析】分别把两条不等式解出来,然后判断哪个选项的表示正确.【解答】解:由x+8<4x﹣1得x>3,由得x≤4.所以3<x≤4.故选C.【点评】本题考查不等式组的解法和在数轴上的表示法,如果是表>或<号的点要用空心,如果是表示>等于或<等于号的点用实心.11.(3分)(2007•黄冈)在下面的四个几何体中,它们各自的左视图与主视图不全等的是()A.B.C.D.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【解答】解:A、正方体的左视图与主视图都是正方形,不符合题意;B、球的左视图与主视图都是圆,不符合题意;C、有正方孔的正方体的左视图与主视图都是正方形里面有两条竖直的虚线,不符合题意;D、三棱锥的左视图与主视图都虽然都是三角形,但是形状不相同,符合题意.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.12.(3分)(2007•黄冈)已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(天),平均每天工作的时间为t(小时),那么能正确表示d与t之间的函数关系的图象是()A.B. C.D.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意可知,d与t之间的函数关系是反比例关系d=且t>0.故选C.【点评】主要考查了根据实际意义画图和函数图象的读图能力.13.(4分)(2007•黄冈)下列说法正确的是()A.9的算术平方根是3B.设a是实数,|a|﹣a的值可能是正数,也可能是负数C.P(2,﹣3)关于原点的对称点的坐标(﹣2,﹣3)D.抛物线y=x2﹣x﹣6的顶点在第三象限【分析】本题涉及算术平方根的概念,绝对值的意义,点的对称问题及求抛物线顶点坐标,需要根据知识点,逐一判断.【解答】解:A、9的算术平方根是3,正确;B、当a≥0时,|a|﹣a=0,当a<0时,|a|﹣a=﹣2a>0,只可能是正数或0,错误;C、P(2,﹣3)关于原点的对称点的坐标(﹣2,3),错误;D、抛物线y=x2﹣x﹣6的顶点是(,﹣),在第四象限,错误.只有A正确,故选A.【点评】本题综合考查算术平方根,绝对值的定义,关于原点的对称点的坐标的特点,以及二次函数的图象.14.(4分)(2007•黄冈)如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法不正确的是()A.七(3)班外出步行的有8人B.七(3)班外出的共有40人C.在扇形统计图中,步行人数所占的圆心角度数为82°D.若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约150人【分析】先求出七(3)班的总人数,再求出步行的人数,进而求出步行人数所占的圆心角度数,最后即可作出判断.【解答】解:由直方图知乘车的人数是20人,占总人数的50%,所以七(3)班有20÷50%=40人,所以步行的有40×20%=8,步行人数所占的圆心角度数为360°×20%=72°,故不正确的是C,故选C.【点评】统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.15.(4分)(2007•黄冈)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且ED平分∠ADC,EC平分∠BCD,则下列结论中错误的有()A.∠ADE=∠CDE B.DE⊥EC C.AD•BC=BE•DE D.CD=AD+BC【分析】根据角平分线上的任意一点到角的两边距离相等计算.【解答】解:∵AD∥BC,∠ADC+∠BCD=180°ED平分∠ADC,EC平分∠BCD,∴∠ADE=∠CDE,∠DCE=BCE,∴∠DCE+∠CDE=90°,∴∠DEC=90°,∴DE⊥EC.∴∠AED+∠BEC=90°,∵∠B=90°,∴∠BEC+∠BCE=90°,∴∠AED=∠BCE,又∵∠A=∠B=90°,∴△AED∽△BCE,∴AE:BC=AD:BE,∴AD•BC=BE•AE,∵DE>AE,∴AD•BC≠BE•DE.故C选项错误.故选C.【点评】此题主要考查平行线的性质和角平分线的定义、相似三角形的判定和性质.三、解答题(共8小题,满分66分)16.(6分)(2007•黄冈)如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.【分析】利用等边三角形的性质得到相等的边和角,CE=AC,CF=CB,∠ACF=∠ECB=90°+60°=150°,从而判定△CEB≌△ACF得到BE=AF.【解答】证明:∵△ACE和△BCF是等边三角形,∴∠ACE=∠FCB=60°,CE=AC,CF=CB,∴∠ACF=∠ECB=60°+∠ACB.在△CEB与△CAF中,,∴△CEB≌△CAF(SAS),∴BE=AF.【点评】本题考查三角形全等的判定和等边三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.(6分)(2007•黄冈)某城区中学5月份开展了与农村偏远学校“手拉手”的活动.九(3)班苗苗同学积极响应学校的号召,用自己的零花钱买了圆珠笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元.你知道苗苗同学买了圆珠笔和钢笔各多少支吗?【分析】通过理解题意可知本题的等量关系,即“圆珠笔和钢笔共8支”和“圆珠笔每支1元,钢笔每支5元的情况下共用去了20元钱”,根据这两个等量关系,可列出方程组,再求解.【解答】解:设苗苗同学买了圆珠笔和钢笔分别为x支,y支,则,解之,得.答:苗苗同学买了圆珠笔5支,钢笔3支.【点评】知道总价=单价×数量及其变式是解本题的关键.18.(7分)(2007•黄冈)在5月27日结束的第49届世界乒乓球锦标赛中,男子单打决赛在我国选手马琳和五励勤之间展开,双方苦战七局,最终五励勤以4:3获得胜利,七局比分分别如下表:(1)请将七局比分的相关数据的分析结果,直接填入下表中(结果保留两个有效数字).(2)中央电视台在此次现场直播时,开展了“短信互动,有奖竞猜”活动,凡是参与短信互动且预测结果正确的观众,都能参加“乒乓大礼包”的投资活动,据不完全统计,有32320名观众参与了此次短信互动活动,其中有50%的观众预测王励勤获胜.刘敏同学参加了本次“短信互动”活动,并预测了王励勤获胜,如果从中抽取20名幸运观众,并赠送“乒乓达大礼包“一份,那么刘敏同学中奖的概率有多大?【分析】(1)读图可知:马琳得分的众数即次数出现最多的数是11;王励勤的平均分为=9.7,将其得分从小到大排列,最中间的那一个即中位数为11.(2)根据概率求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)完成表格:(2)32320×0.5=16160,刘敏同学中奖的概率为=.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.一组数据中出现次数最多的数为这组数据的众数;一组数据按顺序排列后,中间的那两个数的平均数或中间的那个数叫做中位数.19.(7分)(2007•黄冈)如图,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD•BC=OB•BD.【分析】要证AD•BC=OB•BD,即要证AD:OB=BD:BC,于是求证△ABD∽△OCB即可.【解答】证明:∵BC是⊙O的切线,AB是圆的直径,∴∠CBO=∠D=90°.∵AD∥OC,∴∠COB=∠A.∴△ABD∽△OCB.∴AD:OB=BD:BC.∴AD•BC=OB•BD.【点评】本题利用了相似三角形的判定和性质求解.20.(7分)(2007•黄冈)传销是一种危害极大的非法商业诈骗活动,国家是明令禁止的.参与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗投资人,谎称“每位投资者每投资一股450元,买到一件价值10元的商品后,另外可得到530元的回报,每一期投资到期后,若投资人继续投资,下一期追加的投资股数必须是上一期的2倍”.退休的张大爷先投资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股后时,被告知该公司破产了.(1)假设张大爷在该公司破产的前一期停止投资,他的投资回报率是多少?(回报率=)(2)试计算张大爷在参与这次传销活动中共损失了多少元钱?【分析】做此题的关键是将回报金额和投入金额准确的表示出来,再利用公式来解答.【解答】解:(1)张大爷在破产前一共投了1+2+4+8=15股,此时回报率为:×100%==20%.答:他的投资回报率是20%;(2)张大爷损失金额为:450×16﹣(530﹣450+10)×15﹣10×16=5690(元).(或者可以表示为:450×31﹣530×(1+2+4+8)﹣10×(1+2+4+8+16)=5690(元).答:张大爷在参与这次传销活动中共损失了5690元钱.【点评】本题在回答问题时,需要将传销行为方式转化成数学问题,体现了数学的化归思想和应用价值.21.(7分)(2007•黄冈)张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).(1)分别求“合”、“冲”、“东方照”、“西方照”时,地球与火星的距离(结果保留准确值);(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明你的理由.(注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)【分析】(1)“合”=地球距太阳距离+火星距太阳距离、“冲”=火星距太阳距离﹣地球距太阳距离、勾股定理得出“东方照”、“西方照”=;(2)从地球上发射宇宙飞船登上火星,为了节省燃料,即找出地球与火星的最短距离,这时太阳和火星三者处在一条直线上,且地球于太阳与火星中间.【解答】解:(1)“合”=15+20.5=35.5(千万千米),“冲”=20.5﹣15=5.5(千万千米),“东方照”=“西方照”==0.5;(2)“冲”位置时发射较好,因为太阳和火星三者处在一条直线上,且地球于太阳与火星中间,地球与火星的距离最短.【点评】本题综合考查了同心圆旋转中,圆上点与点的距离问题,是一个探究性的题目.22.(11分)(2007•黄冈)我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842万元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?【分析】(1)根据题意,列出分段函数.(2)根据条件,求出二次函数解析式,从中找出最值以及相应的自变量范围.(3)分情况进行讨论,找出最值以及相应的自变量取值范围.【解答】解:(1)这个显然是一个分段函数,y=20﹣=﹣0.08x+28100<x≤200,可见x=200元时,y=28﹣16=12(万件),y=12﹣=﹣0.1x+32,200<x≤300.(2)投资成本为480+1520=2000万元y=﹣0.08x+28,100<x≤200,w=xy﹣40y﹣2000=(x﹣40)(﹣0.08x+28)﹣2000=﹣0.08x2+31.2x﹣3120=﹣0.08(x﹣195)2﹣78可见第一年在100<x≤200注定亏损,x=195时亏损最少,为78万元200<x≤300,y=﹣0.1x+32,w=xy﹣40y﹣2000=(x﹣40)(﹣0.1x+32)﹣2000=﹣0.1x2+36x﹣3280=﹣0.1(x﹣180)2﹣40可见第一年在200<x≤300注定亏损,x=200时亏损最少,为80万元综上可见,x=195时亏损最少,为78万元.(3)两年的总盈利不低于1842万元,可见第二年至少要盈利1842+78=1920万元,既然两年一块算,第二年我们就不用算投资成本那2000万元了.第二年:100<x≤200时第二年盈利=xy﹣40y=﹣0.08(x﹣195)2+1922≥1920解不等式得到:190≤x≤200200<x≤300时第二年盈利=xy﹣40y=﹣0.1(x﹣180)2+1960≥1920解不等式得到:160≤x≤200,联合200<x≤300,也就只有x=200综上有190≤x≤200为解这时候再看y=﹣0.08x+28,可见x=190时,y最大,为12.8所以定价190元时候,销售量最大.【点评】此题为数学建模题,借助二次函数解决实际问题.23.(15分)(2007•黄冈)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,8),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动设t(0<t≤8)秒后,直线PQ 交OB于点D.(1)求∠AOB的度数及线段OA的长;(2)求经过A,B,C三点的抛物线的解析式;(3)当a=3,OD=时,求t的值及此时直线PQ的解析式;(4)当a为何值时,以O,Q,D为顶点的三角形与△OAB相似?当a为何值时,以O,Q,D为顶点的三角形与△OAB不相似?请给出你的结论,并加以证明.【分析】(1)已知了∠AOC的度数,根据菱形的性质即可得出∠AOB=30°,连接AC交BO于M,在直角三角形OAM中,OM=OB,可根据OM的长和∠AOM的度数即可求出OA的长.(2)同(1)在直角三角形OAM中可求出AM和OM的长,即可得出A点的坐标.根据菱形的对称性,。

武汉市2007年新课程初中毕业生学业考试数学试卷及答案

武汉市2007年新课程初中毕业生学业考试数学试卷及答案

例2•阅读下列题目的解题过程:2 22244已知a 、b 、c 为 ABC 的三边,且满足a 2c-b 2c= a-b 4,试判断 ABC 的形状。

2 2,224, 4解: a c -b c a -b (A).c 2(a 2 —b 2)= (a 2 b 2)(a 2 —b 2) (B).c 2 =a 2 b 2(C)ABC 是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: _______ ;(2) ___________________________________________________ 错误的原因为: ; (3) _________________________________________________ 本题正确的结论为: 。

分析:认真阅读,审查每一步的解答是否合理、有据、完整,从而找出错误及产生错误 的原因。

2 2答:(1)C ; ( 2)a -b 也可以为零;(3)厶ABC 是等腰三角形或直角三角形。

例3.先阅读第(1)题的解法,再解第(2)题:丄一3 = 0 p |jq,p 、q 为实数,且pq = 1,求 q 的值。

21 1 又 p -p-3 二 0,—2 3二0q q.p 和丄是一元二次方程X 2 -x - 3二0的两个不相等的实数根q1由一元二次方程根与系数关系可得 p •丄=-(-1) = 1q22 ,(2)已知2m- 3m-7=0,7n 引-",m 、n 为实数,m - 求 n 的值。

分析:本题首先要求在阅读第(1)题规范的解法基础上,总结归纳出逆用方程根的定 义构造一元二次方程,根据根与系数的关系求代数式值的方法,并加以应用。

但这种应用并非机械模仿,需要先对第(2)题的第二个方程变形转化,才能实现信息迁移,建模应用。

解:;7n 2 • 3n -2 =0, n 为实数且 n = 01 1可得2,(_)2 _3,(_) _7 = 02P - P -3 = 0,(1)已知且mnn n解答问题:又2m 2 一 3m 一 7 = 01 2m 、—是方程2x - 3x - 7 = 0的两个不相等的实数根 n说明:本题考查了阅读理解、 举一反三、触类旁通、 创造性地解决新问题的能力。

武汉市2007年新课程初中毕业生学业考试数学试卷及答案

武汉市2007年新课程初中毕业生学业考试数学试卷及答案

(第6节)相似三角形的判定(3)目标:使学生明确相似三角形的识别方法3,4并能简单应用重点:相似三角形的识别过程:一、复习:相似三角形预备定理。

1、已知:DE∥BC,EF∥AB求证:①△ADE∽△EFC②若AD:DB=2:3,则BF:FC=2、订正上节课作业5作DE∥BC—→△ADE∽△ABC 作∠ADE=∠C—→△ADE∽△ACB二、新课:作图:书45页探究2定理2:如果两个三角形的三组对应边的比相等,那么这两三角形相似。

