2017二次函数应用题专题训练

合集下载

二次函数应用题专项练习

二次函数应用题专项练习

二次函数应用题分类解析1.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。

根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;(3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?2.某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。

物价部门规定其销售单价不得高于每千克70元,也不得低于30元。

市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。

在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。

设销售单价为x元,日均获利为y元。

(1)求y关于x的二次函数关系式,注明x的取值范围;(2)将(1)中所求出的二次函数配方成顶点式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图象,指出单价定为多少元时日均获得最多,是多少?(3)若将这种化工原料全部售出,比较日均获利最多和销售单价最高这两种销售方式,哪一种获总利较多,多多少?3.如图4,有一块铁皮,拱形边缘呈抛物线状,MN=4dm,抛物线顶点处到边MN的距离是4dm,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下去的矩形铁皮的周长能否等于8dm?4.某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?4.如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.(1) 求l2的解析式;(2) 求证:点D一定在l2上;(3) □ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.注:计算结果不取近似值 .5.如图,已知二次函数y=-21x2+4x+c的图像经过坐标原点,并且与函数y=21x 的图像交于O、A两点.(1)求c的值; (2)求A点的坐标;(3)若一条平行于y轴的直线与线段OA交于点F,与这个二次函数的图像交于点E,求线段EF的最大长度.6.利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是:在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请再给出一种利用图象求方程x2-2x-1=0的解的方法(2)已知函数y=x 3的图象(如图):求方程x 3-x-2=0的解.(结果保留2个有效数字) 7.已知抛物线y =ax 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1)求抛物线的解析式,写出抛物线的顶点坐标; (2)画出抛物线y =ax 2+b x +c 当x <0时的图象; (3)利用抛物线y =ax 2+b x +c ,写出为何值时,y >0.8.一座隧道的截面由抛物线和长方形构成,长方形的长为8 m ,宽为2 m ,隧道最高点P 位于A B 的 中央且距地面6 m ,建立如图所示的坐标系. (1)求抛物线的解析式;(2)一辆货车高4 m ,宽2 m ,能否从该隧道内通过,为什么? (3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?9.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB 时,宽20m ,水位上升3m 就达到警戒线CD ,这时水面宽度为10m 。

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版题目1:某公司的销售额可以用二次函数$y=-2x^2+20x$来表示,其中$x$表示月份(从1开始),$y$表示对应月份的销售额。

求解下列问题:问题1:请计算公司第6个月的销售额。

解答:将$x=6$代入二次函数中,可得:$y=-2\times6^2+20\times6=-72+120=48$所以公司第6个月的销售额为48。

问题2:请问公司销售额最高的月份是哪个月?解答:二次函数$y=-2x^2+20x$是一个开口朝下的抛物线,最高点即为销售额最高的月份。

通过求导数,我们可以找到函数的最高点。

首先,求导得到一次函数$y'=-4x+20$,令$y'=0$,解方程可得$x=5$。

因此,公司销售额最高的月份是第5个月。

题目2:一架火箭从地面起飞后,高度$h$(以米为单位)随时间$t$(以秒为单位)变化的规律可以用二次函数$h=-5t^2+100t$表示。

求解下列问题:问题1:请问火箭多少秒后达到最大高度?解答:同样地,通过求导数,我们可以找到火箭高度的最高点。

将二次函数$h=-5t^2+100t$求导得到一次函数$h'=-10t+100$,令$h'=0$,解方程可得$t=10$。

因此,火箭在10秒后达到最大高度。

问题2:请计算火箭达到最大高度时的高度。

解答:将$t=10$代入二次函数中,可得:$h=-5\times10^2+100\times10=-500+1000=500$所以火箭达到最大高度时的高度为500米。

以上是对二次函数应用题的解答,希望能帮助到您。

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题

2017中考数学复习----二次函数综合题1.如图,在△ABC中,∠BAC=90,BC∥x轴,抛物线y=ax2﹣2ax+3经过△ABC的三个顶点,并且与x轴交于点D、E,点A为抛物线的顶点.(1)求抛物线的解析式;(2)连接CD,在抛物线的对称轴上是否存在一点P使△PCD为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.如图,已知直线y=x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B 两点,与x轴交于另一个点C,对称轴与直线AB交于点E.(1)求抛物线的解析式;(2)在第三象限内、F为抛物线上一点,以A、E、F为顶点的三角形面积为4,求点F的坐标;(3)连接B、C,点P是线段,AB上一点,作PQ平行于x轴交线段BC于点Q,过P作PM ⊥x轴于M,过Q作QN⊥x轴于N,求矩形PQNM面积的最大值和P点的坐标.2.如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.4.在平面直角坐标系中,抛物线y=x2﹣x﹣2的顶点为点D,与直线y=kx在第一象限内交于点A,且点A的横坐标为4;直线OA与抛物线的对称轴交于点C.(1)求△AOD的面积;(2)若点F为线段OA上一点,过点F作EF∥CD交抛物线于点E,求线段EF的最大值及此时点E坐标;(3)如图2,点P为该抛物线在第四象限部分上一点,且∠POA=45°,求出点P的坐标.5.如图,已知抛物线L1:y1=x2,平移后经过点A(﹣1,0),B(4,0)得到抛物线L2,与y轴交于点C.(1)求抛物线L2的解析式;(2)判断△ABC的形状,并说明理由;(3)点P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC?若存在,求出点P的坐标;若不存在,说明理由.7.如图,已知抛物线与x轴交于A (﹣4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q点,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标.6.抛物线y=ax2+bx+c(a≠0)的顶点为P(1,﹣4),在x轴上截得的线段AB长为4个单位,OA<OB,抛物线与y轴交于点C.(1)求这个函数解析式;(2)试确定以B、C、P为顶点的三角形的形状;(3)已知在对称轴上存在一点F使得△ACF周长最小,请写出F点的坐标.8.如图,抛物线y=﹣x2+ax+8(a≠0)于x轴从左到右交于点A,B于y轴交于点C于直线y=kx+b 交于点c和点D(m,5),tan∠DCO=1。