(三边成比例,两三角形相似)作用:由kACCACBBCBAAB===''''''⇒△ABC~△A’B’C’⇒⎪⎩⎪⎨⎧∠=∠∠=∠∠=∠'''CCBBAA定理3:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

(两边对应成比例且夹角相等,两三角形相似)作用:由⎪⎩⎪⎨⎧∠=∠='''''AACAACBAAB⇒△ABC~△A’B’C’⇒⎪⎪⎩⎪⎪⎨⎧∠=∠∠=∠==''''''CCBBkBAABCBBC例1、依据下列条件,判定△ABC和△A’B’C’是不是相似,并说明为什么?(1)∠A=120°,AB=7cm,AC=14cm∠A’=120°,A’B’=3cm,A’C’=6cm(2)AB=4cm,BC=6cm,AC=8cmA ’B ’=12cm ,B ’C ’=18cm ,A ’C ’=21cm解(1)∵37''=B A AB ,37614''==C A AC ∴''''C A AC B A AB = 又∠A=∠A ’=120°∴△ABC ∽△A ’B ’C ’( )(2)∵31124''==B A AB ;31186''==C B BC ;218''=C A AC ∴''''''C A AC C B BC B A AB ≠= ∴△ABC 与△A ’B ’C ’不相似。

2007年全国各地中考试题130多份标题汇总

2007年全国各地中考试题130多份标题汇总

2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。

武汉市2007年课改实验区初中毕业生学业考试数学试卷样卷

武汉市2007年课改实验区初中毕业生学业考试数学试卷样卷

武汉市2007年课改实验区初中毕业生学业考试 数学试卷(样卷)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.某市今年1月份某一天的最高气温是3℃,最低气温是-4℃,那么这一天的最高气温比最低气温高( ).A .-7℃B .7℃C .-1℃D .1℃ 2.不等式组⎩⎨⎧-≥-≥+123,35x x 的解集表示在数轴上正确的是( ).3.如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A =130°, ∠B =110°,那么∠BCD 的度数等于( ). A .40° B .50° C .60° D .70°4.已知x =1是一元二次方程0122=+-mx x 的一个解,则m 的值是(A .1 B.0 C .0或1 D .0或-15.太阳光线与地面成60°角时,一棵树的影长是5米,这棵树的 高度约为( ).(3取1.732,结果保留三个有效数字.) A .2.50米 B .8.66米 C .10.0米 D .4.33米 6.函数12+=x y 中自变量x 的取值范围是( ). A .21≥x B .21-≥x C .21<x D .21-<x 7.已知⊙O 1和⊙O 2的半径分别为2和5,圆心距O 1O 2=3,则这两圆的位置关系是( ).A .相离B .外切C .相交D .内切8.根式2)3(-的值是( ).A .-3B .3或-3C .3D .99.如图1,有6张写有实数的卡片,它们的背面都相同.现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张,是无理数的概率是( ).DA .21 B .31 C .32 D .61 10.图1表示正六棱柱形状的高达建筑物,图2中的阴影部分表示 该建筑物的俯视图,P,Q,M,N 表示小明在地面上的活动区域.小明 想同时看到该建筑物的三个侧面,他应在( ). A .P 区域 B .Q 区域 C .M 区域 D .N 区域11.一物体以10m/s 的速度开始在冰面上滑行,并且均匀减速,滑动10m 后停下来,则物体滑动到8m 时约用时间( ).A .0.8sB .1.1sC .1.6sD .2.9s12.下图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断,得出以下结论:①2005年的利润率比2004年的利润率高2个百分点;②2006年的利润率比2004年的利润率高8个百分点;③这三年中2005年的利润率最高(利润率%资金投放总额利润100⨯=).其中正确的结论共有( ).A .0个B .1个C .2个D .3个二、填空题(共4小题,每小题3分,共12分)13.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成.依此规律,第5个图案中白色正方形的个数为 .14.在日常生活中,取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4-y 4,因式分解的结果是(x -y)(x+y)(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x -y)=0,(x+y)=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x 3-xy 2,取x =10,y =10,用上述方法产生的密码是 (写π0.5 2-1 8图1图2出一个即可).15.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象 可得关于⎩⎨⎧=+=kxy b ax y ,的二元一次方程组的解是 .16.如图,矩形AOCB 的两边OC ,OA 分别位于x 轴、y 轴上,点B 的 坐标为B(5,320-).D 是AB 边上的一点.将△ADO 沿直线OD 翻折, 使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象 上,那么该函数的解析式是 . 三、解答下列各题 17.(本题满分6分)解方程:x 2+x -1=0.18.(本题满分6分)先化简,再求值:92)331(2-÷+-+x xx x ,其中x =3+3. 19.(本题满分6分)如图,AC 和BD 相交于点E ,AB ∥CD ,BE=DE .求证:AB=CD .20.(本题满分7分)下表是截至2005年11月5日中超积分榜.请你根据表中提供的信息,解答下面的问题:(1)补全下面的条型统计图;(2)求这14支球队再比赛中进球的中位数;(3)进球数30个以上(含30个)的球队占参赛球队的百分率为多少(精确到1%)?A DCE B21(本题满分7分)如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后得到的图形。

2007年湖北省襄樊市中考数学试题(含解析答案)

2007年湖北省襄樊市中考数学试题(含解析答案)

2007年湖北省襄樊市初中毕业、升学统一考试数学试题(非课改区)姓名______________ 报名号______________ 考试号______________说明:1.本卷由卷Ⅰ、卷Ⅱ组成.卷Ⅰ为选择题,卷Ⅱ为非选择题。

卷Ⅰ在答题卡上涂黑作答,不在卡上涂黑作答无效;卷Ⅱ在试卷上作答.2.答题前考生应在试卷及答题卡的指定位置填写姓名及报名号、考试号. 3.考试结束后,由监考老师将答题卡、卷Ⅰ、卷Ⅱ按要求回收.卷Ⅰ 选择题(共36分)一.选择题(本大题共12道小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答) 01.21-的倒数是( ).A 、21B 、2C 、21- D 、-202.下列计算中,不正确的是( ).A 、-3a +2a =-aB 、(-2x 2y)3=-6x 6y 3C 、3ab 2•(-2a)=-6a 2b 2D 、(-5xy)2÷5x 2y =5y03.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ).A 、1B 、53 C 、51D 、-104.函数2x y -=的自变量x 的取值范围是( ).A 、x 是任意实数B 、x ≤2C 、x ≥2D 、x >205.10名初中毕业生的中考体育成绩分别为:28、30、29、22、28、25、27、28、19、27.这组数据的众数和中位数分别是( ).A 、28,27.5B 、27,27.5C 、28,28D 、28,2706.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于O ,∠COE =55°,则∠BOD 的度数是( ). A 、40° B 、45° C 、30° D 、35°07.□ABCD 中,AC 交BD 于点O ,再添加一个条件,仍不能判定四边形ABCD 是矩形的是( ).A 、AB =AD B 、OA =OBC 、AC =BD D 、DC ⊥BC08.某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( ). A 、1.08a 元 B 、0.88a 元 C 、0.968a 元 D 、a 元 09.计算:cos 245°+tan60°•cos30°等于( ).A 、1B 、2C 、2D 、3 10.如图,直线l 1∥l 2∥l 3,另两条直线分别交l 1、l 2、l 3于点A 、B 、C 及点D 、E 、F ,且AB =3,DE =4,EF =2,则( ).A 、BC ∶DE =1∶2B 、BC ∶DE =2∶3 C 、BC •DE =8D 、BC •DE =6 11.已知圆锥的母线长为5cm ,底面半径为3cm ,则圆锥的表面积为( ). A 、15πcm 2 B 、24πcm 2 C 、30πcm 2 D 、39πcm 2A(第06题图) B DC EO A (第10题图)BC DE F(第12题图)12.如图,△ABC 是边长为10的等边三角形,以AC 为直径作⊙O ,D 是BC 上一点,BD=2,以点D 为圆心,OB 为半径的⊙D 与⊙O 的位置关系为( ). A 、相交 B 、外离 C 、外切 D 、内切卷Ⅱ 非选择题(共84分)二.填空题(本大题共6道小题,每小题3分,共18分.把答案填在题中的横线上) 13.我国的国土面积为9596960平方千米,这个数用科学记数法表示为_______________平方千米(保留三个有效数字).14.计算:20)23(2510+--+的值为_______________.15.如图,在矩形ABCD 中,AB =16,BC =8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F .那么AF =_____________.16.已知反比例函数xm 21y -=的图象上有两点A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是________________.17.如图所示,两个半圆中,长为4的弦AB 与直径CD 平行且与小半圆相切,则图中阴影部分的面积是_____________.18.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第6次分割后,共有正方形纸片__________个.三.解答题(本大题共6道小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本题6分)先化简,再求值:13x 4x 3x 6x 5x 22---÷+++,其中x =3.20.(本题6分)如图,□ABCD 中,O 是对角线BD 的中点,过点O 的直线分别交AD 、BC 于E 、F 两点,求证:AE =CF .(第17题图)(第18题图) 第一次 第二次第三次(第20题图)B CF21.(本题7分)我市某初中对该校八年级学生的视力进行了检查,发现学生患近视情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分)如下(各组含最大年龄,不含最小年龄)(1)频率分布表中a 、b 、c 的值分别为:a =________,b =________,c =________; (2)补全频率分布直方图;(3)初患近视两年内的属假性近视,若及时矫正,视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力所占的百分比.22.(本题7分)如图,AB 是一棵古树,某校初四(1)班数学兴趣小组的同学想利用所学知识测出这棵古树的高,过程如下:在古树同侧的水平地面上,分别选取了C 、D 两点(C 、D 两点与古树在同一直线上),用测角仪在C 处测得古树顶端A 的仰角α=60°,在D 处测得古树顶端A 的仰角β=30°,又测得C 、D 两点相距14米.已知测角仪高为1.5米,请你根据他们所测得的数据求出古树AB 的高.(精确到0.1米,3≈1.732)岁)(第22题图)C D B23.(本题7分)已知关于x的方程x2-2(m-2)x+m2=0.问是否存在实数m,使方程的两个实数根的平方和等于56,若存在,求出m的值;若不存在,请说明理由.24.(本题10分)襄江中学组织九年级部分学生到古隆中参观,租用的客车有50座和30座两种可供选择.学校根据参加参观的学生人数计算可知:若只租用30座客车x辆,还差10人才能坐满;若只租用50座客车,比只租用30座客车少用2辆,且有一辆车没有坐满但超过30人.(1)写出九年级参加参观的学生人数y与x的关系式;(2)求出此次参加参观的九年级学生人数;(3)若租用一辆30座客车往返费用为260元,租用一辆50座客车往返费用为400元,如何选择租车方案费用最低?25.(本题11分)如图①,△ABC 内接于⊙O ,点P 是△ABC 的内切圆的圆心,AP 交边BC 于点D ,交⊙O 于点E ,经过点E 作⊙O 的切线分别交AB 、AC 延长线于点F 、G .(1)求证:BC ∥FG ;(2)探究:PE 与DE 和AE 之间的关系;(3)当图①中的FE =AB 时,如图②,若FB =3,CG =2,求AG 的长.26.(本题12分)如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y 轴正半轴于点A ,AB 是⊙C 的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t(秒).(1)当t =1时,得到P 1、Q 1两点,求经过A 、P 1、Q 1三点的抛物线解析式及对称轴l ;(2)当t 为何值时,直线PQ 与⊙C 相切?并写出此时点P 和点Q 的坐标;(3)在(2)的条件下,抛物线对称轴l 上存在一点N ,使NP +NQ 最小,求出点N 的坐标并说明理由.(第25题图①) E F G E F G (第25题图②)(第26题图)2007年湖北省襄樊市初中毕业、升学统一考试数学试题答案(非课改区)说明:1.对于解答题中有的题目可用多种解法(或多种证明方法),如果考生的解答与此参考答案不同,只要正确,请参照此评分标准给分.2.对于分步累计评分的题目,其中的演算、推理中某一步发生错误,只要不降低后续部分的难度,而后续部分正确者,后续部分可评应得分的50%;若是两个独立的得分点,其中一处错误不影响另一处的得分.一.选择题(每小题3分,共36分) 01.21-的倒数是( D ).A 、21B 、2C 、21- D 、-202.下列计算中,不正确的是( B ).A 、-3a +2a =-aB 、(-2x 2y)3=-6x 6y 3C 、3ab 2•(-2a)=-6a 2b 2D 、(-5xy)2÷5x 2y =5y03.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( A ).A 、1B 、53 C 、51D 、-104.函数2x y -=的自变量x 的取值范围是( C ).A 、x 是任意实数B 、x ≤2C 、x ≥2D 、x >205.10名初中毕业生的中考体育成绩分别为:28、30、29、22、28、25、27、28、19、27.这组数据的众数和中位数分别是( A ). A 、28,27.5 B 、27,27.5 C 、28,28 D 、28,2706.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于O ,∠COE =55°,则∠BOD 的度数是( D ). A 、40° B 、45° C 、30° D 、35°07.□ABCD 中,AC 交BD 于点O ,再添加一个条件,仍不能判定四边形ABCD 是矩形的是( A ).A 、AB =AD B 、OA =OBC 、AC =BD D 、DC ⊥BC08.某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( C ). A 、1.08a 元 B 、0.88a 元 C 、0.968a 元 D 、a 元 09.计算:cos 245°+tan60°•cos30°等于( C ).A 、1B 、2C 、2D 、3 10.如图,直线l 1∥l 2∥l 3,另两条直线分别交l 1、l 2、l 3于点A 、B 、C 及点D 、E 、F ,且AB =3,DE =4,EF =2,则( D ).A 、BC ∶DE =1∶2B 、BC ∶DE =2∶3 C 、BC •DE =8D 、BC •DE =6 11.已知圆锥的母线长为5cm ,底面半径为3cm ,则圆锥的表面积为( B ). A 、15πcm 2 B 、24πcm 2 C 、30πcm 2 D 、39πcm 212.如图,△ABC 是边长为10的等边三角形,以AC 为直径作⊙O ,D 是BC 上一点,BD =2,以点D 为圆心,OB 为半径的⊙D 与⊙O 的位置关系为( C ).A 、相交B 、外离C 、外切D 、内切 二.填空题(每小题3分,共18分)A (第06题图)B DC E O A (第10题图)BC D E F(第12题图)13.我国的国土面积为9596960平方千米,这个数用科学记数法表示为 9.60×106 平方千米(保留三个有效数字).14.计算:20)23(2510+--+的值为_____353-_____.15.如图,在矩形ABCD 中,AB =16,BC =8,将矩形沿AC 折叠,点D 落在点E 处,且CE 与AB 交于点F .那么AF = 10 .16.已知反比例函数xm 21y -=的图象上有两点A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 m <2 . 17.如图所示,两个半圆中,长为4的弦AB 与直径CD 平行且与小半圆相切,则图中阴影部分的面积是_____2π .18.如图,将一个正方形纸片分割成四个面积相等的小正方形纸片,然后将其中一个小正方形纸片再分割成四个面积相等的小正方形纸片.如此分割下去,第6次分割后,共有正方形纸片____19___个.三.解答题(共6小题,共66分) 19.(本题6分)先化简,再求值:13x 4x 3x 6x 5x 22---÷+++,其中x =3.解:原式=3x )3x )(2x (+++•1)2x )(2x (3x --+- ……(2分) =2x 2x 2x 3x ----- ……(3分) =2x 1-- ……(4分)当x =3时,原式=231--……(5分)=2+3 ……(6分)20.(本题6分)如图,□ABCD 中,O 是对角线BD 的中点,过点O 的直线分别交AD 、BC 于E 、F 两点,求证:AE =CF .证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,AD =BC ……(2分) ∴∠EDO =∠FBO∵OB =OD ,∠DOE =∠BOF∴△AOE ≌△BOF ……(4分) ∴DE =BF ……(5分) ∴AE =CF ……(6分)(第17题图)(第18题图) 第一次 第二次第三次(第20题图)B CF21.(本题7分)我市某初中对该校八年级学生的视力进行了检查,发现学生患近视情况严重.为了进一步查明情况,校方从患近视的16岁学生中随机抽取了一个样本,对他们初患近视的年龄进行了调查,并制成频率分布表和频率分布直方图(部分)如下(各组含最大年龄,不含最小年龄)(1)频率分布表中a 、b 、c 的值分别为:a =0.20,b =14,c =50;(每填对1个给1分) ……(3分)(2)补全频率分布直方图; (每画对1个给1分) ……(5分)(3)初患近视两年内的属假性近视,若及时矫正,视力可恢复正常.请你计算在抽样的学生中,经矫正可以恢复正常视力所占的百分比.5016=32%……(7分)22.(本题7分)如图,AB 是一棵古树,某校初四(1)班数学兴趣小组的同学想利用所学知识测出这棵古树的高,过程如下:在古树同侧的水平地面上,分别选取了C 、D 两点(C 、D 两点与古树在同一直线上),用测角仪在C 处测得古树顶端A 的仰角α=60°,在D 处测得古树顶端A 的仰角β=30°,又测得C 、D 两点相距14米.已知测角仪高为1.5米,请你根据他们所测得的数据求出古树AB 的高.(精确到0.1米,3≈1.732)岁)(第22题图)C D B23.(本题7分)已知关于x的方程x2-2(m-2)x+m2=0.问是否存在实数m,使方程的两个实数根的平方和等于56,若存在,求出m的值;若不存在,请说明理由.24.(本题10分)襄江中学组织九年级部分学生到古隆中参观,租用的客车有50座和30座两种可供选择.学校根据参加参观的学生人数计算可知:若只租用30座客车x辆,还差10人才能坐满;若只租用50座客车,比只租用30座客车少用2辆,且有一辆车没有坐满但超过30人.(1)写出九年级参加参观的学生人数y与x的关系式;(2)求出此次参加参观的九年级学生人数;(3)若租用一辆30座客车往返费用为260元,租用一辆50座客车往返费用为400元,如何选择租车方案费用最低?25.(本题11分)如图①,△ABC内接于⊙O,点P是△ABC的内切圆的圆心,AP交边BC于点D,交⊙O于点E,经过点E作⊙O的切线分别交AB、AC延长线于点F、G.(1)求证:BC∥FG;(2)探究:PE与DE和AE之间的关系;(3)当图①中的FE=AB时,如图②,若FB=3,CG=2,求AG 的长.(第25题图①)EF G EF G(第25题图②)26.(本题12分)如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交Array y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;(2)当t为何值时,直线PQ与⊙C相切?并写出此时点P和点Q的坐标;(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.(第26题图)。

2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案

2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案

2007年湖北省宜昌市初中毕业生学业考试数 学 试 卷(考试形式:闭卷(考试形式:闭卷 全卷共五大题全卷共五大题全卷共五大题252525小题小题小题 卷面分数:卷面分数:卷面分数:120120120分分 考试时限:考试时限:考试时限:120120120分钟)分钟)考生注意:1.本试卷分为两卷,解答第Ⅰ卷(1~2页)时请将解答结果填写在第II 卷(3~8页)上指定的位置,否则答案无效,交卷时只交第II 卷. 2.答题时允许使用科学计算器. 以下公式供参考:二次函数y =ax2+bx +c图象的顶点坐标是)44,2(2ab ac a b-- ; 第Ⅰ卷(选择题、填空题 共45分)一、选择题:(在各小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每小题3分,共30分)1.若-2的绝对值是a ,则下列结论正确的是(,则下列结论正确的是( ). (A) a =2 (B) a =21 (C) a =-=-22 (D) a =-212.下列事件,是必然事件的是( ) . .(A )太阳每天都会从西边升起)太阳每天都会从西边升起 ((B )打开电视,正在播放新闻)打开电视,正在播放新闻 (C )在学校操场上抛出的篮球会下落)在学校操场上抛出的篮球会下落 ((D )掷一枚硬币落地后正面朝上)掷一枚硬币落地后正面朝上 3.如图所示是一个圆锥体,它的俯视图是(.如图所示是一个圆锥体,它的俯视图是( )).4 4.下列图案中既是轴对称图形又是中心对称图形的是.下列图案中既是轴对称图形又是中心对称图形的是.下列图案中既是轴对称图形又是中心对称图形的是( ). ( ). ( ).(A) (B) (C) (D)(第4题)题)5.据统计,2002年至2006年全国每年工业增加值比上年增长的幅度分别是:10.0%10.0%,,12.8%12.8%,,11.5%11.5%,,11.6%11.6%,,12.5%.12.5%.则这组数据的中位数是(则这组数据的中位数是(则这组数据的中位数是( )). (A) 11.5% (A) 11.5% ((B )11.6%(C )11.68% 11.68% ((D )11.55% 6.如图,小明从点O 出发,先向西走40米,再向南走米,再向南走 30米到达点M ,如果点M 的位置用的位置用((-4040,-,-,-30)30)30)表示,表示,表示, 那么那么(10(10(10,,20)20)表示的位置是(表示的位置是(表示的位置是( )).(A)(A)点点A (B) (B)点点B (C) (C)点点C (D) (D)点点D(第5题)题)··(A A )) ((B ) ((C ) ((D ) (第3题) 北南西东BA D COMOxy D A F 122154+26333正确的是( )). .反比例函数与二次函数在同一平面直角坐标系中的大致图象.反比例函数与二次函数在同一平面直角坐标系中的大致图象 k k k k 比冷冻室的温度高比冷冻室的温度高 ℃℃228米,米, 的长是的长是 的概率是的概率是 .是 . . 下表所示:下表所示:颗 次次12 3 4 56…行星名称行星名称 水星水星 金星金星 地球地球 火星火星 小行星小行星 木星木星 … 距离(天文单位)文单位) 0.40.711.62.85.2… 0.4 0.4+0.3 0.4+0.6 0.4+1.2 0.4+2.4 ……A颗行星到太阳的距离是天文单位天文单位天文单位.题号一二三四五总分总分 得分得分得分 题号11 12 13 14 15 评卷人评卷人 答案1-x 1得分得分 题号1 2 3 4 5 6 7 8 9 10 评卷人评卷人 答案得分评卷人评卷人EC2+x °≈°≈0.930.930.93)) (第19题) 得 分 小题,每小题7分,共21分)评卷人评卷人B OCBA20各等级人数比及格52%优秀18%不及格良好 26% 各等级学生平均分数7866429020406080100优秀良好及格不及格等级等级均分均分(第20题)题)21.《中学生体质《中学生体质健康健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;分为良好;6060分~75分为及格;分为及格;5959分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.%的学生进行了体质测试,得分情况如下图. (1)(1)在抽取的学生中不及格人数所占的百分比是在抽取的学生中不及格人数所占的百分比是在抽取的学生中不及格人数所占的百分比是 ;; (2)(2)小明按以下方法计算出抽取的学生平均得分是:小明按以下方法计算出抽取的学生平均得分是:小明按以下方法计算出抽取的学生平均得分是:(90(90(90++7878++6666++42)42)÷÷4=6969.根.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)必算出结果)(3)(3)若不及格学生的总分恰好等于某一个良好等级学生的分数,若不及格学生的总分恰好等于某一个良好等级学生的分数,若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级请估算出该校九年级学生中优秀等级的人数.学生中优秀等级的人数.(第21题)22.2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.河港.(1)哪个队先到达终点?乙队何时追上甲队?)哪个队先到达终点?乙队何时追上甲队? (2)在比赛过程中,甲、乙两队何时相距最远?)在比赛过程中,甲、乙两队何时相距最远?CBA路程/千米1.5160.5 2.5214035200(第22题)题)得分23题24题 25题 五、解答题:(本大题共3小题,每小题10分,共30分)评卷人评卷人23. 椐报道,椐报道,20072007年“五一”黄金周宜昌市共接待游客约80万人,旅游总收入约2.56亿元亿元..其中县区接待的游客人数占全市接待的游客人数的60%60%,,而游客人均旅游消费(旅游总收入÷旅游总人数)比城区接待的游客人均旅游消费少50元.(1)2007年“五一”黄金周,宜昌市城区与县区的旅游收入分别是多少万元? (2)预计2008年“五一”黄金周与2007年同期相比,全市旅游总收入增长的百分数是游客人均旅游消费增长百分数的2.59倍,游客人数增长的百分数是游客人均旅游消费增长百分数的1.5倍.请估计2008年“五一”黄金周全市的旅游总收入是多少亿元?(保留3个有效数字)个有效数字)24.24.如图如图1,在△ABC 中,AB =BC =5,AC =6. =6. △△ECD 是△ABC 沿BC 方向平移得到的,连接AE .AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,说明理由;是怎样的四边形,说明理由; (2)如图2,P 是线段B C 上一动点(图2),(不与点B 、C 重合),连接PO 并延长交线段AB 于点Q ,QR ⊥BD ,垂足为点R .①四边形P Q ED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形P Q ED 的面积;的面积;②当线段BP 的长为何值时,△PQR 与△BOC 相似?相似?(第24题图1) C OEDBA(备用图)COEDB AR P QC OEDBA(第24题图2)B yxEOCByxFEOA C By xF EOA祝贺你!再检查一遍吧!一、选择题:(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A C C A B B D D C B 二、填空题:(每小题3分,共15分)题号11 12 13 14 15答案23 相交相交 13456 10原式==×(1+)(1+1()(2MN AC42(3)方法一:因为一个良好等级学生分数为7676~~85分,而不及格学生均分为42分, 由此可以知道不及格学生仅有2人(将一个良好等级的分数当成78分估算出此结果也可),(2分)抽取优秀等级学生人数是:抽取优秀等级学生人数是:22÷4%4%××18%=9人,人,(3(3分) 九年级优秀人数约为:九年级优秀人数约为:99÷10%10%==90人(4分)方法二:设不及格的人数为x 人,则7676≤≤42x ≤8585,,(1分)分)1.81.81.8≤≤x ≤2.02.0,,x =2(2分),下同上;下同上;方法三:设九年级总人数为x 人,则7676≤≤4242××4%x ×10%10%≤≤8585,,(1分)解得:453453<<x <505505,,(2分)而4%x 4%x××10%10%==250x 必须为整数,必须为整数,所以所以x =500.(3分)九年级优秀人数大约为500500××18%18%==90人.(4分) 2222、解:、解:、解:(1)(1)(1)乙队先达到终点,乙队先达到终点,乙队先达到终点,(1(1分)对于乙队,x =1时,y =16,所以y =16x ,(2分) 对于甲队,出发1小时后,设y 与x 关系为y =kx +b , 将x =1,y =20和x =2.5,y =35分别代入上式得:分别代入上式得:îíì+=+=bk bk 5.23520 解得:y =10x +10(3分) (第22题)解方程组îíì+==101016x y xy 得:x =35,即:出发1小时40分钟后(或者上午10点40分)乙队追上甲队分)乙队追上甲队.(4.(4分)(2)1小时之内,两队相距最远距离是4千米,千米,(1(1分)乙队追上甲队后,两队的距离是16x -(10x +10)=6x -10,当x 为最大,即x =1635时,6x -10最大,(2分)此时最大距离为6×1635-10=3.125<4,(也可以求出AD 、CE 的长度,比较其大小)所以比赛过程中,甲、乙两队在出发后1小时(或者上午10时)相距最远时)相距最远(3(3分)AC DEB路程路程//千米时间时间//时1.5160.52.521403520{x y依据题意可列方程: (=ACBC=AC即:××=.=.=1(=1(=1BD =×10××==12×=12×=95,O E A P Q C R O E D B A 13 2G ∴PB =BC -PC =BC -2CG =5-2×95=75.(8分)分)方法二:如图3,当点P 在BC 上运动,上运动, 使△PQR 与△COB 相似时,相似时,∵∠∵∠22是△OBP 的外角,∴∠的外角,∴∠22>∠>∠33,∴∠∴∠22不与∠不与∠33对应,∴∠对应,∴∠22与∠与∠11对应,(5分)分)∴QR :BO =PR :OC ,即:245:4:4==PR :3:3,, ∴PR =185,(6分)分)过E 作EF ⊥BD 于F ,设PB =x ,则RF =QE =PB =x , DF =ED 2-EF 2=62-(245)2 =185,(7分)分)∴BD =PB +PR +RF +DF =x +185+x +185=1010,,x =75.(8分)分)方法三: : 如图如图4,若点P 在BC 上运动,使点R 与C 重合,重合, 由菱形的对称性知,O 为PQ 的中点,的中点, ∴CO 是Rt △PCQ 斜边上的中线,斜边上的中线,∴CO =PO ,(5分)∴∠OPC =∠OCP , 此时,此时,Rt Rt Rt△△PQR ∽Rt Rt△△CBO ,(6分)分)∴PR :CO =PQ :BC ,即PR :3:3==6:56:5,,∴PR =185(7分),∴PB =BC -PR =5-185=75.(8分)分)25.解(1)∵抛物线顶点(h ,m)在直线y =kx 上,∴m =kh ;(1分)(2) 方法一:解方程组îíì¼¼¼¼¼¼¼¼=¼¼¼¼+-=)2()1()(2kx y kh h x y , 将(2)代入(1)得到:得到: (x -h)2+kh =kx , 整理得:(x -h)[(x -h)-k]=0, 解得:x 1=h , x 2=k +h 代入到方程(2) y 1=h y 2=k 2+hk 所以点E 坐标是(k +h ,k 2+hk) (1分) 当x =0时,y =(x -h)2+m =h 2+kh ,(第24题3)P Q C R O E D B A 132F (R ) P C O D Q E B A (第24题4)。