2017年中考数学备考专题复习二次函数的应用含解析

2017年中考数学备考专题复习二次函数的应用含解析

二次函数的应用一、单选题(共12题;共24分)1、(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A、1或﹣5B、﹣1或5C、1或﹣3D、1或32、(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A、y=﹣(x﹣)2﹣B、y=﹣(x+ )2﹣C、y=﹣(x﹣)2﹣D、y=﹣(x+ )2+3、(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大4、(2016•黄石)以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A 、b≥B、b≥1或b≤﹣1C、b≥2D、1≤b≤25、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A、y=60(300+20x)B、y=(60﹣x)(300+20x)C、y=300(60﹣20x)D、y=(60﹣x)(300﹣20x)6、(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④ <a<⑤b>c.其中含所有正确结论的选项是()A、①③B、①③④C、②④⑤D、①③④⑤7、(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A、y=(x﹣2)2+3B、y=(x﹣2)2+5C、y=x2﹣1D、y=x2+48、(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A 、B 、C 、D 、9、(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A、1B、2C、3D、410、(2016•呼和浩特)已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A、6B、3C、﹣3D、011、(2016•攀枝花)如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1和3,则下列结论正确的是()A、2a﹣b=0B、a+b+c>0C、3a﹣c=0D、当a= 时,△ABD是等腰直角三角形12、(2016•安顺)某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x 米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.14、(2016•丹东)某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.15、(2016•大庆)直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为________.16、(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是________.17、(2016•十堰)已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有x2+x≥﹣;④在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,其中结论错误的是________ (只填写序号).三、综合题(共5题;共65分)18、(2016•淮安)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(﹣4,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.19、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.20、(2016•连云港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B (2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N 的坐标.21、(2016•扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.22、(12分)(2016•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+ x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.答案解析部分一、单选题【答案】B【考点】二次函数的最值【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【分析】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:∵抛物线的解析式为:y=x2+5x+6,∴绕原点选择180°变为,y=﹣x2+5x﹣6,即y=﹣(x﹣)2+ ,∴向下平移3个单位长度的解析式为y=﹣(x﹣)2+ ﹣3=﹣(x﹣)2﹣.故选A.【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.【答案】D【考点】二次函数的图象,二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.【答案】A【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,∴抛物线在x轴的上方或在x轴的下方经过一、二、四象限,当抛物线在x轴的上方时,∵二次项系数a=1,∴抛物线开口方向向上,∴b2﹣1≥0,△=[2(b﹣2)]2﹣4(b2﹣1)≤0,解得b≥ ;当抛物线在x轴的下方经过一、二、四象限时,设抛物线与x轴的交点的横坐标分别为x1, x2,∴x1+x2=2(b﹣2)≥0,b2﹣1≥0,∴△=[2(b﹣2)]2﹣4(b2﹣1)>0,①b﹣2>0,②b2﹣1>0,③由①得b<,由②得b>2,∴此种情况不存在,∴b≥ ,故选A.【分析】由于二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,所以抛物线在x轴的上方或在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x轴有无交点,抛物线与y轴的交点的位置,由此即可得出关于b的不等式组,解不等式组即可求解.此题主要考查了二次函数的图象和性质,解题的关键是会根据图象的位置得到关于b 的不等式组解决问题.【答案】B【考点】根据实际问题列二次函数关系式【解析】【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴ =1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴ >a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.【答案】C【考点】二次函数图象与几何变换【解析】【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.【答案】C【考点】一次函数的图象,二次函数的图象【解析】【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x= >0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,对称轴x= <0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x= >0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).【答案】A【考点】根与系数的关系,二次函数的最值【解析】【解答】解:∵m2﹣2am+2=0,n2﹣2an+2=0,∴m,n是关于x的方程x2﹣2ax+2=0的两个根,∴m+n=2a,mn=2,∴(m﹣1)2+(n﹣1)2=m2﹣2m+1+n2﹣2n+1=(m+n)2﹣2mn﹣2(m+n)+2=4a2﹣4﹣4a+2=4(a﹣)2﹣3,∵a≥2,∴当a=2时,(m﹣1)2+(n﹣1)2有最小值,∴(m﹣1)2+(n﹣1)2的最小值=4(a﹣)2+3=4(2﹣)2﹣3=6,故选A.【分析】根据已知条件得到m,n是关于x的方程x2﹣2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是得到4(a﹣)2﹣3,当a=2时,(m﹣1)2+(n﹣1)2有最小值,代入即可得到结论.本题考查了根与系数的关系,二次函数的最值,熟练掌握根与系数的关系是解题的关键.【答案】D【考点】二次函数图象与系数的关系【解析】【解答】解:∵抛物线与x轴的交点A、B的横坐标分别为﹣1,3,∴抛物线的对称轴为直线x=1,则﹣=1,∴2a+b=0,∴选项A错误;∴当自变量取1时,对应的函数图象在x轴下方,∴x=1时,y<0,则a+b+c<0,∴选项B错误;∵A点坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,∴3a+c=0,∴选项C错误;当a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,如图,∴抛物线的解析式为y= x2﹣x﹣,把x=1代入得y= ﹣1﹣=﹣2,∴D点坐标为(1,﹣2),∴AE=2,BE=2,DE=2,∴△ADE和△BDE都为等腰直角三角形,∴△ADB为等腰直角三角形,∴选项D正确.故选D.【分析】由于抛物线与x轴的交点A、B的横坐标分别为﹣1,3,得到对称轴为直线x=1,则﹣=1,即2a+b=0,得出,选项A错误;当x=1时,y<0,得出a+b+c<0,得出选项B错误;当x=﹣1时,y=0,即a﹣b+c=0,而b=﹣2a,可得到a与c的关系,得出选项C错误;由a= ,则b=﹣1,c=﹣,对称轴x=1与x轴的交点为E,先求出顶点D的坐标,由三角形边的关系得出△ADE和△BDE都为等腰直角三角形,得出选项D正确;即可得出结论.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a>0,抛物线开口向上;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).【答案】A【考点】二次函数的图象,二次函数的应用【解析】【解答】解:S△AEF = AE×AF= x2, S△DEG = DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣x2﹣=﹣x2+ x+ ,则y=4×(﹣x2+ x+ )=﹣2x2+2x+30,∵AE<AD,∴x<3,综上可得:y=﹣2x2+2x+30(0<x<3).故选:A【分析】先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.二、填空题【答案】(1,4)【考点】二次函数的性质,二次函数图象上点的坐标特征【解析】【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.【答案】60(1+x)2=100【考点】一元二次方程的应用,根据实际问题列二次函数关系式【解析】【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.【分析】本题考查的是一个增长率问题,关键是知道4月份的钱数和增长两个月后6月份的钱数,列出方程.设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【答案】(0,4)【考点】二次函数的性质,一次函数的性质【解析】【解答】解:∵直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,∴kx+b= ,化简,得 x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴ ,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【分析】根据直线y=kx+b与抛物线y= x2交于A(x1, y1)、B(x2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k 的乘积为﹣1.【答案】P>Q【考点】二次函数的性质,二次函数图象与系数的关系【解析】【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c <0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q 的值.本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.【答案】②【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征【解析】【解答】解:由题意二次函数图象如图所示,∴a<0.b<0,c>0,∴abc>0,故①正确.∵a+b+c=0,∴c=﹣a﹣b,∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又∵x=﹣1时,y>0,∴a﹣b+c>0,∴b﹣a<c,∵c>O,∴b﹣a可以是正数,∴a+3b+2c≤0,故②错误.故答案为②.∵函数y′= x2+x= (x2+ x)= (x+ )2﹣,∵ >0,∴函数y′有最小值﹣,∴ x2+x≥﹣,故③正确.∵y=ax2+bx+c的图象经过点(1,0),∴a+b+c=0,∴c=﹣a﹣b,令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,∵x1•1= =﹣,∴x1=﹣,∵﹣2<x1<x2,∴在﹣2<x<﹣1中存在一个实数x0,使得x0=﹣,故④正确,【分析】①正确.画出函数图象即可判断.②错误.因为a+b+c=0,所以a+3b+2c=a+3b﹣2a﹣2b=b﹣a,又a﹣b+c>0,所以b﹣a<c,故b﹣a可以是正数,由此可以周长判断.③正确.利用函数y′= x2+x= (x2+ x)= (x+ )2﹣,根据函数的最值问题即可解决.④令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1, 1,则x1•1= =﹣,求出x1即可解决问题.本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.三、综合题【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD = •4•t + •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;②∵四边形CDEF为平行四边形,∴CD∥EF,CD=EF,∵点C向左平移8个单位,再向上平移4个单位得到点D,∴点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),∵E(t﹣8,﹣t2+t+12)在抛物线上,∴﹣(t﹣8)2+t﹣8+8=﹣t2+t+12,解得t=7,当t=7时,S△CDF=﹣(7﹣3)2+25=9,∴此时S=2S△CDF=18.【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题【解析】【分析】(1)把A点和B点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线的解析式;然后计算函数值为0时对应的自变量的值即可得到C点坐标(2)①连结OF,如图,设F(t,﹣t2+t+8),利用S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,利用三角形面积公式得到S△CDF=﹣t2+6t+16,再利用二次函数的性质得到△CDF的面积有最大值,然后根据平行四边形的性质可得S的最大值;②由于四边形CDEF为平行四边形,则CD∥EF,CD=EF,利用C点和D的坐标特征可判断点C向左平移8个单位,再向上平移4个单位得到点D,则点F向左平移8个单位,再向上平移4个单位得到点E,即E(t﹣8,﹣t2+t+12),然后把E(t﹣8,﹣t2+t+12)代入抛物线解析式得到关于t的方程,再解方程求出t后计算△CDF的面积,从而得到S的值.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,掌握点平移的坐标规律.【答案】(1)解:由已知可得:AD= ,则S=1× m2(2)解:设AB=xm,则AD=3﹣m,∵ ,∴ ,设窗户面积为S,由已知得:,当x= m时,且x= m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大【考点】二次函数的应用【解析】【分析】此题考查二次函数的应用,关键是利用二次函数的最值解答.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【答案】(1)解:把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y= x2﹣x,∵BC∥x轴,设C(x0, 2).∴ x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2)(2)解:设△BCM边BC上的高为h,∵BC= ,∴S△BCM = •h= ,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y= x2﹣x=0,解得:x1=0,x2= ,∴M1(0,0),M2(,0),令y= x2﹣x=4,解得:x3= ,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4)(3)解:∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2 ,OA= ,OC= ,∴∠AOD=∠BOD=45°,tan∠COD= ,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE 中,tan∠NOE=tan∠COD= ,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD= ,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【考点】二次函数的性质,相似三角形的性质,与二次函数有关的动态几何问题【解析】【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y= x2﹣x,由于BC∥x轴,设C(x0, 2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y= x2﹣x=0,或令y= x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2 ,OA= ,OC= ,∠AOD=∠BOD=45°,tan∠COD= ①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x 轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.【答案】(1)解:∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x(2)解:由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2 ,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+ ,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+ ,4)或(1﹣,4).(3)解:设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,由解得,∴OM= = ,ON=m• ,∴ = ,∴k= 时,= .∴当k= 时,点T运动的过程中,为常数.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题【考点】待定系数法求二次函数解析式,二次函数与一次函数的交点问题【解析】【分析】(1)利用待定系数法即可解决问题(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+ ,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.【答案】(1)解:△ABC为直角三角形,当y=0时,即﹣x2+ x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3 ,0),∴O A= ,OB=3 ,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3 ﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图,∵B(3 ,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+ a+3),∴G(a,﹣a+3),∴PG=﹣a2+ a,设点D的横坐标为x D, C点的横坐标为x C,S△PCD = ×(x D﹣x C)×PG=﹣(a﹣)2+ ,∵0<a<3 ,∴当a= 时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y= x+ ,当x=0时,y= ,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH= ,P′H= ,AP′= ,∴点Q运动得最短路径长为PM+MN+AN= + = ;(3)解:在Rt△AOC中,∵tan∠OAC= = ,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2 ,∴A′E′=AE=2 ,∵直线AE的解析式为y= x+2,设点E′(a,a+2),∴A′(a﹣2 ,﹣2)∴C1E′2=(a﹣2 )2+(+2﹣)2= a2﹣a+7,C1A′2=(a﹣2 ﹣)2+(﹣2﹣)2= a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7= a2﹣a+49,∴a= ,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1= ,a2= ,∴E′(,7+ ),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1= ,a2= (舍),∴E′(,3+ ),即,符合条件的点E′(,5),(,7+ ),或(,7﹣),(,3+ )【考点】二次函数的最值,勾股定理的逆定理,与二次函数有关的动态几何问题【解析】【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。

二次函数综合应用题(有答案)中考23题必练经典

二次函数综合应用题(有答案)中考23题必练经典

函数综合应用题题目分析及题目对学生的要求1.求解析式:要求学生能够根据题意建立相应坐标系,将实际问题转化成数学问题。

需要注意的是:(1) 不能忘记写自变量的取值范围(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。

2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求学生能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。

最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。

(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。

3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。

推荐思路:画出不等式左右两边的图象,结合函数图象求出x的取值范围。

备选思路一:先将不等号看做等号,求出x的取值,再结合图象考虑将等号还原为不等号后x的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。

这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。

1/ 182 / 18一、求利润的最值(2010·武汉)23. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。

(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。

二次函数应用题专题(带答案)

二次函数应用题专题(带答案)

二次函数应用题专题(带答案)0)时,可用交点式y=a(x-x1x-x2求其解析式。

4)根据问题要求,利用解析式求出所需的未知量。

三、练1、一枚炮弹在发射点上空爆炸,爆炸点离发射点水平距离1800米,爆炸高度为400米,求炮弹的初速度和仰角。

2、一架飞机以900km/h的速度飞行,飞行高度为2km,发现前方有一座山峰,山顶离飞机水平距离为10km,求飞机的爬升率和俯冲率。

3、一个人从距离地面20米的悬崖上抛出一个物体,物体抛出初速度为20m/s,抛出角度为60度,求物体落地点到悬崖的水平距离。

XXX:1、设炮弹飞行时间为t,初速度为v,仰角为θ,则可列出方程组:x=vtcosθy=vtsinθ-1/2gtx2y21800)2400)=xxxxxxx解得v600m/s,θ≈48.6°。

2、设飞机的爬升率和俯冲率分别为a和b,则可列出方程组:tan(θ-a)=4000/tan(θ+b)=2000/解得a≈2.5°,b≈1.4°。

3、设物体落地点到悬崖的水平距离为d,则可列出方程:d=vcosθtt=2vsinθ/g代入可得d≈40.8m。

评析:二次函数应用题需要学生熟练掌握建立坐标系、求解析式、利用解析式求未知量的方法,同时也需要学生对物理知识有一定的掌握,如抛物线运动、平抛运动等。

练中的例题和练题都体现了这些要点,可以帮助学生加深对二次函数应用的理解和掌握。

在教学过程中,可以引导学生多思考实际问题中的数学应用,提高他们的应用能力和解决问题的能力。

例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.1)求y与x之间的关系式;2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有 y= -30x+960 (16≤x≤32).2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=-30+48x-512+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一次函数求最值.例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)1)求这个二次函数的解析式;2)该男同学把铅球推出去多远?(精确到0.01米)解:(1)设二次函数的解析式为 y=ax^2+bx+c。