2007年湖北省随州市中考数学试题(含解析答案)

2007年湖北省随州市中考数学试题(含解析答案)

2007年湖北省随州市中考数学试卷一、填空题(共7小题,每小题3分,满分21分)1、-2的绝对值是2.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|-2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、不等式组:的解集是-1<x≤2.考点:解一元一次不等式组.专题:计算题.分析:首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.解答:解:由(1)得:x>-1由(2)得x≤2所以-1<x≤2.点评:本题考查不等式组的解法,一定要把每条不等式的解集正确解出来.3、如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是90%.考点:频数(率)分布直方图.专题:图表型.分析:分析频数直方图可得:72分及以上的人数与总人数,相比可得该班这次测试成绩的及格率.解答:解:由频数直方图可以看出:72分及以上成绩的人数=9+12+9+6=36人,总人数=1+3+9+12+9+6=40人,则该班这次测试成绩的及格率为36÷40=0.9=90%.故答案为90%.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、已知⊙O1与⊙O2相外切,⊙O1的半径为3cm,圆心距O1O2=7cm,那么⊙O2的半径为4cm.考点:圆与圆的位置关系.分析:根据两圆外切时,圆心距=两圆半径的和求解.解答:解:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是7-3=4cm.点评:注意:两圆外切,圆心距等于两圆半径之和.5、如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt△ABF中,∠AFB=90°,AF=3,AB=5.四边形EFGH的面积是1.考点:勾股定理;三角形的面积;正方形的性质.专题:计算题.分析:四边形EFGH的面积=四边形ABCD的面积-四个全等直角三角形的面积.直角三角形的面积需利用勾股定理求出直角边后解答.解答:解:因为AB=5,所以S正方形ABCD=5×5=25.Rt△ABF中,AF=3,AB=5,则BF= =4,所以SRt△ABF= ×3×4=6,四个直角三角形的面积为:6×4=24,四边形EFGH的面积是25-24=1.故答案为1点评:此题主要考查了勾股定理,以及正方形面积、三角形面积,难易程度适中.6、八年级的小亮和小明是好朋友,他们都报名参加学校的田径运动会,将被教练随机分进甲、乙、丙三个训练队,他俩被分进同一训练队的概率是.考点:概率公式.分析:本题可假设小亮在某一个训练队,则小明有3种被安排的可能,要与小亮在同一个训练队,那么就只有的可能,因此可知概率的值.解答:解:假设小亮在甲,则小明有甲、乙、丙三种,那么他们要在同一队的可能只有,同理,小亮在乙或丙,他们要在同一队的可能也只有,因此概率为.点评:本题考查了概率的公式.解本题时学生常常会认为小亮、小明都是三种其中一种而算出×= 的错误答案.7、在四边形ABCD中,AB边的长为4,设动点P沿折线B⇒C⇒D⇒A 由点B向点A运动,设点P运动的距离为x,△PAB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周和为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△PAB面积为4时,点P移动的距离是2.你认为其中正确的结论是①③.(只填所有正确结论的序号例如①)考点:动点问题的函数图象;矩形的判定;等腰梯形的判定.专题:动点型.分析:解本题需注意一定的面积值相对应的距离可以有2个或2个以上.解答:解:∵AB边的长为4,设动点P沿折线B⇒C⇒D⇒A由点B向点A运动,设点P运动的距离为10,∴四边形ABCD的周和为10+4=14;①成立.当点P在BC上运动时,面积在不断增加,当移动的距离是3,面积为6时,面积不再变化,说明CD∥AB,此时BC=3,△ABP面积= ×4×高=6,那么高=3,说明BC⊥AB.当点P运动7时,面积停止变化,此时CD=7-3=4,那么CD=AB.根据一组对边平行且相等的四边形是平行四边形得到四边形ABCD是平行四边形.根据有一个角是直角的平行四边形是矩形得到四边形ABCD是矩形.③对.由图中可以看出,面积为4的点可在图中找到两处,那么就有相应的两个距离值,④不对.故答案选①③.点评:解决本题的关键是读懂图意,得到相应的四边形的各边之间的关系.二、选择题(共11小题,每小题3分,满分33分)8、下列计算,结果正确的是()A、2a+3b=5abB、(a3)2=a2C、2a•(-3a2)=-6a3D、考点:负整数指数幂;合并同类项;幂的乘方与积的乘方;单项式乘单项式.专题:计算题.分析:根据合并同类项的法则,幂的乘方的性质,单项式的乘法法则及负整数指数幂的意义作答.解答:解:A、2a、3b不是同类项,不能合并,故选项错误;B、(a3)2=a6,故选项错误;C、2a•(-3a)2=2×(-3)•a•a2=-6a3,故选项正确;D、(- )-2= ,故选项错误.故选C.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项的法则,幂的乘方的性质,单项式的乘法法则及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.9、如图是某超市中“漂柔”洗发水的价格标签,一售货员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是()A、15.36元B、16元C、23.04元D、24元考点:一元一次方程的应用.专题:图表型.分析:本题中的相等关系是:原价×80%=现价.解答:解:设原价是x元,根据题意得:80%x=19.2解得:x=24.故选D.点评:列方程解应用题的关键是正确找出题目中的相等关系,列出方程解答.答题:zhjh老师★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮10、已知分式的值是2,那么x的值是()A、-3B、3C、-1D、1考点:解分式方程.专题:计算题.分析:本题考查可化为一元一次方程的分式方程的解法,可通过去分母,转化为整式方程来求解,另外验根是分式方程必不可少的步骤.解答:解:依题意得方程:=2,去分母,得x-1=2(x+1),解得x=-3,检验:把x=-3代入x+1≠0,故选A.点评:解分式方程的关键是通过去分母或换元等方式将分式方程转化为整式方程,应注意其中的符号变化,同时不要忘记验根.11、如图,两条直线a、b被第三条直线l所截,如果a∥b,∠1=55°,那么∠2的度数为()A、125°B、105°C、65°D、55°考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:先利用两直线平行,同位角相等求出∠2的邻补角,再根据邻补角定义即可求出.解答:解:∵a∥b,∴∠3=∠1=55°,又∠2=180°-∠3=180°-55°=125°.故选A.点评:本题重点考查了平行线的性质及邻补角的定义,是一道较为简单的题目.12、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()A、10B、8C、6D、4考点:垂径定理;勾股定理.分析:先求出DE和圆的半径,再利用勾股定理即可求出.解答:解:∵弦CD⊥AB,垂足为E∴CE=DE= CD= ×16=8∴OA是半径OA= AB= ×20=10连接OD,在Rt△ODA中,OD=OA=10,DE=8OE= = =6故选C.点评:此题属简单题目,涉及到垂径定理及勾股定理的运用,需同学们细心解答.13、小李和小王同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A、点数之和是偶数B、点数之间和大于3且小于5C、点数之和是13D、点数之和是3的倍数考点:随机事件.分析:不可能事件是指在一定条件下,一定不发生的事件.解答:解:因为同时抛掷两枚质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,是不可能事件的是点数之和是13.故选C.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14、如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A、四边形ABCD与四边形AEFG是相似图形B、AD与AE的比是2:3C、四边形ABCD与四边形AEFG的周长比是2:3D、四边形ABCD与四边形AEFG的面积比是4:9考点:位似变换.分析:本题主要考查了位似变换的定义及作图,位似变换就是特殊的相似,且位似图形上任意一对对应点到位似中心的距离之比等于相似比.,因而周长的比等于相似比,面积的比等于相似比的平方.解答:解:∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG不一定是相似图形,故正确;B、AD与AG是对应边,故AC:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选B.点评:本题主要考查了位似的定义及性质:周长的比等于相似比,面积的比等于相似比的平方.15、某机床厂原计划在一定期限内生产240套机床,在实际生产中通过改进技术,结果每天比原计划多生产4套,并且提前5天完成任务.设原计划每天生产x套机床,根据题意,下列方程正确的是()A、B、C、D、考点:由实际问题抽象出分式方程.专题:应用题.分析:关键描述语为:提前5天完成任务.等量关系为:原计划用的时间-5=实际用的时间.解答:解:实际用的时间为:;原计划用的时间为:.方程可表示为:.故选B.点评:找到关键描述语,找到等量关系是解决问题的关键.用到的等量关系为:工作时间=工作总量÷工作效率.16、如图1,是由几个小正方体搭成的一个几何体,它的主视图如图2,那么它的左视图为()A、B、D、C、考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可.解答:解:从左面看可得到正方形的个数从左往右依次为:2,1,1.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.17、下列四个命题:①点(-2,3)在第二象限;②直线y=x-2与y轴交于点(0,-2);③直线y=-x与双曲线y= 有两个交点;④抛物线y=x2-3x+4与x轴没有交点.其中正确命题是()A、①③B、②④C、①②③D、①②④考点:抛物线与x轴的交点;点的坐标;一次函数图象上点的坐标特征.分析:注意象限内点的特点以及一次函数与二次函数图象的图象特征即可.解答:解:①点(-2,3)在第二象限;(-,+)属于第二象限点的特征,正确;②直线y=x-2与y轴交于点(0,-2);当x=0时,y=-2,正确;③直线y=-x与双曲线y= 有两个交点,直线过的是二四象限,双曲线在一三象限,所以没有交点,错误;④当y=0时,△<0,所以抛物线y=x2-3x+4与x轴没有交点,正确.故选D.点评:本题考查了象限内点的特点以及各类函数图象的图象特征.需注意在做题过程中加以理解应用.18、如图,沿Rt△ABC的中位线DE剪切一刀后,用得到的△ADE和四边形DBCE拼图,下列图形中不一定能拼出的是()A、平行四边形B、矩形C、菱形D、等腰梯形考点:三角形中位线定理.专题:操作型.分析:可动手拼图,先画出图形再根据已知条件解答.解答:解:如图:①为矩形;②为平行四边形,若∠B=60°时为菱形;③等腰梯形.故选C.点评:此题是考查直角三角形的中位线定理,结合四边形的性质解答.答题:CJX老师显示解析在线训练收藏试题试题纠错下载试题试题篮三、解答题(共8小题,满分66分)19、已知:a= -1,求的值.考点:二次根式的化简求值;分式的化简求值.专题:计算题.分析:先对所求的代数式进行整理化简,再字母的值代入计算.解答:解:原式= ,当a= -1时,原式= .点评:此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20、从2007年春季开学起,全国农村全部免除义务教育阶段的学费和杂费,小杰同学在一所农村初中上八年级(走读),2006年9月1日开学他交书本费和杂费共270元,其中书本费比杂费的2倍少30元.2007年春季开学,书本费不变,问小杰只交了书费多少元?考点:二元一次方程组的应用.专题:应用题.分析:设2006年9月1日小杰交书本费x元,杂费y元,根据题意:2006年9月1日开学他交书本费和杂费共270元,其中书本费比杂费的2倍少30元.2007年春季开学,书本费不变,列出方程求解即可.解答:解:设2006年9月1日小杰交书本费x元,杂费y元.则解得答:小杰只交了书本费170元.点评:本题主要考查了二元一次方程的应用,学生分清题中的关系是关键.21、如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.考点:全等三角形的判定.专题:证明题;开放型.分析:要证明△ADB≌△CEB,两三角形中已知的条件有BD=BE,有一个公共角,那么根据三角形的判定公理和推论,我们可看出①不符合条件,没有SSA的判定条件,因此不正确.②AE=CD,可得出AB=BC,这样就构成了SAS,因此可得出全等的结论.③构成了全等三角形判定中的AAS,因此可得出三角形全等的结论.④构成了全等三角形判定中的ASA,因此可得出三角形全等的结论.解答:解:第(1)题添加条件②,③,④中任一个即可,以添加②为例说明.(1)②证明:∵AE=CD,BE=BD,∴AB=CB,又∠ABD=∠CBE,BE=BD∴△ADB≌△CEB.(2).③构成了全等三角形判定中的AAS,因此可得出三角形全等的结论.④构成了全等三角形判定中的ASA,因此可得出三角形全等的结论.所以填③④.点评:本题考查了全等三角形的判定公理及推论.注意SSA和AAA是不能得出三角形全等的结论的.22、某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.考点:加权平均数;用样本估计总体;中位数;众数;统计量的选择.专题:图表型.分析:(1)根据加权平均数计算平均数;众数即出现次数最多的数据,中位数应是第15个和第15个数据的平均数.(2)根据样本平均数估计总体平均数,从而计算该社区的月用水量;(3)因为这组数据中,极差较大,用平均数不太合理,所以选用众数或中位数,有代表性.解答:解:(1)(3×4+4×3+5×5+7×11+8×4+9×2+10×1)=6.2,众数是7,中位数是(7+7)=7;(2)1500×6.2=9300(吨)∴该社区月用水量约为9300吨;(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.答:(1)这30户家庭月用水量的平均数6.2,众数是7,中位数是(7+7)=7;(2)该社区月用水量约为9300吨;(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.点评:掌握平均数的计算方法,理解众数和中位数的概念,能够正确找到众数和中位数.学会运用平均数、众数和中位数解决实际问题.23、一颗位于地球上空的气象卫星S,对地球上某区域天气系统的形成和发展进行监测.如图,当卫星S位于地球表面上A点的正上方时,其监测区域的最远点为B点,已知被监测区域中A,B两点间距离(即的长)约为1730km,试求出卫生S距地球表面的高度SA约是多少km?考点:解直角三角形的应用.专题:应用题.分析:如右图所示,可知OB⊥SB,即△OSB为直角三角形,要求出SA,必须先有SO,而SO的长度需借助OB,利用三角函数来解答.解答:解:设所在圆的圆心为点O,连接OB,设∠BOE=n°,由题意可知SB与⊙O相切,∴SB⊥OB,∵又,即,∴n≈15.5°,故Rt△OBS中,cos∠BOS= ,∴,∴SA=SO-AO=6642-6400=242≈2.4×102.答:卫星S距地球表面的高度约是2.4×102km.点评:解此题的关键是把实际问题转化为数学问题,抽象到三角形中,利用三角函数进行解答.24、如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE 于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.考点:相似三角形的判定;正方形的性质.专题:动点型;开放型.分析:(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.解答:证明:(1)∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE= =2 ,∴EF= AE= .∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.点评:解答本题要充分里利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.25、某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费-每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?考点:二次函数的应用;一次函数的应用.专题:应用题.分析:本题中要按照每辆次小车的停车费的变化,来分别讨论停车场的日净收入和每辆次小车的停车费之间的等量关系.然后根据不同的条件来判断出符合“使每天小车停放的辆次较多,又要有较大的日净收入”的取值.解答:解:(1)由题意得:y=1440x-800∵1440x-800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.(2)由题意得:y=[1440-120(x-5)]x-800即y=-120x2+2040x-800(3)当x≤5时,停车1440辆次,最大日净收入y=1440×5-800=6400(元)当x>5时,y=-120x2+2040x-800=-120(x2-17x)-800=-120(x- )2+7870∴当x= 时,y有最大值.但x只能取整数,∴x取8或9.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=-120×+7870=7840(元)由上得,每辆次小车的停车费应定为8元,此时的日净收入为7840元.点评:本题是利用一次函数的有关知识解答实际应用题,要注意不同的条件下,函数的不同的变化,要根据题目给出的条件分别进行讨论.26、如图,直角梯形ABCD的腰BC所在直线的解析式为y=- x-6 ,点A与坐标原点O重合,点D的坐标为(0,-4 ),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)考点:一次函数综合题.专题:压轴题;开放型;分类讨论.分析:(1)根据E(6,0),F(2,4 ),利用待定系数法可求得EF所在直线的解析式;(2)根据梯形OEFG的面积为(2+6)•4 ,A(a,- a+6 ,由题意得,若S的值为,则可得a2-6a+5=0,所以a1=1,a2=5,又a1=1不合题意,舍去,取a=5,可求得当a=5时,S的值恰好等于梯形OEFG的面积的;(3)满足条件的等腰△PAM的顶角应为120°,分下列三种情况考虑:①当∠PAM为顶角时(如图1),设AB交y轴于点Q,OM=x,利用Rt△PQA,Rt△POM中的有关角和线段可求得P1(0,);②当∠PMA为顶角时,画图可知合条件的点P2在y轴的负半轴上,可求;③当∠APM为顶角时(如图2)过点P3作P3N⊥AM于点M,点A与点F重合,即,所以满足条件的点P坐标为.解答:解:(1)E(6,0),F(2,4 ),EF所在直线的解析式为y=- x+6 .(2)梯形OEFG的面积为(2+6)•4 ,∵点A(a,b)在直线EF上,∴A(a,- a+6 ,由题意得,若S的值为,则,,即a2-6a+5=0,∴a1=1,a2=5,又a1=1不合题意,舍去,取a=5;∴当a=5时,S的值恰好等于梯形OEFG的面积的.(3)显然,满足条件的等腰△PAM的顶角应为120°,分下列三种情况考虑:①当∠PAM为顶角时(如图1),设AB交y轴于点Q,OM=x,∵点A在直线y=- x+6 上,∴AM=- x+6 ,在Rt△PQA中,∠PAQ=120°-90°=30°,∴PQ= AP= AM;∴OP=OQ+QP= AM= (- x+6 ),在Rt△POM中,∠PMO=90°-30°=60°,∴OP=OM•tan∠PMO= x;∴(- x+6 )= x,x= .②当∠PMA为顶角时,画图可知合条件的点P2在y轴的负半轴上;Rt△P2OM中,∠P2MO=120°-90°=30°,且OM仍为;∴,即;③当∠APM为顶角时(如图2)过点P3作P3N⊥AM于点M,设OM=x,在Rt△P3OM中,∠P3MO=90°-30°=60°,∴,∴,∴,x=2,此时点A的坐标为,即点A与点F重合,∴,即,由①,②,③得,满足条件的点P坐标为.点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.。

历年湖北省武汉市中考数学试卷(含答案)

历年湖北省武汉市中考数学试卷(含答案)

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A .B .C .D .8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD ⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt △CDF 中,cos ∠ADC=, ∴=,∵CD=5,∴DF=3,∴CF==4,∵S △CDE =6, ∴•ED•CF=6,∴ED==3,EF=ED +DF=6,∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=AB=6,AG==6,∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA , ∴=, ∴=,∴EG=9,∴BE=EG ﹣BG=9﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.31。

2007年全国各地中考数学压轴题赏析

2007年全国各地中考数学压轴题赏析

2007年全国各地中考数学压轴题赏析浦东教育发展研究院 杨正家2007年全国各地中考数学试题压轴题多姿多彩,经学习、研究后有不少体会。

这些成功试题值得大家进行深入分析,细细品味。

本人从中选取一部分加以分析,供教学、命题和研究参考。

希望从考试试题的研究出发,在研究、讨论中我们共同获得对数学和数学教学的启发,进而提高对数学和数学教学的认识。

试题1(湖北省十堰市)已知矩形ABCD 中,AB =2,AD =4,以AB 的垂直平分线为x 轴,AB 所在的直线为y 轴,建立平面直角坐标系(如图)。

(1)写出A 、B 、C 、D 及AD 的中点E 的坐标;(2)求以E 为顶点、对称轴平行于y 轴,并且经过点B 、C 的抛物线的解析式; (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。

略解:(1)所求各点坐标为A (0,1),B (0,-1),C (4,-1),D (4,1),E (2,1)。

(2)设抛物线的解析式为1+=22)-(x a y ,由于抛物线经过点B(0,-1),可求得21-a =,所以抛物线的解析式为121+=22)-(x -y ,经验证,该抛物线过C 。

(3)直线BD 的解析式为121x -y =,与抛物线解析式联列,解得点P 坐标为),(213P 。

(4)PBC ΔPEB ΔS S 21=。

赏与析: 第(2)小题看起来有多余条件,但实际上正好考查学生解题中的自检能力,如果学生用顶点式求抛物线解析式,根据点B 坐标求出解析式后须检查C 在抛物线上。

如果学生运用一般式求解,根据E 、B 、C 的坐标求出解析式后,须检验E 是顶点。

这一自检步骤不可忽略,也不可默认。

试题2(泰安市,非课改)如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),EF AB ⊥,EG AC ⊥,垂足分别为F G ,。

2007年中考数学试题汇编——压轴题(含答案)及详细解析

2007年中考数学试题汇编——压轴题(含答案)及详细解析

第 1 页2007年中考数学试题汇编——压轴题一、 试题部分 1-13页 二、 答案部分14-36页一、 试题部分安徽省2007年23.按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。

(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;【解】(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。

(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程) 【解】2007年常德市26.如图11,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FG ABBG=成立(考生不必证明).(1)探究:如图12,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(5分) (2)计算:若菱形ABCD 中660AB ADC == ,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长.(7分) (3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FG ABBG=还成立吗?(1分)郴州市2007年27.如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线AC 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重合时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.图11D图122德州市二〇〇七年23.(本题满分10分)已知:如图14,在ABC △中,D 为AB 边上一点,36A ∠= ,AC BC =,2AC AB AD = .(1)试说明:ADC △和BDC △都是等腰三角形; (2)若1AB =,求AC 的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)2007年龙岩市25.(14分)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.2007年福建省宁德市26.(本题满分14分) 已知:矩形纸片ABCD 中,26AB =厘米,18.5BC =厘米,点在上,且厘米,点P 是AB 边上一动点.按如下操作:步骤一,折叠纸片,使点P 与点E 重合,展开纸片得折痕MN (如图1所示); 步骤二,过点P 作PT AB ⊥,交MN 所在的直线于点Q ,连接QE (如图2所示) (1)无论点P 在AB 边上任何位置,都有PQ QE (填“>”、“=”、“<”号); (2)如图3所示,将纸片ABCD 放在直角坐标系中,按上述步骤一、二进行操作: ①当点P 在A 点时,PT 与MN 交于点11Q Q ,点的坐标是( , );xN MQ PHGFEDCBA图11Q P NM H G F ED CB A图10图14第 页3 ②当6PA =厘米时,PT 与MN 交于点22Q Q ,点的坐标是( , );③当12PA =厘米时,在图3中画出MN PT ,(不要求写画法),并求出MN 与PT 的交点3Q 的坐标; (3)点P 在运动过程,PT 与MN 形成一系列的交点123Q Q Q ,,,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式.2007年福建省三明市26.(本小题满分12分)如图①,②,在平面直角坐标系xOy 中,点A 的坐标为(4,0),以点A 为圆心,4为半径的圆与x 轴交于O ,B 两点,OC 为弦,60AOC ∠= ,P 是x 轴上的一动点,连结CP .(1)求OAC ∠的度数;(2分)(2)如图①,当CP 与A 相切时,求PO 的长;(3分)(3)如图②,当点P 在直径OB 上时,CP 的延长线与A 相交于点Q ,问PO 为何值时,OCQ △是等腰三角形?(7分)2007年河池市26. (本小题满分12分)如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值范围,当t 为何值时,SC B图1 图3CE 图24的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由.贵阳市2007年25.(本题满分12分)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为90 的扇形.(1)求这个扇形的面积(结果保留π).(3分)(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分) (3)当O 的半径(0)R R >为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分)2007年杭州市24.(本小题满分12分)在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。