(完整版)二次函数专题

(完整版)二次函数专题

专题训练(三) 与函数有关的最值问题类型之一由不等关系确定的最值问题1.某工厂以每吨3000元的价格购进50吨原料进行加工,两种加工方式如下表:现将这50吨原料全部加工完.(粗加工与精加工不能同时进行)(1)设其中粗加工x吨,共获利y元,求y与x的函数关系式;(不要求写出自变量的取值范围)(2)如果必须在20天内加工完,如何安排生产才能获得最大利润?最大利润是多少?类型之二由一次函数确定的最值问题2.某工厂计划为地震灾区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5 m3,一套B型桌椅(一桌三椅)需木料0.7 m3,工厂现有库存木料302 m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往地震灾区,已知每套A型桌椅的生产成本为100元,运费为2元;每套B型桌椅的生产成本为120元,运费为4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)类型之三由二次函数确定的最值问题3.一个边长为4的正方形截去一个角后成为五边形ABCDE(如图Z-3-1),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.图Z-3-14.[2015·青岛] 如图Z-3-2,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=-16x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3 m时,到地面OA的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?图Z-3-2类型之四用换元法求最值5.求函数y=x-1-2x的最值.类型之五用数形结合法求最值6.函数y=x2-4x+13+x2-12x+37的最小值是________.类型之六自变量x在某一范围内的最值7.求二次函数y=-4x2+8x-3在-2≤x≤2上的最大值和最小值.8.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y =x2-6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2-6x+7的图象的对称轴为直线x=3,∴由对称性可知,当x=1和x=5时的函数值相等.∴若1≤m<5,则当x=1时,y的最大值为2;若m≥5,则当x=m时,y的最大值为m2-6m+7.请你参考小明的思路,解答下列问题:(1)当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为________;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为________.图Z-3-3 专题训练(五) 巧用抛物线的对称性妙解题类型之一利用对称性比较函数值的大小1.点A(-2,y1),B(3,y2)是二次函数y=2(x-1)2-1的图象上的两点,则y1与y2的大小关系是( )A.y1<y2B.y1=y2C.y1>y2D.不能确定2.已知二次函数y=ax2+bx+c(a>0)的图象过点A(1,n),B(3,n),若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数y=ax2+bx+c(a>0)的图象上,则下列结论正确的是( ) A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2类型之二利用对称性求交点坐标3.如图5-ZT-1,已知抛物线y=x2+bx+c的对称轴为直线x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A 的坐标为(0,3),则点B的坐标为()图5-ZT-1A.(2,3) B.(3,2)C.(3,3) D.(4,3)4.如图5-ZT-2,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为( )图5-ZT-2A.0 B.-1C.1 D.25.抛物线y=ax2+bx+c经过点A(-2,7),B(6,7),C(3,-8),求该抛物线上纵坐标为-8的另一点的坐标.类型之三利用对称性求长度6.如图5-ZT-3是一个抛物线形拱桥的示意图,桥的跨度AB为100 m,支撑桥的是一些等距的立柱,相邻立柱间的水平距离为10 m(不考虑立柱的粗细),其中距点A10 m处的立柱FE 的高度为3.6 m.(1)求正中间的立柱OC的高度;(2)是否存在一根立柱,其高度恰好是OC高度的一半?请说明理由.图5-ZT-3类型之四巧用对称性求二次函数的表达式7.已知二次函数的函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为直线x=-3,此二次函数的表达式为________________.8.已知二次函数的图象与x轴的两个交点A,B关于直线x =-1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为____________________.9.二次函数的图象经过点A(0,0),B(12,0),且顶点P到x轴的距离为3,求该二次函数的表达式.类型之五利用对称性求面积10.二次函数y=-x2+2(m-1)x+2m-m2的图象关于y 轴对称,顶点A和它的x轴的两个交点B,C所构成的△ABC的面积为( )A.1 B.2 C.12D.3211.已知二次函数y=2x2+m(m为常数).(1)若点(2,y1)与(3,y2)在此二次函数的图象上,则y1________y2(填“>”“=”“<”);(2)如图5-ZT-4,此二次函数y=2x2+m的图象经过点(0,-4),正方形ABCD的顶点A,B在抛物线上,顶点C,D在x 轴上,求图中阴影部分的面积之和.图5-ZT-4类型六 利用对称性求不等式的解集或字母的取值范围12.如图5-ZT -5是二次函数y =ax 2+bx +c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx +c <0的解集是______________.图5-ZT -513.二次函数y =ax 2+bx +c 的图象上部分点的对应值如下表:则当y <0时,x 的取值范围为____________. 类型之七 利用对称性解决线段和最短问题14.如图5-ZT -6,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A ,B 之间(C 不与A ,B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为________(用含a 的式子表示).图5-ZT -615.[2015·酒泉] 如图5-ZT -7,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.(1)求抛物线的表达式和对称轴.(2)在抛物线的对称轴上是否存在一点P ,使△PAB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)连接AC ,在直线AC 下方的抛物线上,是否存在一点N ,使△NAC 的面积最大?若存在,请求出点N 的坐标;若不存在,请说明理由.图5-ZT -7专题训练(四) 二次函数图象信息专题 类型之一 根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号1.已知b <0,二次函数y =ax 2+bx +a 2-1的图象为下列四个图象之一.试根据图象分析,a 的值应等于()图4-ZT -1A .-2B .-1C .1D .22.二次函数y =ax 2+bx +c 的图象如图4-ZT -2所示,则abc ,b 2-4ac ,2a +b ,a +b +c 这四个式子中,值为正数的有()图4-ZT -2A .4个B .3个C .2个D .1个3.[2016·广安] 已知二次函数y =ax 2+bx +c(a ≠0)的图象如图4-ZT -3所示,并且关于x 的一元二次方程ax 2+bx +c -m =0有两个不相等的实数根.下列结论:①b 2-4ac <0;②abc>0;③a-b+c<0;④m>-2.其中,正确的个数为( )图4-ZT-3A.1 B.2 C.3 D.4类型之二利用二次函数的图象比较大小4.[2016·兰州] 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3类型之三利用二次函数的图象求方程或不等式的解5.如图4-ZT-4,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于点A,则一元二次方程ax2+bx +c=0的正数解的范围是()图4-ZT-4A.2<x<3 B.3<x<4C.4<x<5 D.5<x<66.如图4-ZT-5,抛物线y=x2+1与双曲线y=kx的交点A的横坐标是1,则关于x的不等式x2+1<kx的解集是( )图4-ZT-5A.x>1 B.x<0C.0<x<1 D.-1<x<07.已知二次函数y=ax2+bx+c(a≠0)的图象如图4-Z-6所示,则方程ax2+bx+c=0的两个根是______________.图4-ZT-68.如图4-ZT-7是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是______________.图4-ZT-7类型之四根据抛物线的特征确定一次函数或反比例函数的图象9.二次函数y=ax2+bx+c的图象如图4-ZT-8所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的大致图象为()图4-ZT-8图4-ZT-910.二次函数y=-x2+bx+c的图象如图4-Z-10所示,则一次函数y=bx+c的图象不经过第________象限.图4-ZT-10类型之五有关二次函数的综合题11.如图4-ZT-11,平行于x轴的直线AC分别交函数y1=x2(x≥0)与y2=x23(x≥0)的图象于B,C两点,过点C作y轴的平行线交y1的图象于点D,过点D作直线DE∥AC,交y2的图象于点E,则DEAB=________.图4-ZT-1112.如图4-ZT-12,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的表达式;(2)设二次函数的图象交y轴于点C,求△ABC的面积.图4-ZT-1213.已知抛物线y=x2-(k+2)x+5k+24和直线y=(k+1)x +(k+1)2.(1)求证:无论k取何实数值,抛物线与x轴都有两个不同的交点;(2)抛物线与x轴交于点A,B,直线与x轴交于点C,设A,B,C三点的横坐标分别是x1,x2,x3,求x1·x2·x3的最大值;(3)如图4-ZT-13所示,如果抛物线与x轴交于点A,B,点A,B在原点的右边,直线与x轴交于点C,点C在原点的左边,又抛物线、直线分别交y轴于点D,E,直线AD交直线CE 于点G,且CA·GE=CG·AB,求抛物线的函数表达式.图4-ZT-13。