2007年湖北潜江中考数学试题及答案北师大版

2007年湖北潜江中考数学试题及答案北师大版

潜江市 仙桃市江 汉 油 田 2007年初中毕业生学业考试数 学 试 题亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥.特别提醒你要仔细审题,先易后难.祝你取得好成绩!并请你注意以下几点:1.答卷前,请你用钢笔(圆珠笔)将自己的姓名、准考证号填在密封线内.2.答选择题时,请将答案直接填在选择题答题表中.3.试卷共8页,满分120分,考试时间120分钟.总 分 表一、精心选一选,相信自己的判断!(本大题共有8个小题,每小题3分,满分24分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分. 1.2-的相反数是A. 2B.21 C. 2- D. 21- 2.如图,桌面上有一个一次性纸杯,它的俯视图应是A. B. C. D. 3.若方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是A. 1>mB. 1<mC. 1≤mD. 1≥m4.如图,已知:AB ∥EF ,CE =CA ,∠E =65,则∠CAB A.25 B.50 C.60 D.65 5.估算728-的值在A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间6.如图,已知:AB 是⊙O 的直径,C 、D 是 上的三等分点, ∠AOE = 60,则∠COE 是A.40 B.60 C.80 D.120 7.抛物线c bx x y ++-=2的部分图象如图所示,若0>y , 则x 的取值范围是A.14<<-xB. 13<<-xC. 4-<x 或1>xD.3-<x 或1>x 8.如图,⊙O 上有两点A 与P ,若P 点在圆上匀速运动一周, 那么弦AP 的长度d 与时间t 的关系可能是下列图形中的 9.2006年,外国来中国留学的人数创历史新高, 共计16.27万人,用科学记数法表示这个数(第6题图)(第7题图)应为 人.10.计算 432a a a ÷⋅的结果是 . 11.母亲节那天,很多同学给妈妈准备了鲜花和 礼盒.从图中信息可知一束鲜花的价格是 元. 12.某家电商场近来一个月卖出不同功率的空调总数见下表:那么这一个月卖出空调的众数是 .13.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,如果小华的身高为1.6米,那么路灯离地面的高度是 米. 14.如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于 A 、 B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.15.如图,将边长为2 cm 的正方形ABCD 沿其对角 线AC 剪开,再把△ABC 沿着AD 方向平移,得 到△C B A '''ˊ,若两个三角形重叠部分的面积是1cm 2,则它移动的距离A A 'ˊ等于 cm.16.根据下列图形的排列规律,第2008个图形 是 (填序号即可). (①;② ;③ ;④ .)……三、用心做一做,显显你的能力!(本大题共9个小题,满分72分.) 17.(本题满分5分)先化简后求值:1113(2-÷--+a aa a a a , 其中22+=a .'18.(本题满分6分)今年4月,国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题: (1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人; (3)根据统计结果,请你简单谈谈自己的看法.19. (本题满分6分)如图,已知:梯形ABCD 中,AD ∥BC ,E 为AC 的中点,连接DE 并延长交BC 于点F ,连接AF .(1)求证:AD =CF ; (2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD成为菱形,并说明理由.25 5075 100125150175200人数20.(本题满分7分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈); (2.21.(本题满分8分)如图,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,过B 点作BC ∥OD交⊙O 于点C ,连接OC 、AC ,AC 交OD 于点E . (1)求证:△COE ∽△ABC ;(2)若AB =2,AD =3,求图中阴影部分的面积.22.(本题满分8分)亲爱的同学,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A 、B 、C 三张除颜色以外完全相同的卡片,卡片A 两面均为红,卡片B 两面均为绿,卡片C 一面为红,一面为绿.(1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0?(2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,猜哪种颜色正确率可能高一些?请你列出表格,用概率的知识予以说明. 23.(本题满分10分)在平面直角坐标系中,小方格都是边长为1的正方形,图①、②、③、④的形状和大小均相同.请你解答下列问题(根据变换需要可适当标上字母):(1)写出图①中点A 关于原点对称的点的坐标;(2)指出图②通过怎样的变换可与图①重合?图④通过怎样的变换可与图③拼成一个矩形? (3)请将图形①、②、③、④四部分密铺到图⑤中,在图⑤中画出图形,并将其中两块涂上阴影.24.(本题满分10分)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:请问:有哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?25.(本题满分12分)如图①,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D、E 两点的坐标;(2)如图②,若AE 上有一动点P (不与A 、E 重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒)50(<<t ,过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少?(3)在(2)的条件下,当t 为何值时,以A 、M 、E 为顶点的三角形为等腰三角形,并求出相应时刻点M 的坐标.答卷完后,请回过头来检查一遍,可要仔细哟!潜江市 仙桃市 江 汉 油 田数学试题参考答案及评分说明说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分. 一、选择题(每小题3分,共24分) 1—8 A C B B D C B D 二、填空题(每小题3分,共24分)9. 1.627×105 10.a 11. 15 12. 2匹空调 13. 6.4 14. 10 15. 1 16. ③ 三、解答题(共72分)17.解:(5分)解:原式=aa a a a a a )1)(1()113(-+⋅--+ …………………………(2分) =)1()1(3+--a a ………………………………………(3分) =42-a ……………………………………………………(4分) 当22+=a 时,原式=2218.(6分)解:(1)扇形图中填:三姿良好12%,条形统计图,如图所示……………… (2分) (2)500,12000…………………………(4分) (3)答案不惟一,只要点评具有正确的导向性, 且符合以下要点的意思,均可给分(6分) 要点: 中学生应该坚持锻炼身体,努力 纠正坐姿、站姿、走姿中的不良习惯,促 进身心健康发育.19.(6分)(1)证明:在DEA ∆和FEC ∆中,∵BC AD ∥∴ FCE DAE ∠=∠,……(1分)又∵E 为AC 的中点, ∴CE AE =∴DEA ∆≌FEC ∆ …………………………………………………………(2分) ∴CF AD =…………………………………………………………………(3分)(2)四边形AFCD 两邻边相等或对角线互相垂直或对角线平分一个内角,只要写的条件符合一种类型即可…………………………………………………………(4分)证明:∵BC AD ∥ 又∵CF AD =0 255075 100125150175200坐姿 不良 站姿 不良 x xx x y∴四边形AFCD 为平行四边形…………………………………………(5分) 又∵DC DA = ∴四边形AFCD 为菱形………………………………(6分) (选取其中任意一个结论证明,只要正确均可得分)20.(7分)(1)在BAC Rt ∆中,68=∠ACB ,∴24848.210068tan =⨯≈⋅=AC AB (米)答:所测之处江的宽度约为248米……………………………………………………(3分) (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分.………………………………………………(7分) 21.(8分)(1)证明:∵AB 为⊙O 的直径,∴90=∠BCA又∵BC ∥OD ,∴AC OE ⊥,即:90=∠=∠BCA OEC …………………(2分)又∵OC OA =,∴O C EB AC ∠=∠………………………………………………(3分)∴COE ∆∽ABC ∆.(2)过点B 作OC BF ⊥,垂足为F .∵AD 与⊙O 相切,∴90=∠OAD在OAD Rt ∆中,∵,3,1==AD OA∴33tan =∠D ∴ 30=∠D …………………(5又∴90=∠+∠=∠+∠EAD D EAD BAC∴30=∠=∠D BAC ,∴ 60=∠BOC ………………………………………(6分) ∴4360sin 112121=⨯⨯⨯=⋅⋅=∆ BF OC S OBC ………………………………(7分) ∴=-=∆O BC O CB S S S 扇阴436433601602-=-⨯ππ…………………………(8分) 22.(8分)解:(1)依题意可知:抽出卡片A 的概率为0;…………………(3分)(2)由(1)知,一定不会抽出卡片A ,只会抽出卡片B 或C,且抽出的卡片朝上的一面是绿色,那么可列下表:………………………………(6分) 可见朝下一面的颜色有绿、绿、红三种可能,即:P (绿)=32,P (红)=31, 所以猜绿色正确率可能高一些.………………………………………………………(8分) yxy x x yxy xy x xy x y x 中学数学网 数学试卷第 11 页(共 8 页)23.(10分)(1)点A 关于原点对称的点的坐标为(4,–3分) (2)变换中,平移时说出平移方向、单位长度;旋转时, 说出旋转中心、方向和旋转角度,并且能使变换后的图形 达到题目要求均给满分.②与①重合(3分);④与③拼成矩形(3分)…………………………………………………………………………… (7分) (3)如图,图形清楚、正确,涂上其中任意两块……………………………………(10分) 24.解:(1)210306300= ∴四月份的平均日销售量为210+500=710箱……………………………(2分) (2)五月;500=a (一个结果1分)…………………………………………(4分) (3)设购买A 型设备x 台,则购买B 型设备)5(x -台,依题意有:⎩⎨⎧≥-+≤-+210)5(4050135)5(2528x x x x …………………………………………………(6分)解得:3101≤≤x ∴x 取整数1,2,3方案①:购买A 型设备1台,购买B 型设备4台 方案②:购买A 型设备2台,购买B 型设备3台方案③:购买A 型设备3台,购买B 型设备2台………………………(8分)若选择①,日产量可增加50×1+40×4=210(箱)若选择日产量可增加50×2+40×3=220(箱)若选择③,日产量为50×3+40×2=230(箱)∴选择方案③.………………………………………………………………(10分)25.解:(1)依题意可知,折痕AD 是四边形OAED 的对称轴,∴在ABE Rt ∆中,45===AB AO AE , ∴3452222=-=-=AB AE BE ∴2=CE∴E 点坐标为)4,2(………………………………………………………(2分)在DCE Rt ∆中,222DE CE DC =+ 又∵OD DE =∴2222)4(OD OD =+- 解得:25=OD ∴D 点坐标为)25,0(………………………………………………………(3分)(2)如图①∵PM ∥ED ∴∽APM ∆AED ∆∴AE APED PM = 又知525==AE ED t AP ,=, xyxyx y x y xy x y页 (共 8 ∴225PM =⨯=又∵t PE -=5 而显然四边形PMNE 为矩形∴t t t t PE PM S PMNE 2521)5(22+-=-⨯=⋅=矩形…………………(5分)∴825)25(212+--=t S PMNE 矩形 又∵5250<<∴当25=t 时,PMNE S 矩形有最大值825(面积单位)…………………(6分)(3)(i )若MA ME =(如图①)在AED Rt ∆中,MA ME =,,AE PM ⊥ ∴P 为AE 的中点 又∵PM ∥ED , ∴M 为AD 的中点∴2521==AE AP ∴25==t AP ∴4521==t PM又∵P 与F 是关于AD 对称的两点∴25=M x ,45=M y∴当25=t 时(5250<<),AM E ∆为等腰三角形 此时M 点坐标为)45,25(………………………………………………(9分)(ii )若5==AE AM (如图②)在AOD Rt ∆中,5255)25(2222=+=+=AO OD AD ∵PM ∥ED ,∴∽APM ∆AED ∆,∴ADAMAE AP = ∴5252555=⨯=⋅==AD AE AM AP t ∴521==t PM同理可知:525-=M x , 5=M y∴当52=t 时(5520<<),此时M 点坐标为)5525(,-综合(i )、(ii )可知:25=t 或52=t 时,以A 、M 、E 为顶点的三角形为等腰三角形,相应M 点的坐标为)5,5(或)5525(,-………………………………………(12分) 中学数学网 中学数学网 数学试卷第 13 页(共 8 页)xyxxyxy。

2024年湖北省武汉市中考数学试题(含答案)

2024年湖北省武汉市中考数学试题(含答案)