二次函数应用题

二次函数应用题

类型1二次函数的实际应用1.利润最值问题1.某大型农贸市场现有100个摊位,平均每个摊位每月缴纳租金600元.为增加就业岗位,该市场管理部门准备在这个农贸市场中增加若干个摊位.已知每增加一个摊位,平均每个摊位每月可少缴纳租金5元.(平均每个摊位每月缴纳的租金不少于500元,不考虑其他费用)(1)当增加5个摊位时,求平均每个摊位每月缴纳的租金.(2)设在该农贸市场中增加x个摊位,平均每个摊位每月缴纳租金y元,求y与x之间的函数关系式,并求出x的取值范围.(3)当该农贸市场增加多少个摊位时,该市场管理部门每月可收租金最多?最多是多少?2.某商场在网上和实体店同时销售一批进价为400元/件的服装.规定:销售毛利润=销售收入-买入支出.(1)若商场将这种服装的网上销售价格和实体店销售价格分别定为500元/件和600元/件,且要求网上销售量不少于实体店销售量的.求怎样安排100件这种服装在实体店和网上销售,售完后可获得最大毛利润,最大毛利润是多少.(2)该商场统一将此服装定价为x元/件,已知这种服装的销售量y(件)与x满足函数关系y=-0.5x+450.①若x=600,求售完后商场获得的毛利润.②当x为多少时,售完后可获得最大销售毛利润,最大毛利润是多少?3.某数学兴趣小组对某种水果在1~7月份的市场行情进行调研,并得到如下信息.①该水果的销售单价p(元)与月份x满足一次函数关系;②该水果平均每千克的成本y(元)与月份x满足二次函数关系:y=ax2+bx+10.(1)求该一次函数与二次函数的解析式;(2)请根据以上信息,求出该水果在几月份平均每千克的利润L(元)最大.最大是多少?(注:平均每千克的利润=销售单价-平均每千克的成本)4.某服装经销商发现一款运动服的需求量较大,经过市场调查后发现该运动服的年销售量y(件)与销售单价x(元)之间存在如图所示的函数关系,而该运动服的进价z(元/件)与年销售量y(件)之间的关系如下表所示.且该经销商销售这款运动服时,每年需支付其他费用总计2万元.(假设这款运动服的进货量与销售量相同)(1)求y关于x的函数关系式.(2)求该经销商销售这款运动服时的年获利w(元)与销售单价x(元)之间的函数关系式;当x为何值时,年获利最大?并求出这个最大值.5.蔬菜商王大伯销售一种蔬菜,年销售量为x箱.若直接进行销售,进价为20元/箱,销售价y(元/箱)与年销售量x(箱)之间的函数关系式为y=-x+150,且无论销量为多少,每年均需缴纳各种管理费共计62 500元,年利润为w1元(年利润=年销售额-成本-管理费).若经过净菜处理后再销售,成本(含进价)为a元/箱(a为常数,30≤a≤40),销售价为150元/箱,每年不用缴纳管理费,但需缴纳x2元的附加费,年利润为w2元(年利润=年销售额-成本-附加费).(1)分别写出w1,w2与x之间的函数关系式(不必写x的取值范围);(2)如果明年要将5 000箱产品全部销售完,请你帮王大伯分析应采用哪种形式销售,才能使获得的年利润较多.6.[2018南漳适应性考试]某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元)与时间第t天之间的函数关系为p=日销售量y(千克)与时间第t天之间的函数关系如图所示.(1)求日销售量y与时间t的函数关系式.(2)哪天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2 400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.7.[2016荆州中考]A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台.从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16 460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变.如何调运,使总费用最少?8.某工艺品厂生产一种汽车装饰品,每件的生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万件)与销售价格x(元/件)之间的函数关系如图所示.(1)当30≤x≤60时,求y与x之间的函数关系式;(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/件)之间的函数关系式;(3)当销售价格定为多少元/件时,获得的利润最大?最大利润是多少?9.[2016黄石中考]科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的累计人数.图中曲线对应的函数解析式为y=10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的游客在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2.抛物线型问题10.图中是抛物线形拱桥,点P处有一照明灯,水面OA宽4 m.从点O,A两处观测点P处,仰角分别为α,β,且tan α=,tan β=.以点O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1 m,水面宽多少(取1.41,结果精确到0.1 m)?11.我们常见的炒菜锅和锅盖(如图(1))都是抛物线面,经过锅心和盖心的纵断面是两段抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6 dm,锅深3 dm,锅盖高1 dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图(2)所示,把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2.图(1)图(2)(1)求C1和C2的表达式;(2)如果炒菜锅里的水位高度是1 dm,求此时水面的直径;(3)如果将一个底面直径为3 dm,高度为3 dm的圆柱形器皿放入炒菜锅内蒸食物,锅盖能否正常盖上?请说明理由.12.[2017浙江金华]甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点正上方1 m的点P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h.已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面的高度为m的点Q处时,乙扣球成功,求a的值.13.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=-x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m,到地面OA的距离为m.(1)求该抛物线的解析式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?14.[2018河北]轮滑场地的截面示意图如图所示,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:点M,点A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时,h=5;点M,点A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x之间的函数关系式(不写x的取值范围)及当y=13时,运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接..写出t的值及v乙的取值范围.3.面积问题15.[2017甘肃兰州]王叔叔从市场上买了一块长80 cm,宽70 cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长为x cm的正方形后,剩余的部分刚好能围成一个底面积为3 000 cm2的无盖长方体工具箱.根据题意可列方程为()A.(80-x)(70-x)=3 000B.80×70-4x2=3 000C.(80-2x)(70-2x)=3 000D.80×70-4x2-(70+80)x=3 00016.[2017浙江绍兴]某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m,设饲养室长为x(m),占地面积为y(m2).(1)如图(1),问饲养室长x为多少时,占地面积y最大;(2)如图(2),现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.图(1)图(2)17.如图,把四张形状大小完全相同的小长方形卡片不重叠地放在矩形ABCD内,且BC=8,CD=6,矩形ABCD未被卡片覆盖的部分涂上阴影(阴影部分的面积大于0),设小长方形卡片的宽为m. (1)用含m的代数式表示DH的长,并注明自变量m的取值范围;(2)设阴影部分的面积和为S,则当m取何值时,S有最大值?最大值是多少?18.如图,在矩形ABCD中,AD=4 cm,AB=3 cm,动点E从点C出发沿边CB向点B以2 cm/s的速度运动,到达点B时停止运动.动点F从点D同时出发沿边DC向点C以1 cm/s的速度运动,到达点C时停止运动.分别以CE,CF为边在矩形ABCD内部作矩形CFHE,设点E运动的时间为x(s),阴影部分的面积为y(cm2).(1)求y与x之间的函数关系式,并写出x的取值范围;(2)求y的最小值;(3)是否存在某一时刻,使阴影部分的面积等于矩形ABCD面积的一半?并说明理由.19.课本中有一个例题:有一个窗户形状如图(1),上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6 m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图(2),材料总长仍为6 m.利用图(3),解答下列问题:(1)若AB为1 m,求此时窗户的透光面积.(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.图(1)图(2)图(3)20.如图,OA=OB=50 cm,OC是一条射线,OC⊥AB,甲小虫由点A以2 cm/s的速度向点B爬行,同时乙小虫由点O以3 cm/s的速度沿OC爬行,当甲小虫到达点B时两只小虫同时停止爬行.(1)设小虫运动的时间为x s,两小虫所在位置与点O组成的三角形的面积为y cm2(不妨设甲小虫到达点O时,y=0),求y与x之间的函数关系式.(2)当小虫运动的时间为多少时,两小虫所在位置与点O组成的三角形的面积等于450 cm2?(3)请直接说明y随x的变化而变化的情况.备用图类型2二次函数与几何图形综合题21.如图,抛物线y=-x2+3x+4与x轴交于点A,C(点A在点C的右侧),与y轴交于点B.(1)求点A,B的坐标及直线AB的函数表达式;(2)若直线l⊥x轴,且直线l在第一象限内与抛物线交于点M,与直线AB交于点N,求点M与点N 之间的距离的最大值,并求出此时点M,N的坐标.22.已知抛物线y=mx2+(1-2m)x+1-3m与x轴相交于不同的两点A,B.(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出最值及相对应的m值;若没有,请说明理由.23.如图,抛物线的顶点为P(1,4),且与y轴交于C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,且△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为点D,E.是否存在点M,N使四边形MNED为正方形?若存在,请求出正方形MNED的边长;若不存在,请说明理由.参考答案1.(1)当增加5个摊位时,平均每个摊位每月可少缴纳租金5×5=25(元),则平均每个摊位每月缴纳的租金为600-25=575(元).(2)当增加x个摊位时,平均每个摊位每月少缴纳租金5x元,则y=600-5x.因为平均每个摊位每月缴纳的租金不少于500元,所以600-5x≥500,解得x≤20,所以y与x之间的函数关系式为y=-5x+600(0<x≤20,x为整数).(3)设该市场管理部门每月可收租金w元,则w=(100+x)(-5x+600)=-5x2+100x+60 000=-5(x-10)2+60 500.因为0<x≤20,x为整数,所以当该农贸市场增加10个摊位时,该市场管理部门每月可收租金最多,为60 500元.2.(1)设网上销售的件数为n件,由题意得,n≥(100-n),解得n≥25.设销售完这100件服装获得的毛利润为w元,则w=(500-400)n+(600-400)(100-n)=-100n+20 000,故当n=25时,w最大,最大值为17 500,即网上销售量和实体店销售量分别为25,75件时,可获得最大毛利润,是17 500元.(2)①当x=600时,y=-0.5×600+450=150(件),(600-400)×150=30 000(元).答:售完后商场获得的毛利润为30 000元.②易得销售毛利润w'与x之间的函数关系式为w'=(x-400)y=(x-400)(-0.5x+450)=-0.5x2+650x-180 000=-0.5(x-650)2+31 250.故当x=650时,售完后可获得最大毛利润,是31 250元.3.(1)设该一次函数的解析式为p=kx+m,将x=4,p=5和x=6,p=3分别代入,得解得故该一次函数的解析式为p=-x+9.将x=4,y=2和x=6,y=1分别代入y=ax2+bx+10,得解得故该二次函数的解析式为y=x2-3x+10.(2)根据题意,得L=p-y=-x+9-(x2-3x+10)=-(x-4)2+3,∵-<0,∴当x=4时,L取得最大值,为3.故该水果在4月份平均每千克的利润L最大,最大是3元.4.(1)由题图可知,y与x之间满足一次函数关系,故设y=kx+b. ∵点(300,500),(400,400)都在该函数的图象上,∴解得故y关于x的函数关系式为y=-x+800.(2)由题表可知,z与y之间满足一次函数关系,故设z=k'y+b'. ∵点(300,340),(400,320)都在该函数的图象上,∴解得故z关于y的函数关系式为z=-0.2y+400,则z关于x的函数关系式为z=-0.2×(-x+800)+400=0.2x+240. 由题意可知w=(x-z)y-20 000=(x-0.2x-240)(-x+800)-20 000=-0.8(x-550)2+30 000,故当x=550时,年获利最大,最大值为30 000元.5.(1)w1=x(y-20)-62 500=-x2+130x-62 500.w2=-x2+(150-a)x.(2)当x=5 000时,w1=-×5 0002+130×5 000-62 500=337 500,w2=-×5 0002+(150-a)×5 000=-5 000a+500 000.令w1<w2,即337 500<-5 000a+500 000,解得a<32.5;令w1=w2,即337 500=-5 000a+500 000,解得a=32.5;令w1>w2,即337 500>-5 000a+500 000,解得a>32.5,故当30≤a<32.5时,选择经过净菜处理后再销售,所获得的年利润较多;当a=32.5时,直接销售和经过净菜处理后再销售所获得的利润一样;当32.5<a≤40时,应选择直接销售.6.(1)设日销售量y与时间t的函数关系式为y=kt+b.将(1,198),(80,40)代入,得解得∴y=-2t+200(1≤x≤80,t为整数).(2)设日销售利润为w元,则w=(p-6)y.当1≤t≤40时,w=(t+16-6)(-2t+200)=-(t-30)2+2 450,∴当t=30时,w最大=2 450;当41≤t≤80时,w=(-t+46-6)(-2t+200)=(t-90)2-100,∴当t=41时,w最大=2 301.2 450>2 301,故第30天的日销售利润最大,最大利润是2 450元.(3)由(2)得,当1≤t≤40时,w=-(t-30)2+2 450.令w=2 400,即-(t-30)2+2 450=2 400,解得t1=20,t2=40,由函数w=-(t-30)2+2 450的图象可知,当20≤t≤40时,日销售利润不低于2 400元.当41≤t≤80时,w最大=2 301<2 400,∴t的取值范围是20≤t≤40,故该养殖户有21天日销售利润不低于2 400元.(4)根据题意,得w=(t+16-6-m)(-2t+200)=-t2+(30+2m)t+2 000-200m,其函数图象的对称轴为直线t=2m+30.∵w随t的增大而增大,且1≤t≤40,∴2m+30≥40,解得m≥5.又m<7,∴5≤m<7.7.(1)由题意得,从A城运往D乡的农机为(30-x)台, 从B城运往C乡的农机为(34-x)台,从B城运往D乡的农机为(x+6)台.∴W=250x+200×(30-x)+150×(34-x)+240×(x+6)=140x+12 540 (0≤x≤30).(2)∵W≥16 460,∴140x+12 540≥16 460,∴x≥28.∴28≤x≤30,∴x可取28,29,30.共有三种方案:①A城运往C乡28台,运往D乡2台,B城运往C乡6台,运往D乡34台;②A城运往C乡29台,运往D乡1台,B城运往C乡5台,运往D乡35台;③A城运往C乡30台,运往D乡0台,B城运往C乡4台,运往D乡36台.(3)设减免后的总费用为W1元,则W1 =140x-ax+12 540=(140-a)x+12 540 (0≤a≤200, 0≤x≤30).当0≤a<140时,140-a>0,∴当x=0时,W1最小,此时A城运往C乡0台,运往D乡30台;B城运往C乡34台,运往D乡6台.当a=140时,140-a=0,∴W1=12 540,即此时不管如何调运,总费用不变.当140<a≤200时,140-a<0,∴当x=30时,W1最小,此时A城运往C乡30台,运往D乡0台;B城运往C乡4台,运往D乡36台.8.(1)对于y=,当x=60时,y==2,∴点B的坐标为(60,2).将A(30,5)、B(60,2)代入y=kx+b,得解得∴y=-0.1x+8(30≤x≤60).(2)当30≤x≤60时,w=(x-20)y-50=(x-20)(-0.1x+8)-50=-0.1x2+10x-210.当60<x≤80时,w=(x-20)y-50=(x-20)·-50=-+70.综上所述,w=(3)当30≤x≤60时,w=-0.1x2+10x-210=-0.1(x-50)2+40,∴当x=50时,w最大=40.当60<x≤80时,w=-+70,∵-2400<0,∴w随x的增大而增大,∴当x=80时,w最大=-+70=40.∴当销售价格定为50元/件或80元/件时,获得的利润最大,最大利润为40万元.9.(1)由题意,得点A(30,300),∴300=a×302,解得a=.点B的坐标为(90,700),代入y=b(x-90)2+n,得n=700.将点A的坐标代入,得b×(30-90)2+700=300,解得b=-,∴y=(2)由题意,得-(x-90)2+700=684,解得x=78(另一解不合题意,已舍去).=15(分钟),15+30+(90-78)=57(分钟).答:馆外游客最多等待57分钟.10.(1)如图,过点P作PB⊥OA,垂足为点B.设点P的坐标为(x,y).在Rt△POB中,∵tan α=,∴OB==2y.在Rt△PAB中,∵tan β=,∴AB==y.∵OA=OB+AB,即2y+y=4,∴y=.∴x=2×=3.∴点P的坐标为(3,).(2)设这条抛物线表示的二次函数为y=ax2+bx.由函数y=ax2+bx的图象经过A(4,0)、P(3,)两点,可得解方程组,得∴这条抛物线表示的二次函数为y=-x2+2x.当水面上升1 m时,水面的纵坐标为1,即-x2+2x=1.解方程,得x1=2-,x2=2+.x2-x1=2+-(2-)=2≈2.8(m).因此,水面上升1 m,水面宽约2.8 m.11.(1)由抛物线C1,C2都过点A(-3,0),B(3,0),可设抛物线C1的表达式为y=a1(x-3)(x+3),抛物线C2的表达式为y=a2(x-3)(x+3). ∵抛物线C1经过点D(0,-3),∴-3=a1(0-3)(0+3),解得a1=,故抛物线C1的表达式为y=x2-3(-3≤x≤3).∵抛物线C2经过点C(0,1),∴1=a2(0-3)(0+3),解得a2=-,故抛物线C2的表达式为y=-x2+1(-3≤x≤3).(2)当炒菜锅里的水位高度为1 dm时,y=-2,即x2-3=-2,解得x=±,故此时水面的直径为2dm.(3)锅盖能正常盖上.理由如下:当x=时,对于抛物线C1,有y=×()2-3=-.对于抛物线C2,有y=-×()2+1=,而-(-)=3,故锅盖能正常盖上.12.(1)①由题意可知,点P的坐标为(0,1),把(0,1)代入y=-(x-4)2+h,解得h=.②∵点O与球网的水平距离为5 m,把x=5代入y=-(x-4)2+,得y=-(5-4)2+=1.625.∵1.625>1.55,∴此球能过网.(2)由题意可知点P,Q的坐标分别为(0,1),(7,), 将两坐标分别代入y=a(x-4)2+h,得解得∴a的值为-.13.(1)由题意知,点B(0,4)、C(3,)在抛物线上,所以解得所以y=-x2+2x+4.所以拱顶D 到地面OA 的距离为=10(m).即抛物线的解析式为y=-x 2+2x+4,拱顶D 到地面OA 的距离为10 m.(2)抛物线的对称轴为x=-=6.由题意知,车最外侧与地面OA 的交点为(2,0)(或(10,0)).当x=2(或x=10)时,y=>6,所以货车可以安全通过.(3)令y=8,即-x 2+2x+4=8,可得x 2-12x+24=0,解得x 1=6+2,x 2=6-2.x 1-x 2=4.即两排灯的水平距离最小是4 m.14.(1)由题意得A(1,18),代入y=,得k=18.设h=at 2,将(1,5)代入,得a=5,即h=5t 2.(2)易得x=1+5t,y=18-5t 2,∴t=(x-1),代入y=18-5t 2,得y=18-(x-1)2=-x 2+x+,令y=13,即18-(x-1)2=13,解得x 1=6,x 2=-4(不合题意,舍去),∴x=6.对于y=,令x=6,得y=3,故当y=13时,运动员与正下方滑道的竖直距离为13-3=10(米).(3)t=1.8,v乙>7.5.解法提示:易得运动员甲的横坐标为1+5t,纵坐标为18-5t2,令18-5t2=1.8,解得t=1.8(负值已舍去),此时1+5t=10.由题意得1+1.8v乙>10+4.5,解得v乙>7.5.15.C【解析】由题可知,长方体底面的长、宽分别为(80-2x)cm,(70-2x)cm,由矩形面积公式列方程,得(80-2x)(70-2x)=3 000.16.(1)∵y=x·=-(x-25)2+,∴当x=25时,y最大,即当饲养室长为25 m时,占地面积y最大.(2)∵y=x·=-(x-26)2+338,∴当x=26时,y最大,即当饲养室长为26 m时,占地面积y最大.∵26-25=1≠2,∴小敏的说法不正确.17.(1)由题意可知CH=EF=8-2m,∴DH=CD-CH=6-(8-2m)=2m-2.∵6-2m>0,2m-2>0,∴1<m<3.故DH=2m-2,且1<m<3.(2)S=S矩形EFMB+S矩形DHGN=(8-2m)(6-2m)+2m(2m-2)=8(m-2)2+16.故当m=2时,S取最大值,最大值为16.18.(1)由题意可得CE=2x cm,DF=x cm,则CF=(3-x)cm.点E从点C运动到点B所用的时间为4÷2=2(s),点F从点D运动到点C所用的时间为3÷1=3(s).当0≤x≤2时,y=4×3-2x(3-x)=2x2-6x+12.(2)当0≤x≤2时,y=2x2-6x+12=2(x-)2+,故当x=时,y最小=.(3)不存在.理由:由(2)可知,阴影部分的面积的最小值为,而矩形ABCD的面积的一半为6,>6,故不存在某一时刻,使阴影部分的面积等于矩形ABCD的面积的一半.19.(1)由已知得AD=m,∴此时窗户的透光面积为m2.(2)设AB=x m,则AD=(3-x)m,∵3-x>0,∴0<x<.设窗户透光面积为S m2,由已知,得S=AB·AD=x(3-x)=-x2+3x=-(x-)2+,x=在0<x<的范围内,∴S最大值=m2>1.05 m2,故与课本中的例题比较,现在窗户透光面积的最大值变大了.20.(1)当甲小虫位于点O左侧,即0≤x<25时,y=(50-2x)·3x=-3x2+75x;当甲小虫位于点O右侧,即25<x≤50时,y=(2x-50)·3x=3x2-75x.综上,y与x之间的函数关系式为y=(2)当0≤x<25时,令-3x2+75x=450,解得x=10或15.当25<x≤50时,令3x2-75x=450,解得x=30或-5(不合题意,舍去).故当小虫运动的时间为10 s,15 s或30 s时,两小虫所在位置与点O组成的三角形的面积等于450 cm2.(3)当0≤x<12.5时,y随x的增大而增大;当12.5≤x≤25时,y随x的增大而减小;当25<x≤50时,y随x的增大而增大.21.(1)在y=-x2+3x+4中,当x=0时,y=4,∴点B的坐标为(0,4).令y=0,即-x2+3x+4=0,解得x=-1或x=4,∴点A的坐标为(4,0),点C的坐标为(-1,0).设直线AB对应的函数表达式为y=kx+b,根据题意,得解得故直线AB的函数表达式为y=-x+4.(2)设直线l的函数表达式为x=a.根据题意可知,0<a<4,点M的坐标为(a,-a2+3a+4),点N的坐标为(a,-a+4). ∵点M,N在第一象限,∴点M在点N的上方,∴MN=-a2+3a+4-(-a+4)=-a2+4a=-(a-2)2+4.∵-1<0,0<a<4,∴当a=2时,MN取得最大值,最大值为4,即点M与点N之间的距离的最大值为4,此时点M的坐标为(2,6),点N的坐标为(2,2).22.(1)根据已知可得∵(1-2m)2-4m(1-3m)=1-4m+4m2-4m+12m2=16m2-8m+1=(4m-1)2>0,∴4m-1≠0,∴m≠.即m的取值范围为m≠0且m≠.(2)由题意,得y=mx2+x-2mx+1-3m=(x2-2x-3)m+x+1,令x2-2x-3=0,得x1=-1,x2=3.当x=-1时,y=0;当x=3时,y=4,∴抛物线过定点(-1,0)、(3,4).∵(-1,0)在x轴上,∴抛物线一定经过非坐标轴上的一点P,点P的坐标为(3,4).(3)设A、B的坐标为(x1,0)、(x2,0),则x1+x2=,x1·x2=,|AB|=|x1-x2|======.∵<m≤8,∴|AB|=,∴S△ABP=2·=2×(4-)=8-.∵<m≤8,∴≤<4,∴-8<-≤-,∴当-=-时,S△ABP有最大值,最大值为8-=.此时,m的值为8.23.(1)由题可设抛物线的解析式为y=a(x-1)2+4(a≠0), 将C(0,3)代入,得a+4=3,∴a=-1,故抛物线的解析式为y=-(x-1)2+4=-x2+2x+3.(2)易得B(3,0),根据待定系数法,易得直线BC的解析式为y=-x+3.分以下两种情况讨论.①当点Q在直线BC上方时,∵S△PBC=S△QBC,∴PQ∥BC.如图(1),过点P作平行于BC的直线,交抛物线于点Q1, ∵P(1,4),∴直线PQ的解析式为y=-x+5.联立y=-x+5与y=-x2+2x+3,得解得∴Q1(2,3).②当点Q在直线BC下方时,如图(1),设抛物线的对称轴交BC于点G,交x轴于点H,则G(1,2),∴PG=GH=2.过点H作平行于BC的直线,交抛物线于点Q2,Q3.易得直线Q2Q3的解析式为y=-x+1,联立y=-x+1与y=-x2+2x+3,得解得∴Q2(,),Q3(,).综上所述,点Q的坐标为(2,3),(,)或(,).图(1)图(2)(3)存在.如图(2),过点M作MF∥y轴,过点N作NF∥x轴,MF与NF相交于点F,过点N作NL∥y轴,交BC 于点L.易得△MNF与△NEH都是等腰直角三角形.设M(x5,y5),N(x6,y6),直线MN为y=-x+b,联立y=-x+b与y=-x2+2x+3,得∴x2-3x+b-3=0,∴NF2=(x5-x6)2=(x5+x6)2-4x5x6=21-4b. ∵△MNF是等腰直角三角形,∴MN2=2NF2=42-8b.又∵NL2=(b-3)2,∴NE2=(b-3)2.∵MN2=NE2,∴42-8b=(b-3)2,即b2+10b-75=0,解得b1=-15,b2=5,∴MN=9或,故正方形MNED的边长为9或.24.(1)由y=0,得x2-x-4=0,解得x1=-3,x2=4.故点A,B的坐标分别为(-3, 0),(4,0). 由x=0,得y=-4,故点C的坐标为(0,-4).(2)点Q的坐标为(,-4)或(1,-3). 解法提示:①当CA=CQ时,CQ=AC=5. 在Rt△OBC中,∠OCB=45°.过点Q作QJ⊥y轴于点J,则QJ=,JC=,∴OJ=4-,∴Q(,-4).②当AC=AQ时,AQ=AC=5.设AM=x,则MQ=MB=7-x.在Rt△AQM中,AQ2=AM2+MQ2,即52=x2+(7-x)2,解得x1=3(舍去),x2=4.故OM=1,则JC=JQ=OM=1,∴MQ=3,∴Q(1,-3).③当QA=QC时,∠QAC=∠QCA.此时点Q在第一象限,不合题意.综上,点Q的坐标为(,-4)或(1,-3).(3)如图,过点F作FG⊥PQ于点G,则FG∥x轴.由B(4,0),C(0,-4),得△OBC为等腰直角三角形, ∴∠QFG=∠OBC=45°,∴GQ=FG=FQ.∵PE∥AC,∴∠1=∠2.∵FG∥x轴,∴∠2=∠3.∴∠1=∠3.∵∠FGP=∠AOC=90°,∴△FGP∽△AOC,∴=,即=.∴GP=FG=×FQ=FQ,∴QP=GQ+GP=FQ+FQ=FQ,∴FQ=QP.∵PM⊥x轴,点P的横坐标为m,∠MBQ=45°,∴QM=MB=4-m,PM=-m2+m+4,∴QP=PM-QM=-m2+m+4-(4-m)=-m2+m,∴QF=QP=(-m2+m)=-m2+m. ∵-<0,∴QF有最大值,∴当m=-=2时,QF有最大值.24.如图,抛物线y=x2-x-4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM 交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接..写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.。