2024年武汉市初中毕业生学业考试数学试卷亲爱的同学:在你答题前,请认真阅读下面的注意事项:1.本试卷全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答选择题时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:C.2.小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是()A.随机事件B.不可能事件C.必然事件D.确定性事件【答案】A【分析】本题考查的是必然事件、不可能事件、随机事件的概念.根据事件发生的可能性大小判断即可.【详解】解:两人同时出相同的手势,,这个事件是随机事件,故选:A .3.如图是由两个宽度相同的长方体组成的几何体,它的主视图是()A. B. C. D.【答案】B 【解析】【分析】本题考查了三视图的知识,熟知主视图是从物体的正面看到的视图是解题的关键.按照主视图的定义逐项判断即可.【详解】解:从正面看该几何体,下面是一个大长方形,上面叠着一个小长方形,故选:B .4.国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是()A.50.310⨯B.60.310⨯ C.5310⨯ D.6310⨯【答案】C 【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:5300000310=⨯,故选:C .5.下列计算正确的是()A.236a a a ⋅= B.()1432a a = C.()2236a a = D.()2211a a +=+【答案】B【分析】本题考查了完全平方公式,积的乘方,幂的乘方,同底数幂的乘法等,根据同底数幂的乘法,积的乘方,幂的乘方,完全平方公式运算法则分别判断即可.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.()4312a a =,故该选项正确,符合题意;C.()2239a a =,故该选项不正确,不符合题意;D.()22121a a a +=++,故该选项不正确,不符合题意;故选:B .6.如图,一个圆柱体水槽底部叠放两个底面半径不等的实心圆柱体,向水槽匀速注水.下列图象能大致反映水槽中水的深度h 与注水时间t 的函数关系的是()A. B. C. D.【答案】D 【解析】【分析】本题考查了函数图象;根据题意,分3段分析,即可求解.【详解】解:下层圆柱底面半径大,水面上升块,上层圆柱底面半径稍小,水面上升稍慢,再往上则水面上升更慢,所以对应图象是第一段比较陡,第二段比第一段缓,第三段比第二段缓.故选:D .7.小美同学按如下步骤作四边形ABCD :①画MAN ∠;②以点A 为圆心,1个单位长为半径画弧,分别交AM ,AN 于点B ,D ;③分别以点B ,D 为圆心,1个单位长为半径画弧,两弧交于点C ;④连接BC ,CD ,BD .若44A ∠=︒,则CBD ∠的大小是()A.64︒B.66︒C.68︒D.70︒【答案】C 【解析】【分析】本题考查了基本作图,菱形的判定和性质,根据作图可得四边形ABCD 是菱形,进而根据菱形的性质,即可求解.【详解】解:作图可得AB AD BC DC ===∴四边形ABCD 是菱形,∴,AD BC ABD CBD ∠=∠ ∵44A ∠=︒,∴44MBC A ∠=∠=︒,∴()()11180180446822CBD MBC ∠=︒-∠=︒-︒=︒,故选:C .8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是()A.19B.13 C.49D.59【答案】D 【解析】【分析】本题考查的是运用树状图求概率,运用树状图法确定所有情况数和符合题意情况数是解答本题的关键.运用树状图法确定所有情况数和符合题意情况数,然后用概率公式解答即可.【详解】解:列树状图如图所示,共有9种情况,至少一辆车向右转有5种,∴至少一辆车向右转的概率是59,故选:D .9.如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是()A.63B.223C.32D.22【答案】A 【解析】【分析】延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF,即可证得()SAS ADC EBC ≌,进而可求得cos 452AC AE =︒⋅=60AFC ∠=︒,结合三角函数即可求解.【详解】解:延长AB 至点E ,使BE AD =,连接BD ,连接CO 并延长交O 于点F ,连接AF ,∵四边形ABCD 内接于O ,∴180ADC ABC ABC CBE ∠+∠=∠+∠=︒∴ADC CBE ∠=∠∵45BAC CAD ∠=∠=︒∴45CBD CDB ∠=∠=︒,90DAB ∠=︒∴BD 是O 的直径,∴90DCB ∠=︒∴DCB △是等腰直角三角形,∴DC BC =∵BE AD=∴()SAS ADC EBC ≌∴ACD ECB ∠=∠,AC CE =,∵2AB AD +=∴2AB BE AE +==又∵90DCB ∠=︒∴90ACE ∠=︒∴ACE △是等腰直角三角形∴cos 45AC AE =︒⋅=∵60ABC ∠=︒∴60AFC ∠=︒∵90FAC ∠=︒∴26sin 603AC CF ==︒∴1623OF OC CF ===故选:A .【点睛】本题考查了全等三角形的性质与判定,圆周角定理,锐角三角函数、等腰三角形的性质与判定等知识点,熟练掌握圆周角定理以及全等三角形的性质与判定是解题的关键.10.如图,小好同学用计算机软件绘制函数32331y x x x =-+-的图象,发现它关于点()1,0中心对称.若点()110.1,A y ,()220.2,A y ,()330.3,A y ,……,()19191.9,A y ,()20202,A y 都在函数图象上,这20个点的横坐标从0.1开始依次增加0.1,则1231920y y y y y +++++ 的值是()A.1-B.0.729- C.0 D.1【答案】D 【解析】【分析】本题坐标规律,求函数值,中心对称的性质,根据题意得出123911190y y y y y y +++++= ,进而转化为求1020y y +,根据题意可得100y =,201y =,即可求解.【详解】解:∵这20个点的横坐标从0.1开始依次增加0.1,∴0.1 1.90.2 1.80.9 1.11222+++==⋅⋅⋅=,∴123911190y y y y y y +++++= ,∴12319201020y y y y y y y +++++=+ ,而()101,0A 即100y =,∵32331y x x x =-+-,当0x =时,1y =-,即()0,1-,∵()0,1-关于点()1,0中心对称的点为()2,1,即当2x =时,201y =,∴12319201020011y y y y y y y +++++=+=+= ,故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.【答案】2-【解析】【分析】本题考查了正数和负数的意义,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:零上3℃记作3+℃,则零下2℃记作2-℃.,故答案为:2-.12.某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是__________.【答案】1(答案不唯一)【解析】【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当0x >时,y 随x 的增大而减小,∴0k >故答案为:1(答案不唯一).13.分式方程131x x x x +=--的解是______.【答案】3x =-【解析】【分析】本题主要考查了解分式方程,熟练掌握解分式方程的方法和步骤是解题关键.首先等号两边同时乘以()()31x x --完成去分母,再按照去括号,移项、合并同类项的步骤求解,检验即可获得答案.【详解】解:131x x x x +=--,等号两边同时乘以()()31x x --,得()()()131x x x x -=-+,去括号,得2223x x x x -=--,移项、合并同类项,得3x =-,经检验,3x =-是该分式方程的解,所以,该分式方程的解为3x =-.故答案为:3x =-.14.黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是__________m .(参考数据:tan632︒≈)【答案】51【解析】【分析】本题主要考查解直角三角形的应用,理解题意,作出辅助线是解题关键.延长BA 交距水平地面102m 的水平线于点D ,根据tan632︒≈,求出51m DC AD =≈,即可求解.【详解】解:延长BA 交距水平地面102m 的水平线于点D,如图,由题可知,102m BD =,设AD x =,∵45DCA ∠=︒∴DC AD x ==∴102tan632BD DC x︒==≈∴51mDC AD =≈∴1025151m AB BD AD =-=-≈故答案为:51.15.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形和中间的小正方形MNPQ 拼成的一个大正方形ABCD .直线MP 交正方形ABCD 的两边于点E ,F ,记正方形ABCD 的面积为1S ,正方形MNPQ 的面积为2S .若(1)BE kAE k =>,则用含k 的式子表示12S S 的值是___________.【答案】221(1)k k +-【解析】【分析】作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG =,通过四边形MNPQ 是正方形,推出45EMG PMN ∠=∠=︒,得到1EG MG ==,然后证明AEG ABN ∽,利用相似三角形对应边成比例,得到111AE AG AB BN AN k ===+,从而表示出AG ,MN 的长度,最后利用2122AB BN AN S ==+和222S MN a ==表示出正方形ABCD 和MNPQ 的面积,从而得到12S S .【详解】解:作EG AN ⊥交AN 于点G ,不妨设MN a =,设1EG = 四边形MNPQ 是正方形45PMN ∴∠=︒45EMG PMN ∴∠=∠=︒1EG MG ∴==在AEG △和ABN 中,EAG BAN ∠=∠,90AGE ANB ∠=∠=︒AEG ABN ∴ ∽AE EG AGAB BN AN∴==(1)BE kAE k => (1)AB AE BE AE k ∴=+=+111AE AG AB BN AN k ∴===+1BN k∴=+由题意可知,ABN DAM△≌△1BN AM k∴==+11AG AM GM k k∴=-=+-=111AG AG k AN AM MN k a k ∴===++++21a k ∴=-2211AN AG GM MN k k k k∴=++=++-=+∴正方形ABCD 的面积222221222(1)()(1)(1)S AB BN AN k k k k k ==+=+++=++,正方形MNPQ 的面积2222222(1)(1)(1)S MN a k k k ===-=+-222221(1)(1)(1)(1)k k k k S S +++-∴=1k > 2(1)0k ∴+≠22121(1)k S S k +-∴=【点睛】本题考查了弦图,正方形的性质,等角三角形的性质,相似三角形的判定与性质,正方形的面积,勾股定理,熟练掌握以上知识点并能画出合适的辅助线构造相似三角形是解题的关键.16.抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.下列四个结论:①0b >;②若01x <<,则()()2111a x b x c -+-+>;③若1a =-,则关于x 的一元二次方程22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>-,12x x >,总有12y y <,则102m <≤.其中正确的是__________(填写序号).【答案】②③④【解析】【分析】本题考查了二次函数的性质,根据题意可得抛物线对称轴11022m -+-<<,即可判断①,根据()1,1-,(),1m 两点之间的距离大于1,即可判断②,根据抛物线经过()1,1-得出2c b =+,代入顶点纵坐标,求得纵坐标的最大值即可判断③,根据④可得抛物线的对称轴111224m -+-<≤-,解不等式,即可求解.【详解】解:∵2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1-,(),1m 两点,且01m <<.∴对称轴为直线122bm x a -+=-=,11022m-+-<<,∵02bx a =-<,a<0∴0b <,故①错误,∵01m <<∴()11m -->,即()1,1-,(),1m 两点之间的距离大于1又∵a<0∴1x m =-时,1y >∴若01x <<,则()()2111a x b x c -+-+>,故②正确;③由①可得11022m-+-<<,∴1022b-<<,即10b -<<,当1a =-时,抛物线解析式为2y x bx c=-++设顶点纵坐标为224444ac b c b t a ---==-∵抛物线2y x bx c =-++(a ,b ,c 是常数,0a <)经过()1,1-,∴11b c --+=∴2c b =+∴()222224411122144444c b b ct b c b b b --+===+=++=++-∵10b -<<,104->,对称轴为直线2b =-,∴当0b =时,t 取得最大值为2,而0b <,∴关于x 的一元二次方程22ax bx c ++=无解,故③正确;④∵a<0,抛物线开口向下,点()11,A x y ,()22,B x y 在抛物线上,1212x x +>-,12x x >,总有12y y <,又12124x x x +=>-,∴点()11,A x y 离14x =-较远,∴对称轴111224m -+-<≤-解得:102m <≤,故④正确.故答案为:②③④.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.求不等式组3121x x x +>⎧⎨-≤⎩①②的整数解.【答案】整数解为:1,0,1-【解析】【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨-≤⎩①②解不等式①得:2x >-解不等式②得:1x ≤∴不等式组的解集为:21x -<≤,∴整数解为:1,0,1-18.如图,在ABCD Y 中,点E ,F 分别在边BC ,AD 上,AF CE =.(1)求证:C ABE DF ≌△△;(2)连接EF .请添加一个与线段相关的条件,使四边形ABEF 是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加AF BE =(答案不唯一)【解析】【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出AB CD =,B D ∠=∠,结合已知条件可得DF BE =,即可证明C ABE DF ≌△△;(2)添加AF BE =,依据一组对边平行且相等的四边形是平行四边形,即可求解.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AB CD =,AD BC =,B D ∠=∠,∵AF CE =,∴AD AF BC CE -=-即DF BE =,在ABE 与CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE CDF ≌;【小问2详解】添加AF BE =(答案不唯一)如图所示,连接EF.∵四边形ABCD 是平行四边形,∴AD BC ∥,即AF BE ∥,当AF BE =时,四边形ABEF 是平行四边形.19.为加强体育锻炼,增强学生体质,某校在“阳光体育一小时”活动中组织九年级学生定点投篮技能测试,每人投篮4次,投中一次计1分.随机抽取m 名学生的成绩作为样本,将收集的数据整理并绘制成如下的统计图表.测试成绩频数分布表成绩/分频数4123a 2151b 06根据以上信息,解答下列问题:(1)直接写出m ,n 的值和样本的众数;(2)若该校九年级有900名学生参加测试,估计得分超过2分的学生人数.【答案】(1)60m =,15n =,众数为3分(2)该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人【解析】【分析】本题考查了样本估计总体,求众数,频数分布表与扇形统计图;(1)根据成绩为2分的人数除以占比,求得m 的值,根据成绩为3分的人数的占比,求得18a =,进而求得9b =,即可得出n 的值;(2)根据得分超过2分的学生的占比乘以900,即可求解.【小问1详解】解:依题意,156025%m ==(人),6030%18a =⨯=(人),6012181569b =----=(人),∴9%100%15%60n =⨯=,∴15n =,∵3分的人数为18个,出现次数最多,∴众数为3分,【小问2详解】解:181290045060+⨯=(人)答:该校九年级有900名学生参加测试,估计得分超过2分的学生人数为450人.20.如图,ABC 为等腰三角形,O 是底边BC 的中点,腰AC 与半圆O 相切于点D ,底边BC 与半圆O 交于E ,F 两点.(1)求证:AB 与半圆O 相切;(2)连接OA .若4CD =,2CF =,求sin OAC ∠的值.【答案】(1)见解析(2)45【解析】【分析】本题考查了等腰三角形三线合一,角平分线的判定与性质,解直角三角形,熟练掌握以上知识点是解题的关键.(1)连接OA 、OD ,作ON AB ⊥交AB 于N ,根据等腰三角形三线合一可知,AO BC ⊥,AO 平分BAC ∠,结合AC 与半圆O 相切于点D ,可推出ON OD =,得证;(2)由题意可得出OAC COD ∠=∠,根据OF OD =,在Rt ODC △中利用勾股定理可求得OD 的长度,从而得到OC 的长度,最后根据CD sin OAC sin COD OC∠=∠=即可求得答案.【小问1详解】证明:连接OA 、OD ,作ON AB ⊥交AB 于N ,如图ABC 为等腰三角形,O 是底边BC 的中点AO BC ∴⊥,AO 平分BAC∠AC 与半圆O 相切于点DOD AC∴⊥由ON AB⊥ ON OD∴=AC ∴是半圆O 的切线【小问2详解】解:由(1)可知AO BC ⊥,OD AC⊥90AOC ∴∠=︒,90ODC ∠=︒18090OAC OCA AOC ∴∠+∠=︒-∠=︒,18090COD OCA ODC ∠+∠=︒-∠=︒OAC COD∴∠=∠sin sin CD OAC COD OC∴∠=∠=又 OF OD =,2CF =∴在Rt ODC △中,4CD =,2OC OF FC OD =+=+ 222OC CD OD =+,∴222(2)4OD OD +=+解得:3OD =442325CD CD sin OAC sin COD OC OD ∴∠=∠====++21.如图是由小正方形组成的34⨯网格,每个小正方形的顶点叫做格点.ABC 三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD 交BC 于点D ,使AD 平分ABC 的面积;(2)在(1)的基础上,在射线AD 上画点E ,使ECB ACB ∠=∠;(3)在图(2)中,先画点F ,使点A 绕点F 顺时针旋转90︒到点C ,再画射线AF 交BC 于点G ;(4)在(3)的基础上,将线段AB 绕点G 旋转180︒,画对应线段MN (点A 与点M 对应,点B 与点N 对应).【答案】(1)作图见解析(2)作图见解析(3)作图见解析(4)作图见解析【解析】【分析】本题考查了网格作图.熟练掌握全等三角形性质,平行四边形性质,等腰三角形性质,等腰直角三角形性质,是解题的关键.(1)作矩形HBIC ,对角线HI 交BC 于点D ,做射线AD ,即可;(2)作OP BC ∥,射线AR OP ⊥于点Q ,连接CQ 交AD 于点E ,即可;(3)在AC 下方取点F ,使AF CF ==ACF △是等腰直角三角形,连接CF ,AF ,AF 交BC于点G ,即可;(4)作OP BC ∥,交AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,即可.【小问1详解】如图,作线段HI ,使四边形HBIC 是矩形,HI 交BC 于点D ,做射线AD ,点D 即为所求作;【小问2详解】如图,作OP BC ∥,作AR OP ⊥于点Q ,连接CQ 交AD 于点E ,点E 即为作求作;【小问3详解】如图,在AC 下方取点F ,使AF CF ==CF ,连接并延长AF ,AF 交BC 于点G ,点F ,G 即为所求作;【小问4详解】如图,作OP BC ∥,交射线AG 于点M ,作ST AG ∥,交BC 于点N ,连接MN ,线段MN 即为所求作.22.16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =-+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①115a =-,8.1b =;②8.4km (2)2027a -<<【解析】【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将()9,3.6代入即可求解;②将2115y x x =-+变为2115151524y x ⎛⎫=--+ ⎪⎝⎭,即可确定顶点坐标,得出 2.4km y =,进而求得当 2.4km y =时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得227a =-,即可求解.【小问1详解】解:①∵火箭第二级的引发点的高度为3.6km ∴抛物线2y ax x =+和直线12y x b =-+均经过点()9,3.6∴3.6819a =+,13.692b=-⨯+解得115a =-,8.1b =.②由①知,18.12y x =-+,2115y x x=-+∴22111515151524y x x x ⎛⎫=-+=--+ ⎪⎝⎭∴最大值15km4y =当151.352.4km 4y =-=时,则212.415x x -+=解得112x =,23x =又∵9x =时, 3.6 2.4y =>∴当 2.4km y =时,则418. 2.12x +=-解得11.4x =()11.438.4km -=∴这两个位置之间的距离8.4km .【小问2详解】解:当水平距离超过15km 时,火箭第二级的引发点为()9,819a +,将()9,819a +,()15,0代入12y x b =-+,得181992a b +=-⨯+,10152b=-⨯+解得7.5b =,227a =-∴2027a -<<.23.问题背景:如图(1),在矩形ABCD 中,点E ,F 分别是AB ,BC 的中点,连接BD ,EF ,求证:BCD FBE ∽△△.问题探究:如图(2),在四边形ABCD 中,AD BC ∥,90BCD ∠=︒,点E 是AB 的中点,点F 在边BC 上,2AD CF =,EF 与BD 交于点G ,求证:BG FG =.问题拓展:如图(3),在“问题探究”的条件下,连接AG ,AD CD =,AG FG =,直接写出EG GF 的值.【答案】问题背景:见解析;问题探究:见解析;问题拓展:55【解析】【分析】问题背景:根据矩形的性质可得90AB CD EBF C =∠=∠=︒,,根据点E ,F 分别是AB ,BC 的中点,可得12BE BF AB BC ==,即可得证;问题探究:取BD 的中点H ,连接,EH HC ,得EH 是ABD △的中位线,根据已知条件可得EH 平行且等于FC ,进而可得EFCH 是平行四边形,得EF HC ∥,则GFB HCB ∠=∠,根据直角三角形中斜边上的中线等于斜边的一半得出HB HC =,进而可得HBC HCB ∠=∠,等量代换可得GBF GFB ∠=∠,等角对等边,即可得证;问题拓展:过点F 作FM AD ⊥,则四边形MFCD 是矩形,连接AF ,根据已知以及勾股定理得出55AM AF =;根据(2)的结论结合已知可得GA GF GB ==,证明EF 垂直平分AB ,进而得出FA FB =,证明AFG BFG ≌,进而证明BEG FMA ∽,进而根据相似三角形的性质,即可求解.【详解】问题背景:∵四边形ABCD 是矩形,∴90AB CD EBF C =∠=∠=︒,,∵E ,F 分别是AB ,BC 的中点∴12BE BF AB BC ==,即12BE BF CD BC ==,∴BCD FBE ∽△△;问题探究:如图所示,取BD 的中点H ,连接,EH HC ,∵E 是AB 的中点,H 是BD 的中点,∴12EH AD =,EH AD∥又∵2AD CF =,∴EH CF =,∵AD BC ∥,∴EH FC∥∴四边形EHCF 是平行四边形,∴EF CH∥∴GFB HCB∠=∠又∵90BCD ∠=︒,H 是BD 的中点,∴12HC BD BH==∴HBC HCB∠=∠∴GBF GFB ∠=∠,∴GB GF =;问题拓展:如图所示,过点F 作FM AD ⊥,则四边形MFCD 是矩形,连接AF ,∵2AD CF CD ==,∴12AM MD FC AD ===,设2AD a =,则2MF CD a ==,AM a=在Rt AMF 中,AF ==,∵AG FG =,由(2)BG FG=∴AG BG =,又∵E 是AB 的中点,∴EF 垂直平分AB∴AF BF =,90BEG ∠=︒,在,AFG BFG 中,AG BG GF GF FA FB =⎧⎪=⎨⎪=⎩∴()SSS AFG BFG ≌设GBF GFB α∠=∠=,则GAF GFA α∠=∠=∴2BGE GBF GFB α∠=∠+∠=,又∵AD BC∥∴2MAF AFB GFA GFB α∠=∠=∠+∠=∴MAF EGB∠=∠又∵90BEG AFM ∠=∠=︒∴BEG FMA ∽∴55EG EG AM GF BG AF ====.【点睛】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.24.抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.【答案】(1)()1,0A ,()5,0B -,50,2C ⎛⎫- ⎪⎝⎭(2)92,2P ⎛⎫--⎪⎝⎭(3)152y x =--【解析】【分析】(1)分别令,0x y =,解方程,即可求解;(2)分别求得直线,AC BC ,根据PQ AC ∥得出PQ 的解析式,设215,222P t t t ⎛⎫+- ⎪⎝⎭,进而求得Q 点的坐标,进而根据BC 平分线段PQ ,则PQ 的中点在直线BC 上,将点M 的坐标代入直线BC 解析式,即可求解.(3)过点G 作TS x ∥轴,过点,E F 分别作TS 的垂线,垂足分别为,T S ,证明ETG GSF ∽,得出ET FS GS TG ⋅=⋅,先求得点D 的坐标,设直线EF 的解析式为11y k x =,直线ED 的解析式为225y k x =-,联立抛物线解析式,设,E F x e x f ==,G x g =,根据一元二次方程根与系数的关系,得出5ef =-,5eg =,224e g k +=-,进而求得,ET FS ,代入ET FS GS TG ⋅=⋅,化简后得出5e g +=-,即2245k -=-,进而即可求解.【小问1详解】解:由215222y x x =+-,当0x =时,52y =-,则50,2C ⎛⎫- ⎪⎝⎭当0y =,2152022x x +-=解得:125,1x x =-=∵A 在B 的右边∴()1,0A ,()5,0B -,【小问2详解】解:设直线AC 的解析式为()0y kx b k =+≠将()1,0A ,50,2C ⎛⎫- ⎪⎝⎭代入得,52k b b +=⎧⎪⎨=-⎪⎩解得:5252k b ⎧=⎪⎪⎨⎪=-⎪⎩∴直线AC 的解析式为5522y x =+∵PQ AC∥设直线PQ 的解析式为152y x b =+∵P 在第三象限的抛物线上设215,222P t t t ⎛⎫+- ⎪⎝⎭,()50t -<<∴215152222t b t t +=+-∴2115222t b t =--∴2150,222t Q t ⎛⎫-- ⎪⎝⎭设PQ 的中点为M ,则22352,22t t t M ⎛⎫+- ⎪⎪⎪⎝⎭由()5,0B -,50,2C ⎛⎫- ⎪⎝⎭,设直线BC 的解析式为152y k x =-,将()5,0B -代入得,15052k =--,解得:112k =-∴直线BC 的解析式为1522y x =--,∵BC 平分线段PQ ,∴M 在直线BC 上,∴22351522222t t t +--⨯-=解得:122,0t t =-=(舍去)当2t =-时,21592222t t +-=-∴92,2P ⎛⎫-- ⎪⎝⎭;【小问3详解】解:如图所示,过点G 作TS x ∥轴,过点,E F 分别作TS 的垂线,垂足分别为,T S,∴90T S EGF ∠=∠=∠=︒∴90EGT FGS GFS∠=︒-∠=∠∴ETG GSF∽∴ET TG GS FS=即ET FS GS TG⋅=⋅∵点D 与原点O 关于点50,2C ⎛⎫- ⎪⎝⎭对称,∴()0,5D -,设直线EF 的解析式为11y k x =,直线ED 的解析式为225y k x =-联立直线EF 与抛物线解析式11215222y k xy x x =⎧⎪⎨=+-⎪⎩可得,2112222k xx x =+-,即()21152022x k x +--=联立直线ED 与抛物线解析式222515222y k x y x x =-⎧⎪⎨=+-⎪⎩可得,22125222k x x x -=+-即()22152022x k x +-+=设,E F x e x f ==,G x g =,∴5ef =-,5eg =,224e g k +=-,∴f g=-()()221515122422222ET e e g g e g e g ⎛⎫=+--+-=++- ⎪⎝⎭,()()221515122422222FS f f g g f g f g ⎛⎫=+--+-=++- ⎪⎝⎭∵ET FS GS TG⋅=⋅∴()()()()()()114422g e f g e g e g f g f g --=++-⨯++-,将f g =-代入得:5e g +=-∴2245k -=-,∴21 2k=-,∴直线DE解析式为152y x=--.【点睛】本题考查了二次函数综合问题,一次函数与二次函数综合,中点坐标公式,相似三角形的性质与判定,一元二次方程根与系数的关系,熟练掌握以上知识是解题的关键.。

武汉市2007年新课程初中毕业生学业考试数学试卷及答案

武汉市2007年新课程初中毕业生学业考试数学试卷及答案

游览一元一次方程概念大观园山东沂源县徐家庄中学 256116左效平学好一元一次方程,同学们首先就要过好一元一次方程的概念关,这些是进一步学习一元一次方程的基础.下面就和同学们一起走进这些概念,学习并掌握它们.一、概念大观园概念1、方程:含有未知数的等式,叫方程.对于这个概念,同学们要注意如下几个方面:①方程的基础是等式,通俗一点说,就是式子中必须有等号,这是等式的一个显著的外显特征.②在等式的前提下,式子中必须要有未知数.未知数通常就是同学们所学习的26个英语字母中的一个.最常用的未知数是x、y、z.其次,同学们也要知道一个数学小常识,法国数学家笛卡尔是最早用字母表示未知数的人.我国古代常用“天元”,“地元”,“人元”,“物元”等表示未知数.③理解好等式与方程的关系.方程一定是等式,但是等式不一定方程.关键是看等式中是否含有字母.如1+4=2+3是一个等式,但是就不是方程.3x+3,因为没有等号,所以不是等式,尽管含有字母,它也不能成为方程,只是一个代数式.3x+3=0这就是一个方程.这个特征非常的重要.④方程中,只要求有未知数,但是,却不限制未知数的个数.如x+y+z=0就是一个含有多个未知数的方程.概念2、一元一次方程只含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程.这里的“元”就是指未知数.对于这个概念,同学们要注意如下几点:①基础是方程.②未知数的个数:未知数的个数有限制,只能是一个.③未知数的次数:未知数的次数有限制,只能是1.概念3、解方程求出使方程两边相等的未知数的值.解方程实际上就是一个计算过程.概念4 方程的解使方程左右两边相等的未知数的值,叫方程的解.在理解时,我们注意如下几点:①方程的解,是可变化的.②一元一次方程只有一个解.③用方程的解代换未知数,等式一定成立.④解的表示方法:通常是用未知数字母后跟着等号,等号后面跟着数值的方式.如方程x+3=5,当x等于2时,方程的左边=2+3=5,等于等号的右边,所以2是这个方程的解,就说方程x+3=5的解是x=2.二、应用小天地例1 下列各式是方程的是()A3x +2xy B 2s-7t C 3+7=6+4 D 3x +2=0分析: A 中虽然含有未知数, 但不含有等号,所以不是方程,这样就可以排除A ; B 中虽然含有未知数,但不含有等号,所以不是方程,这样就可以排除B ;C 中虽然含有等号,但不含有未知数,所以不是方程,这样就可以排除C ;D 中含有等号,含有未知数,所以是方程,所以正确答案就是D 了.解:选D .例2 下列方程是一元一次方程的是 ( ) A2xy+1=0 B 2s-7t=0 C 2x +4=x-1 D 3x +2=0 分析: 一元一次方程的两个显著特点是,方程中一共有一种字母为未知数,二是这个字母的次数是1.用这个标准去评判四个选项,A 选项字母未知数有两种,x 和y ,与定义不相符,所以A 不是一元一次方程;B 选项字母未知数有两种,s 和t ,与定义不相符,所以B 不是一元一次方程; C 选项字母未知数有1种,是x ,且次数为1,与定义相符,所以C 是一元一次方程; D 选项字母未知数有1种,是x ,但是次数为3,与定义不相符,所以D 不是一元一次方程.解:选C .例3 已知关于x 的方程是mx +3=0一元一次方程,则m 的相反数为 .分析: 因为m x +3=0是一元一次方程,所以x 的次数一定是1,所以m=1,因此m 的相反数位-1.解:填-1例4 已知 x=2是方程mx-4=2x 的解,求m 的值.分析: 利用方程解的定义就完成问题的解答.解:因为x=2是方程mx-4=2x 的解,所以2m-4=4,所以m=4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市2007年新课程初中毕业生学业考试数学试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,共12页,考试时间为120分钟。

2.答题前,请将你的姓名、准考证号填写在试卷指定位置,并将准考证号、考试科目用2B铅笔涂在“答题卡”上。

3.答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案。

不得答在试卷上。

4.第Ⅱ卷用钢笔或圆珠笔直接在试卷上答题。

预祝你取得优异成绩!第Ⅰ卷(选择题,共36分)一.选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有....一个正确的,请在答题卡上将正确答案的代号涂黑。

01A 、北京B 、武汉C 、广州D 、哈尔滨 02.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )。

A 、x <4B 、x <2C 、2<x <4D 、x >203.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )。

A 、2B 、-2C 、4D 、-4 04.化简16的值为( )。

A 、4B 、-4C 、±4D 、16 05.在函数1x y -=中,自变量x 的取值范围是( )。

A 、x ≥-1 B 、x ≠1 C 、x ≥1 D 、x ≤106.如图是一个风筝的图案,它是轴对称图形,量得∠B =30°,则∠E 的大小为( )。

A 、30°B 、35°C 、40°D 、45°07.如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是( )。

A 、外离B 、外切C 、相交D 、内切08.如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌。

现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备的水管的长为( )。

A 、17.5m B 、35mC 、335m D 、70m 09.如图,桌上放着一摞书和一个茶杯,从正面看的图形是( )。

(第02题图)A B C (第06题图) E D (第07题图)A B30° (第08题图)(第09题图)ABC(第10题图)10.小刚与小亮一起玩一种转盘游戏。

如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”、“2”、“3”表示。

固定指针,同时转动两个转盘,任其自由停止。

若两指针指的数字和为奇数,则小刚获胜;否则,小亮获胜。

则在该游戏中小刚获胜的概率是( )。

A .21 B 、94 C 、95 D 、3211.为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案。

小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。

如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m ,参考数据:2≈1.414,3≈1.732,5≈2.236)是( )。

A 、0.62m B 、0.76m C 、1.24m D 、1.62m12.近几年,某市在经济建设中取得突出成就,2004―2006年三年该市的国内生产总值的和为2200亿元。

图甲是这三年该市的国内生产总值的扇形统计图,图乙是这三年该市总人口折线统计图。

根据以上信息,下列判断:①2006年该市国内生产总值超过800亿元;②2006年该市人口的增长率比2005年人口的增长率低;③2006年比2004年该市人均国内生产总值增加)448292200455372200(%%⨯-⨯万元;④如果2007年该市人口的年增长率与2006年人口的年增长率相同,且人均国内生产总值增长10%,那么2007年全市的国内生产总值将为)4514514551)(101(372200-++⨯⨯%%亿元。

其中正确的只有( )。

A 、①②④B 、①③④C 、②③D 、①③第Ⅱ卷(非选择题,共84分)二.填空题(共4小题,每小题3分,共12分)13.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为___________米。

14.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________。

15.下列图案是由边长为单位长度的小正方形按一定的规律拼接而成。

依此规律,第5个图案中小正方形的个数为_______________。

16.如图,已知双曲线xky =(x >0)经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =______________。

(第12题图乙)2004年2006年 2005年37% 29% 34% (第12题图甲) 某市2004―2006年国内生产总值扇形图ax -3第1个第2个第3个三.解答下列各题(共9小题,共72分) 17.(本题6分)解方程:x 2-x -1=0。

18.(本题6分)化简求值:xx 1)1x x 1(2-÷--,其中x =2。

19.(本题6分)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O 上下转动,立柱OC 与地面垂直。

当一方着地时,另一方上升到最高点。

问:在上下转动横板的过程中,两人上升的最大高度AA ’、BB ’有何数量关系?为什么?20.(本题7分)如图①是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图②中,先画线段OA ,将线段OA 平移至CB 处,得到风车的第一个叶片F 1,然后将第一个叶片OABC 绕点O 逆时针旋转180°得到第二个叶片F 2,再将F 1、F 2同时绕点O 逆时针旋转90°得到第三、第四个叶片F 3、F 4。

根据以上过程,解答下列问题:(1)若点A 的坐标为(4,0),点C 的坐标为(2,1),写出此时点B 的坐标; (2)请你在图②中画出第二个叶片.....F 2;(3)在(1)的条件下,连接OB ,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB 扫过的图形面积是多少?’(第20题图)图①21.(本题7分)某区七年级有3000名学生参加“安全伴我行知识竞赛”活动。

为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分(得分取正整数,满分为100分)进行统计。

请你根据不完整的频率分布表,解答下列问题:(1)补全频数分布直方图; (2)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”。

这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D ”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由。

22.(本题8分)如图,等腰三角形ABC 中,AC =BC =10,AB =12。

以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E 。

(1)求证:直线EF 是⊙O 的切线;(2)求sin ∠E 的值。

23.(本题10分)康乐公司在A 、B 两地分别有同型号的机器17台和15台,现要运往甲地(1)如果从A 地运往甲地x 台,求完成以上调运所需总费用y (元)与x (台)的函数关系式; (2)若康乐公司请你设计一种最佳调运方案,使总的费用最少,该公司完成以上调运方案至少需要多少费用?为什么?) (第22题图)24.(本题10分)填空或解答:点B 、C 、E 在同一直线上,点A 、D 在直线CE 的同侧,AB=AC ,EC =ED ,∠BAC =∠CED ,直线AE 、BD 交于点F 。

(1)如图①,若∠BAC =60°,则∠AFB =_________;如图②,若∠BAC =90°,则∠AFB =_________;(2)如图③,若∠BAC =α,则∠AFB =_________(用含α的式子表示);(3)将图③中的△ABC 绕点C 旋转(点F 不与点A 、B 重合),得图④或图⑤。

在图④中,∠AFB 与∠α的数量关系是________________;在图⑤中,∠AFB 与∠α的数量关系是________________。

请你任选其中一个结论证明。

25.(本题12分)如图①,在平面直角坐标系中,Rt △AOB ≌Rt △CDA ,且A(-1,0)、B(0,2),抛物线y =ax 2+ax -2经过点C 。

(1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点P 、Q ,使四边形ABPQ 是正方形?若存在,求点P 、Q 的坐标,若不存在,请说明理由;(3)如图②,E 为BC 延长线上一动点,过A 、B 、E 三点作⊙O ’,连结AE ,在⊙O ’上另有一点F ,且AF =AE ,AF 交BC 于点G ,连结BF 。

下列结论:①BE +BF 的值不变;②AGBGAF BF,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论。

A ABCD DEF F 图① 图② 图③(第24题图) A A B B CDD E E FF 图④ (第24题图)图⑤(第25题图②)武汉市2007年新课程初中毕业生学业考试数学试卷答案。

相关文档
最新文档