二次函数动点问题专题

二次函数动点问题专题

二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。

(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。

3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。

最新中考数学初三总复习第三单元函数第14课时 二次函数的实际应用达标训练及答案(word版)

最新中考数学初三总复习第三单元函数第14课时 二次函数的实际应用达标训练及答案(word版)

第三单元函数第十四课时二次函数的实际应用1. (8分)(2017眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?2. (8分)(2017济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?3. (8分)(2017成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米) 8 9 10 11.5 13y1(分钟) 18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间y2(单位:分钟)也受x的影响,其关系可以用y2=12x2-11x+78来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间.4. (8分)(2017青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数10 0日总收入(元) 24000 40000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?5. (9分)(2017河北)某厂按用户的月需求量x(件)完成一件产品的生产,其中x>0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12)符合关系式x=2n2-2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月) 1 2成本y(万元/件) 11 12需求量x(件/月) 120 100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.6. (9分)(2017南雅中学一模)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件) 198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.第6题图答案1. 解:(1)当每件蛋糕利润是14元时,提高了(14-10)÷2=2个档次,∵提高2个档次,∴此批次蛋糕属第3档次产品;(2)设烘焙店生产的是第x档次的产品,则每件的利润为10+2(x-1),每天的产量为76-4(x-1),由题意可得[10+2(x-1)][76-4(x-1)]=1080,整理得8x2-128x+440=0,解得x1=5,x2=11(∵11>6,不符合题意,舍去),答:该烘焙店生产的是第5档次的产品.2. 解:(1)w=(x-30)·y=(x-30)·(-x+60)=-x2+90x-1800,∴w与x的函数关系式为w=-x2+90x-1800(30≤x≤60);(2)w=-x2+90x-1800=-(x-45)2+225,∴当x =45时,w 有最大值,w 最大值为225,答:销售单价定为45元时,每天销售利润最大,最大销售利润225元; (3)当w =200时,可列方程-(x -45)2+225=200, 解得x 1=40,x 2=50, ∵50>48,∴x 2=50(不符合题意,应舍去),答:该商店销售这种双肩包每天想要获得200元的销售利润,销售单价应定为40元.3. 解:(1)设一次函数为y 1=kx +b (k ≠0), 将x =8,y =18和x =9,y =20代入, 得⎩⎪⎨⎪⎧8k +b =189k +b =20,解得⎩⎪⎨⎪⎧k =2b =2, ∴y 1与x 的函数关系式为y 1=2x +2;(2)设李华从文化宫乘地铁和骑单车回家共需y 分钟,∵y 2=12x 2-11x +78,∴y =y 1+y 2=12x 2-9x +80=12(x -9)2+792,∵12>0, ∴当x =9时,y 最小=792(分钟),答:李华应选择在B 站出地铁,才能使他从文化宫回到家的时间最短,最短时间为792分钟.4. 解:(1)设该酒店有豪华间a 间,则:40000a =24000a -10(1+13), 解得a =50,经检验a =50是原方程的解,符合题意, ∴旺季每间=40000÷50=800(元),答:该酒店豪华间有50间,旺季每间价格为800元; (2)设该酒店豪华间上涨x 元,日总收入为w 元,则w =(x +800)(50-x 25)=-125x 2+18x +40000=-125(x -225)2+42025,∵-125<0,∴当x =225时,w 有最大值,此时w max =42025,答:当每间价格上涨225元时,日总收入最高,最高总收入为42025元.5. 解:(1)由题意,设y =a +bx,由表中数据,得⎩⎨⎧11=a +b 12012=a +b 100,解得⎩⎪⎨⎪⎧a =6b =600,∴y =6+600x,由题意,若12=18-(6+600x ),则600x =0,∵x >0,∴600x >0, ∴一件产品的利润不可能是12万元;(2)将n =1,x =120代入x =2n 2-2kn +9(k +3),得120=2-2k +9k +27, 解得k =13,将n =2,x =100代入x =2n 2-2kn +9(k +3),得100=8-4k +9(k +3), 解得k =13,由题意,得18=6+600x ,解得x =50,∴50=2n 2-26n +144,即n 2-13n +47=0, ∵b 2-4ac =(-13)2-4×1×47<0,∴方程无实根,∴不存在某个月既无盈利也不亏损;(3)∵第m 个月的利润为W m =x(18-y )=18x -x(6+600x )=12(x -50)=12(2m 2-26m +144-50)=24(m 2-13m +47),∴第(m +1)个月的利润为W m +1=24[(m +1)2-13(m +1)+47]=24(m 2-11m +35),若W m ≥W m +1,W m -W m +1=48(6-m ),m 取1时,W m -W m +1=240,利润相差最大;若W m <W m +1,W m +1-W m =48(m -6),m +1≤12,m 取11时,W m +1-W m =240,利润相差最大, ∴m =1或m =11.6. 解:(1)当1≤x ≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b (k 、b 为常数且k ≠0),∵y =kx +b 经过点(0,40)、(50,90),代入得 ∴⎩⎪⎨⎪⎧b =4050k +b =90,解得⎩⎪⎨⎪⎧k =1b =40, ∴售价y 与时间x 的函数关系式为y =x +40;当50<x ≤90时,y =90, ∴售价y 与时间x 的函数关系式为 y =⎩⎪⎨⎪⎧x +40(1≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),由数据可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为p =mx +n (m 、n 为常数,且m ≠0), ∵p =mx +n 经过点(60,80)、(30,140),代入得, ∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(1≤x ≤90,且x 为整数),当1≤x ≤50时,w =(y -30)·p=(x +40-30)(-2x +200)=-2x 2+180x +2000; 当50<x ≤90时,w =(90-30)(-2x +200)=-120x +12000, 综上所述,每天的销售利润w 与时间x 的函数关系式是w = ⎩⎪⎨⎪⎧-2x2+180x +2000(1≤x≤50,且x 为整数)-120x +12000(50<x≤90,且x 为整数); (2)当1≤x ≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050, ∵a =-2<0且1≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元,当50<x≤90时,w=-120x+12000,∵k=-120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元,∵6050>6000,∴当x=45时,w最大,最大值为6050元,答:销售第45天时,当天获得的销售利润最大,最大利润是6050元;(3)24天.【解法提示】当1≤x≤50时,令w=-2x2+180x+2000≥5600,即-2x2+180x -3600≥0,解得30≤x≤60,∵1≤x≤50,∴30≤x≤50,∴50-30+1=21(天),当50<x≤90时,令w=-120x+12000≥5600,即-120x+6400≥0,解得x≤531 3,∵50<x≤90,x为整数,∴50<x≤53,53-50=3(天),综上可知:21+3=24(天),答:该商品在销售过程中,共有24天每天的销售利润不低于5600元.。

专题训练二二次函数图象与a,b,c,bac等符号问题

专题训练二二次函数图象与a,b,c,bac等符号问题

专题训练(二)二次函数图象与a,b,c,b2-4ac等符号问题二次函数y=ax2+bx+c(a≠0)的图象特征与a,b,c及判别式b2-4ac的符号之间的关系:一、选择题1.2016·宁波已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是( )A.当a=1时,函数图象过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大2.二次函数y=ax2+bx+c的图象如图2-ZT-1所示,则下列关系式错误的是( )图2-ZT-1A.a<0B.b>0C.b2-4ac>0D.a+b+c<03.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是( )A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤24.2017·威海已知二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-2所示,则正比例函数y=(b+c)x与反比例函数y=a-b-cx在同一坐标系中的大致图象是( )图2-ZT-2图2-ZT-35.2017·安徽已知抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )图2-ZT-46.2017·烟台二次函数y=ax2+bx+c(a≠0)的图象如图2-ZT-5所示,对称轴是直线x=1.下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是( )图2-ZT-5A .①④B .②④C .①②③D .①②③④7.2017·鄂州如图2-ZT -6,抛物线y =ax 2+bx +c 的图象交x 轴于点A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =OC .下列结论:①2b -c =2;②a =12;③ac =b -1;④a +b c>0,其中正确的结论有( )图2-ZT -6A .1个B .2个C .3个D .4个8.2017·齐齐哈尔抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图2-ZT -7所示,则下列结论:①4a -b =0;②c <0;③-3a +c >0;④4a -2b >at 2+bt (t 为实数);⑤点⎝⎛⎭⎪⎫-92,y 1,⎝⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,则y 1<y 2<y 3.正确的结论有( ) 图2-ZT -7A .4个B .3个C .2个D .1个 二、填空题9.二次函数y =ax 2+bx +c 的图象的一部分如图2-ZT -8所示,则a 的取值范围是________.图2-ZT -810.2017·天水如图2-ZT -9是抛物线y 1=ax 2+bx +c (a ≠0)的图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点是B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x (ax +b )≤a +b .其中正确的结论是________.(只填写序号)图2-ZT -911.2017·株洲如图2-ZT-10,二次函数y=ax2+bx+c的图象的对称轴在y轴的右侧,其图象与x轴交于点A(-1,0),C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a<2;②-1<b<0;③c=-1;④当|a|=|b|时,x2>5-1.以上结论中,正确的结论序号是________.图2-ZT-1012.如图2-ZT-11,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,其图象与x轴的交点A,B的横坐标分别为-1,3,与y轴负半轴交于点C.在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④当a=12时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a的值可以有四个.其中正确的结论是________(只填序号).图2-ZT-11三、解答题13.如图2-ZT-12,二次函数y=ax2+bx+c的图象与x轴交于B,C两点,交y轴于点A.(1)根据图象确定a,b,c的符号;(2)如果OC=OA=13OB,BC=4,求这个二次函数的表达式.图2-ZT-1214.已知函数y=ax2+bx+c,若a>0,b<0,c<0,则这个函数的图象与x轴交点的情况是怎样的若无交点,请说明理由;若有交点,请说明有几个交点及交点分别在x轴的哪个半轴上.详解详析专题训练(二) 二次函数图象与a,b,c,b2-4ac等符号问题1.[答案] D2.[解析] D 抛物线开口向下,则a<0,所以A选项的关系式正确;抛物线的对称轴在y轴的右侧,a,b异号,则b>0,所以B选项的关系式正确;抛物线与x轴有2个交点,则b2-4ac>0,所以C选项的关系式正确;当x=1时,y>0,即a+b+c>0,所以D选项的关系式错误.3.[答案] A4.[答案] C5.[解析] B 由公共点的横坐标为1,且在反比例函数y=bx的图象上,当x=1时,y=b,即公共点的坐标为(1,b).又点(1,b)在抛物线上,得a+b+c=b,即a+c=0.由a≠0知ac<0,一次函数y=bx+ac的图象与y轴的交点在负半轴上,而反比例函数y=b x 的图象的一支在第一象限,故b>0,一次函数的图象满足y随x的增大而增大,选项B符合条件.故选B.6.[解析] C ①抛物线的开口向上,所以a>0.抛物线的对称轴为直线x=-b2a=1,所以b<0,所以ab<0.所以①正确;②抛物线与x轴有两个交点,所以b2-4ac>0,所以b2>4ac.所以②正确;③由图象知,当x=1时,y=a+b+c<0.又抛物线与y轴交于负半轴,所以c<0,所以a+b+2c<0.所以③正确;④由抛物线的对称性知当x=3时,y=9a+3b+c>0.又-b2a=1,所以b=-2a,所以3a+c>0.所以④错误.综上可知,正确的是①②③.故选C.7.[解析] C 在y=ax2+bx+c中,当x=0时y=c,∴C(0,c),∴OC=-c.∵OB=OC,∴B(-c,0).∵A(-2,0),∴-c,-2是一元二次方程ax2+bx+c=0的两个不相等的实数根,∴-c·(-2)=ca.∵c≠0,∴a=12,②正确;∵-c,-2是一元二次方程12x2+bx+c=0的两个不相等的实数根,∴-c+(-2)=-b12,即2b-c=2,①正确;把B(-c,0)代入y=ax2+bx+c,得0=a(-c)2+b·(-c)+c,即ac2-bc+c=0.∵c≠0,∴ac-b+1=0,∴ac=b-1,③正确;∵抛物线开口向上,∴a>0.∵抛物线的对称轴在x轴左侧,∴-b2a<0,∴b>0,∴a+b>0.∵抛物线与y轴负半轴交于点C,∴c<0.∴a+bc<0,④错误.8.[解析] B ∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,∴-b2a=-2,∴4a -b =0,故①正确;∵抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-2,与x 轴的一个交点在(-3,0)和(-4,0)之间,∴另一个交点位于(-1,0)和(0,0)之间,∴抛物线与y 轴的交点在原点的下方,∴c <0.故②正确;∵4a -b =0,∴b =4a.∵当x =-3时,y =9a -3b +c =9a -12a +c =-3a +c>0,故③正确;∵4a -b =0,∴b =4a ,∴at 2+bt -(4a -2b)=at 2+4at -(4a -2×4a)=at 2+4at +4a =a(t 2+4t +4)=a(t +2)2.∵t 为实数,a <0,∴a(t +2)2≤0,∴at 2+bt -(4a -2b)≤0,∴at 2+bt≤4a-2b ,即4a -2b≥at 2+bt ,∴④错误;∵点⎝ ⎛⎭⎪⎫-92,y 1,⎝ ⎛⎭⎪⎫-52,y 2,⎝ ⎛⎭⎪⎫-12,y 3是该抛物线上的点,∴将它们描在图象上可得由图象可知:y 1<y 3<y 2,故⑤错误. 综上所述,正确的有3个.故选B. 9.[答案] -1<a <0[解析] ∵抛物线开口向下,∴a <0. ∵函数图象过点(0,1),∴c =1. ∵函数图象过点(1,0),∴a +b +c =0, ∴b =-(a +c)=-(a +1).由题意知,当x =-1时,应有y >0, ∴a -b +c >0, ∴a +(a +1)+1>0, ∴a >-1,∴a 的取值范围是-1<a <0. 10.[答案] ②⑤[解析] ①根据函数图象的开口方向、对称轴、与y 轴交点可知,a <0,b >0,c >0,故abc <0;②根据函数图象的顶点坐标可知,方程ax 2+bx +c =3有两个相等的实数根,即x 1=x 2=1;③根据抛物线的对称性可知,抛物线与x 轴的另一个交点是(-2,0);④根据函数图象,当1<x <4时,有y 2<y 1;⑤当x =1时,y =a +b +c =3≥x(ax+b)+c ,∴x(ax +b)≤a+b.故正确的结论有②⑤.11.[答案] ①④[解析] 由抛物线的开口向上可知,a >0,且抛物线经过点A(-1,0),B(0,-2),对称轴在y 轴的右侧可得⎩⎪⎨⎪⎧a -b +c =0,c =-2,-b 2a >0,即a -b =2,b <0,故a =2+b <2.综合可知0<a <2;由a -b =2可得a =b +2,将其代入0<a <2中,得0<b +2<2,即-2<b <0;当|a|=|b|时,因为a >0,b <0,故有a =-b.又a -b =2,可得a =1,b =-1. 故原函数为y =x 2-x -2,当y =0时,即有x 2-x -2=0,解得x 1=-1,x 2=2, 此时x 2=2>5-1.故答案为:①④. 12.[答案] ③④[解析] ∵抛物线与x 轴的交点A ,B 的横坐标分别为-1,3,∴AB =4,对称轴为直线x =-b2a =1,∴b =-2a ,即2a +b =0.故①错误;根据图象知,当x =1时,y <0,即a +b+c <0.故②错误;∵点A 的坐标为(-1,0),∴a -b +c =0,而b =-2a ,∴a +2a +c =0,即c =-3a.故③正确;当a =12时,b =-1,c =-32,抛物线的函数表达式为y =12x 2-x -32.设对称轴直线x =1与x 轴的交点为E ,∴把x =1代入y =12x 2-x -32,得y =12-1-32=-2,∴点D 的坐标为(1,-2),∴AE =2,BE =2,DE =2,∴△ADE 和△BDE 都为等腰直角三角形,∴△ABD 为等腰直角三角形.故④正确;要使△ACB 为等腰三角形,则必须保证AB =BC =4或AB =AC =4或AC =BC ,当AB =BC =4时,∵BO =3,△BOC 为直角三角形,OC 的长为|c|,∴c 2=16-9=7.∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-7,与2a +b =0,a -b +c =0联立组成方程组,解得a =73; 当AB =AC =4时,∵AO =1,△AOC 为直角三角形,OC 的长为|c|,∴c 2=16-1=15. ∵抛物线与y 轴的交点在y 轴的负半轴上,∴c =-15,与2a +b =0,a -b +c =0联立组成方程组,解得a =153; 当AC =BC 时,在△AOC 中,AC 2=1+c 2,在△BOC 中,BC 2=c 2+9.∵AC =BC ,∴1+c 2=c 2+9,此方程无解.∴只有两个a 值满足条件.故⑤错误.综上所述,正确的结论是③④.13.解:(1)∵抛物线开口向上,∴a>0.又∵对称轴x =-b2a <0,∴a ,b 同号,即b>0.∵抛物线与y 轴交于负半轴,∴c<0. 综上所述,a>0,b>0,c<0. (2)∵OC=OA =13OB ,BC =4,∴点A 的坐标为(0,-1),点B 的坐标为(-3,0),点C 的坐标为(1,0).把A ,B ,C 三点的坐标分别代入y =ax 2+bx +c 中,可得⎩⎨⎧-1=c ,0=9a -3b +c ,0=a +b +c ,解得⎩⎪⎨⎪⎧a =13,b =23,c =-1,∴该二次函数的表达式是y =13x 2+23x -1.14.解:∵a>0,b <0,c <0,∴b 2-4ac >0, ∴这个函数图象与x 轴有两个交点.设这个函数图象与x 轴的交点坐标为(x 1,0),(x 2,0). ∵x 1·x 2=ca ,a >0,c <0,∴x 1·x 2<0,∴这个函数图象与x 轴有两个交点,一个交点在x 轴的正半轴上,另一个交点在x 轴的负半轴上.。

二次函数在实际生活中应用 2017

二次函数在实际生活中应用 2017

三、解答题1. (2017四川成都,26.8分) 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间1y (单位:分钟)是关于x 的一次函数, 其关系如下表: 地铁站ABCDEx (千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间. 解:(1)设乘坐地铁的时间1y 关于x 的一次函数是1y kx b =+, 把x =8,118y =;x =10,122y =代入,得1882210k b k b =+⎧⎨=+⎩,解得22k b =⎧⎨=⎩,∴1y 关于x 的函数表达式是122y x =+; (2)设骑单车的时间为y ,12y y y =+,即,22211179221178980(9)2222y x x x x x x =++-+=-+=-+, ∴当9x =时,79=2y 最小(分钟).∴李华选择从B 地铁口出站,骑单车回家的最短时间为792分钟.2. (2017浙江金华,21,8分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O 点上正方1m 的P 处发出一球,羽毛球飞行的高度y (m)与水平距离x (m)之间满足函数表达式y =a (x -4)2+h .已知点O 与球网的水平距离为5m ,球网的高度为1.55m .(1)当a =-241时,①求h 的值.②通过计算判断此球能否过网. (2)若甲发球过网后,羽毛球飞行到点O 的水平距离为7m ,离地面的高度为512m 的Q 处时,乙扣球成功,求a 的值.思路分析:(1)①把(0,1),a =-241代入y =a (x -4)2+h 即可求得h 的值;②把x =5代入y =a (x -4)2+h2+∴3.可建立每天的总利润为W (元)与每千克售价x (元)之间的函数表达式;(3)用配方法把(2)中的二次函数化为顶点形式,根据二次函数的性质结合自变量的取值范围可得出函数的变化情况和最值.解:(1)根据题意,设y kx b =+,其中k ,b 为待定的常数,由表中的数据得:501006080k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩. 所以2200(4080).y x x =-+≤≤(2)根据题意得:2(40)(2200)(40)2280800(4080)W y x x x x x x =⋅-=-+-=-+-≤≤(3)由(2)可知:22(70)1800,W x =--+所以当售价x 在满足4070x ≤≤的范围内,利润W 随着x 的增大而增大;当售价在满足7080x <≤的范围内,利润W 随着x 的增大而减小。

(word版)初三数学二次函数专题训练(含答案),文档

(word版)初三数学二次函数专题训练(含答案),文档

二次函数专题训练〔含答案〕一、填空题1.把抛物线y1x2向左平移2个单位得抛物线,接着再向下平移3个2单位,得抛物线.2 .函数y2x2x图象的对称轴是,最大值是.3 .正方形边长为3,如果边长增加x面积就增加y,那么y与x之间的函数关系是.4.二次函数y2x28x 6,通过配方化为y a(x h)2k的形为.5.二次函数y ax2c〔c不为零〕,当x取x,x〔x≠x〕时,函数值相等,那么1212x1与x2的关系是.6.抛物线y ax2bx c当b=0时,对称轴是,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在y轴侧.7.抛物线y 2(x1)23开口,对称轴是,顶点坐标是.如果y随x的增大而减小,那么x的取值范围是.8 .假设a0,那么函数y2x2ax5图象的顶点在第象限;当x a时,函4数值随x的增大而.二次函数9.口抛物线y ax2bx c〔a≠0〕当a0时,图象的开口a0时,图象的开,顶点坐标是.y1(x h)2,开口,顶点坐标是,对称轴2是.11.二次函数y3(x)2()的图象的顶点坐标是〔1,-2〕.12.y1(x1)22,当x时,函数值随x的增大而减小.313.直线y2x1与抛物线y5x2k交点的横坐标为2,那么k=,交点坐标为.14.用配方法将二次函数y x22x化成y a(xh)2k的形式是. 315.如果二次函数yx26x m的最小值是1,那么m的值是.二、选择题:16.在抛物线y2x23x1上的点是〔〕1A.〔0,-1〕B.1,0 C.〔-1,5〕D.〔3,4〕217.直线y5x2与抛物线yx21x的交点个数是〔〕22个个个 D.互相重合的两个18.关于抛物线y ax2bx c〔a≠0〕,下面几点结论中,正确的有〔〕①当a0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当0时,情况相反.②抛物线的最高点或最低点都是指抛物线的顶点.③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④一元二次方程ax2bx c 0〔a≠0〕的根,就是抛物线y ax2bx c与x轴交点的横坐标.A.①②③④B.①②③C.①②D.①19.二次函数y=(x+1)(x-3),那么图象的对称轴是〔〕A.x=1B.x=-2C.x=3D.x=-320.如果一次函数yax b的图象如图代13-3-12中A所示,那么二次函yax2bx-3的大致图象是〔〕图代13-2-1221.假设抛物线y ax2bxc的对称轴是x 2,那么ab〔〕A.2B.11D.2422.假设函数y a1,-2〕,那么抛物线的图象经过点〔xA.质说得全对的是〔〕开口向下,对称轴在y轴右侧,图象与正半开口向下,对称轴在y轴左侧,图象与正半开口向上,对称轴在y轴左侧,图象与负半开口向下,对称轴在y轴右侧,图象与负半y ax2(a 1)x a3的性轴相交轴相交轴相交轴相交23.二次函数y x2bxc中,如果b+c=0,那么那时图象经过的点是〔〕A.(-1,-1)B.(1,1)C.(1,-1)D.〔-1,1〕224.函数y ax2与y a〔a0〕在同一直角坐标系中的大致图象是〔〕x图代13-3-1325.如图代13-3-14,抛物线y x2bx c与y轴交于A点,与x轴正半轴交于B,C两点,且BC=3,S△ABC=6,那么b的值是〔〕A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数y ax2〔a 0〕,假设要使函数值永远小于零,那么自变量x的取值范围是〔〕A.X取任何实数00或x027.抛物线y2(x3)24向左平移1个单位,向下平移两个单位后的解析式为〔〕A.y2(x4)26B.y2(x4)22C.y2(x2)22D.y3(x3)2228.二次函数y x2ykx9k2〔k0〕图象的顶点在〔〕轴的负半轴上轴的正半轴上轴的负半轴上轴的正半轴上29.四个函数:y x,y x1,y1〔x0〕,y x2〔x0〕,其中图象经过原x点的函数有〔〕个个个个30.不管x为值何,函数y ax2bx c〔a≠0〕的值永远小于0的条件是〔〕0,00,03C.a0,00,0三、解答题31.二次函数y x22ax 2b 1和y x2(a 3)x b21的图象都经过x轴上两上不同的点M,N,求a,b的值.32.二次函数y ax2bx c的图象经过点A〔2,4〕,顶点的横坐标为1,它2的图象与x轴交于两点B〔x1,0〕,C〔x2,0〕,与y轴交于点D,且x12x2213,试问:y轴上是否存在点P,使得△POB与△DOC相似〔O为坐标原点〕?假设存在,请求出过P,B两点直线的解析式,假设不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=-21与x轴相交于点C,且∠ABC=90°,求:〔1〕直线AB的解析式;〔2〕抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线y ax23x c交x轴正方向于A,B两点,交y轴正方向于C点,过A,B,C三点做⊙D,假设⊙D与y轴相切.〔1〕求a,c满足的关系;〔2〕设∠ACB=α,求tgα;〔3〕设抛物线顶点为 P,判断直线PA与⊙O的位置关系并证明.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴,桥拱的DGD'局部为一段抛物线,顶点C的高度为8米,AD和A'D'是两侧高为米的支柱,OA和OA'为两个方向的汽车通行区,宽都为15米,线段CD和C'D'为两段对称的上桥斜坡,其坡度为1∶4.求〔1〕桥拱DGD'所在抛物线的解析式及CC'的长;〔2〕BE和B'E'为支撑斜坡的立柱,其高都为4米,相应的AB和A'B'为两个方向的行人及非机动车通行区,试求AB和A'B'的宽;〔3〕按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于米,车载大型设备的顶部与地面的距离均为7米,它能否从OA〔或OA'〕区域平安通过?请说明理由.4图代13-3-1736.:抛物线yx 2 (m 4)x m 2与x 轴交于两点A(a,0),B(b,0)〔ab 〕.O为坐标原点,分别以OA ,OB 为直径作⊙O 和⊙O 在y 轴的哪一侧?简要说明理由,并12指出两圆的位置关系.37.如果抛物线yx 2 2(m 1)x m 1与x 轴都交于A ,B 两点,且A 点在x 轴( 的正半轴上,B 点在x 同的负半轴上, OA 的长是a ,OB 的长是b.1〕求m 的取值范围;2〕假设a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;〔3〕 设〔2〕中的抛物线与 y 轴交于点 C ,抛物线的顶点是 M ,问:抛物线上是否存 在点P ,使△PAB 的面积等于△BCM 面积的8倍?假设存在,求出 P 点的坐标;假设不存在,请说明理由.38.:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点 P ,使是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-181〕假设AE=2,求AD 的长.〔2〕当点A 在EP 上移动〔点A 不与点E 重合〕时,①是否总有ADED?试证明AH FH你的结论;②设 ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.39.二次函数yx2(m24m5)x2(m24m9)的图象与x 轴的交点为2240. A ,B 〔点A 在点B 右边〕,与y 轴的交点为 C.1〕假设△ABC 为Rt △,求m 的值;2〕在△ABC 中,假设AC=BC ,求∠ACB 的正弦值;〔3〕设△ABC 的面积为 S ,求当m 为何值时,S 有最小值,并求这个最小值 .如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B ,满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.5图代13-3-191〕求⊙C 的圆心坐标.2〕过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式.〔3〕抛物线yax 2bx c 〔a ≠0〕的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式.41.直线y1x 和yx m ,二次函数yx 2pxq 图象的顶点为M.21x 与y〔1〕假设M 恰在直线yx m 的交点处,试证明:无论m 取何实数值,2二次函数yx 2 pxq 的图象与直线 y xm 总有两个不同的交点.〔2〕在〔1〕的条件下,假设直线y x m 过点D 〔0,-3〕,求二次函数yx 2pxq 的表达式,并作出其大致图象.图代13-3-20〔3〕 在〔2〕的条件下,假设二次函数 y x 2 pxq 的图象与y 轴交于点C ,与x同的左交点为A ,试在直线y1x 上求异于M 点P ,使P 在△CMA 的外接圆上.242.如图代 13-3-20,抛物线yx 2 ax b 与x 轴从左至右交于A ,B 两点,( 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°.1〕求点C 的坐标;2〕求抛物线的解析式;3〕假设抛物线的顶点为P ,求四边形ABPC 的面积.6参 考 答 案动脑动手设每件提高x 元〔0≤x ≤10〕,即每件可获利润〔2+x 〕元,那么每天可销售〔100-10x 〕件,设每天所获利润为y 元,依题意,得y (2x)(10010x)10x 2 80x 20010(x4)2 360.∴当x=4时〔0≤x ≤10〕所获利润最大,即售出价为 14元,每天所赚得最大利润 360元.2.∵ymx 23m 4x 4,3∴当x=0时,y=4.当mx 23m 4x4 0,m0时m 1 3,m 24.33m即抛物线与y 轴的交点为〔0,4〕,与x 轴的交点为A 〔3,0〕,B4,0.3m1〕当AC=BC 时,43,m 4.3m4x 2 9 ∴y492〕当AC=AB 时,AO 3,OC4,AC 5.∴45 .33mm 112 .∴,m 231时,y1x 2 11x4;6当m666当m2时,y2x22x4.3333〕当AB=BC 时,44 2342,3m3m∴m8.77∴y8x244x4.721可求抛物线解析式为:y4x24,y1x211x4,y2x22x4或8x244x 96633y4.7213.〔1〕∵[(25)]24(226)m mm22m21(m2 1)20图代13-3-21∴不管m取何值,抛物线与x轴必有两个交点.令y=0,得x2(m25)x2m260(x2)(xm23)0,∴x12,x2m23.∴两交点中必有一个交点是A〔2,0〕.〔2〕由〔1〕得另一个交点B的坐标是〔m2+3,0〕.d m232m21,∵m2+100,∴d=m2+1.3〕①当d=10时,得m2=9.∴A〔2,0〕,B〔12,0〕.y x214x24(x7)225.该抛物线的对称轴是直线x=7,顶点为〔7,-25〕,∴AB的中点E〔7,0〕.过点P作PM⊥AB于点M,连结PE,那么PE 1AB5,PM2b2,ME2(7a)2,2∴(7a)2b252.①∵点PD在抛物线上,8∴b(a 7)2 25. ②解①②联合方程组,得 b 1 1,b 2 0.当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1.注:求b 的值还有其他思路,请读者探觅,写出解答过程.②△ABP 为锐角三角形时,那么-25≤b -1;△ ABP 为钝角三角形时,那么 b -1,且b ≠0.同步题库一、 填空题1.y1(x2)2,y1(x 2)23;2.x1,1;3.y(x3)29;4.224 8y2(x2)22;5. 互为相反数;轴,左,右;7. 下,x=-1,(-1,-3) ,x-1;8.四,增大;9.向上,向下,b ,4ac b 2 ,xb ; 10.向下,〔h,0〕,x=h ;2a4a2a1 2,-2;-1;,〔2,3〕;14.yx13;15.10.9二、选择题 28. C三、解答题解法一:依题意,设M 〔x 1,0〕,N 〔x 2,0〕,且x 1≠x 2,那么x 1,x 2为方程x 2+2ax-2b+1=0的两个实数根,∴x 1 x 22a ,x 1·x 22b1. ∵x 1,x 2又是方程x 2 (a3)xb 21 0的两个实数根,∴ x1+x 2=a-3,x 1·x 2=1-b 2.∴2a a 3,2b 1 1 b 2.解得a 1, 或a 1,b 0;b2.当a=1,b=0 时,二次函数的图象与x 轴只有一个交点,a=1,b=0舍去.当a=1;b=2时,二次函数y x 2 2x 3和yx 22x 3符合题意.∴a=1,b=2.解法二:∵二次函数yx 22ax 2b 1的图象对称轴为x a ,9二次函数 yx 2 (a 3)x b 21的图象的对称轴为 xa3,2又两个二次函数图象都经过 x 轴上两个不同的点 M ,N ,∴两个二次函数图象的对称轴为同一直线 .∴a3.a2解得a1.∴两个二次函数分别为yx 2 2x 2b1和yx 2 2xb 21.依题意,令y=0,得x 2 2x 2b 1 0,x 2 2xb 2 10.①+②得b 22b 0. 解得b 1 0,b 22.∴a 1,a 1,b 0;或2.b当a=1,b=0时,二次函数的图象与 x 轴只有一个交点,∴a=1,b=0舍去.当a=1,b=2时,二次函数为y x 22x 3和yx 2 2x3符合题意.∴a=1,b=2.32.解:∵y ax 2 bx c 的图象与x 轴交于点B 〔x 1,0〕,C 〔x 2,0〕,∴x 1 x 2b,x 1x 2c .aa又∵x 12 x 22 13即(x 1x 2)2 2x 1x 2 13,∴( b )22 c 13 .①aa又由y 的图象过点A 〔2,4〕,顶点横坐标为1,那么有4a+2b+c=42,②b 1③2a.2解由①②③组成的方程组得a=-1,b=1,c=6.10∴ y=-x 2+x+6.与x 轴交点坐标为〔-2,0〕,〔3,0〕.与y 轴交点D 坐标为〔0,6〕.设y 轴上存在点 P ,使得△POB ∽△DOC ,那么有 〔1〕 当B 〔-2,0〕,C 〔3,0〕,D 〔0,6〕时,有OB OP ,OB 2,OC 3,OD6.OCOD∴OP=4,即点P 坐标为〔0,4〕或〔0,-4〕.当P 点坐标为〔0,4〕时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 OBOP,OB2,OD6,OC3. OD OC ∴OP=1,这时P 点坐标为〔0,1〕或〔0,-1〕.当P 点坐标为〔0,1〕时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得1k.2∴y1x1.2当P 点坐标为〔0,-1〕时,可设过P ,B 两点直线的解析式为y=kx-1,有0=-2k-1 ,得k 1 .2∴y1x1.22〕当B 〔3,0〕,C 〔-2,0〕,D 〔0,6〕时,同理可得y=-3x+9,或 y=3x-9, 或y1x 1,3 或y11. x 3解:〔1〕在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为〔4,0〕. ∴ ∠ABC=90°. ∵△CBD ∽△BAO ,∴OB OA2OCOB ,即OB=OA ·OC.11又∵CO=1,OA=4,∴OB2=1×4=4.∴OB=2〔OB=-2舍去〕∴B点坐标为〔0,2〕.将点B〔0,2〕的坐标代入y=k(x-4)中,得k 1.1x 2∴直线的解析式为:y2.2〔2〕解法一:设抛物线的解析式为y a(x1)2h,函数图象过A〔4,0〕,B〔0,2〕,得25a h0,a h 2.解得a1,h25. 1212∴抛物线的解析式为:y1(x1)225. 1212解法二:设抛物线的解析式为:y ax2bx c,又设点A〔4,0〕关于x=-1的对称是D.∵CA=1+4=5,∴CD=5.∴OD=6.∴D点坐标为〔-6,0〕.将点A〔4,0〕,B〔0,2〕,D〔-6,0〕代入抛物线方程,得16a4b c0,c2,36a6b c0.解得a 1,b1,c2. 126∴抛物线的解析式为:y1x21x2.12634.解:〔1〕A,B的横坐标是方程ax23x c 0的两根,设为x1,x2〔x2x1〕,C的纵坐标是C.又∵y轴与⊙O相切,∴OA2·OB=OC.∴x1·x2=c2.又由方程ax23x c0知x1x2c,a12∴c2c,即ac=1.a〔2〕连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴AE1AB .1 2ACBADBADE.2ax ,∵0,x21∴ABx 2x 1 9 4ac5a.aAE5.2a又ED=OC=c ,∴tg AE 5 .DE23〕设∠PAB=β,∵P 点的坐标为3, 5 ,又∵a0,2a 4a∴在Rt △PAE 中,PE5.4a∴PE5tg.AE2∴tgβ=tg α.∴β=α.∴∠PAE=∠ADE.∵∠ADE+∠DAE=90°PA 和⊙D 相切.解:〔1〕设DGD '所在的抛物线的解析式为 y ax 2 c ,由题意得 G 〔0,8〕,D 〔15,〕.138c,解得a1 , ∴9025ac.c 8.∴DGD '所在的抛物线的解析式为 y1x 2 8.∵AD1且AD=5.5,90AC4∴×4=22(米).∴cc2OC 2 (OA AC) 2(1522〕=74 〔米〕.答:cc '的长为 74米. 〔2〕∵EB 1,BE 4,BC=16.BC 4∴∴AB=AC-BC=22-16=6〔米〕.答:AB 和A 'B '的宽都是 6米.〔3〕在y1x 2 8中,当x=4时,901737y16 8 .90 45∵37 (7 0.4) 1970.4545∴该大型货车可以从 OA 〔OA '〕区域平安通过.解:〔1〕∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即 a0,b0.∴方程x 2 (m 4)x m 2 0的两个根a ,b 异号.ab=m+20,∴m-2.〔2〕当m-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形.根据题意,计算得S四边形POOQ1b 2〔或1a 2或1〕.1 22 2m=-4时,四边形POOQ 是矩形.1 2根据题意,计算得S四边形POOQ1b 2〔或1a 2或1〕.1 222〔3〕∵(m 4)2 4(m 2)(m2)240∴方程x 2 (m 4)x m 2 0有两个不相等的实数根.∵ m-2,∴a b m4 0,ab m 20.14∴a0,b0.∴⊙O1与⊙O2都在y轴右侧,并且两圆内切.解:〔1〕设A,B两点的坐标分别是〔x1,0〕、〔x2,0〕,∵A,B两点在原点的两侧,∴x1x20,即-〔m+1〕0,解得m-1.∵[2(m1)]24(1)(m1)4m24m84(m1)272当m-1时,0,∴m的取值范围是m-1.2〕∵a∶b=3∶1,设a=3k,b=k〔k0〕,那么x1=3k,x2=-k,∴3k k2(m1),3k(k)(m1).解得m12,m21 .143∵m x2时,x1〔不合题意,舍去〕,33∴m=2∴抛物线的解析式是y x2x3.〔3〕易求抛物线y x22x3与x轴的两个交点坐标是A〔3,0〕,B〔-1,0〕与y轴交点坐标是C〔0,3〕,顶点坐标是M〔1,4〕.设直线BM的解析式为y px q,4 p1 q,那么0p(1)q.p2,解得q 2.∴直线BM的解析式是y=2x+2.设直线BM与y轴交于N,那么N点坐标是〔0,2〕,∴SBCM SBCNSMNC111111221.设P点坐标是〔x,y〕,15∵SABP8S BCM,∴1AB y81. 2即14y8.2∴y4.∴y4.当y=4时,P点与M点重合,即P〔1,4〕,当y=-4时,-4=-x2+2x+3,解得x122.∴满足条件的P点存在.P点坐标是〔1,4〕,(122,4),(122,4).38.〔1〕解:∵AD切⊙O于D,AE=2,EB=6,∴AD2=AE·AB=2×〔2+6〕=16.∴AD=4.图代13-2-23〔2〕①无论点A在EP上怎么移动〔点A不与点E重合〕,总有证法一:连结DB,交FH于G,∵AH是⊙O的切线,∴∠HDB=∠DEB.又∵BH⊥AH,BE为直径,∴∠BDE=90°AD ED.AH FH ∴有∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB和△DHB中,DF⊥AB,∠DFB=∠DHB=90°,DB=DB,∠DBE=∠DBH,∴△DFB∽△DHB.BH=BF,∴△BHF是等腰三角形.BG⊥FH,即BD⊥FH.16∴ED∥FH,∴AD ED.AH FH图代13-3-24证法二:连结DB,∵AH是⊙O的切线,∴∠HDB=∠DEF.又∵DF⊥AB,BH⊥DH,∴∠EDF=∠DBH.以BD为直径作一个圆,那么此圆必过F,H两点,∴∠DBH=∠DFH,∴∠EDF=∠DFH.∴ED∥FH.∴AD EDAH .FH ②∵ED=x,BH=,BH=y,BE=6,BF=BH,∴EF=6y.又∵DF是Rt△BDE斜边上的高,∴∴△DFE∽△BDE,EFED,即ED2EFEB.ED EB∴x26(6y),即y1x26.6∵点A不与点E重合,∴ED=x0.A从E向左移动,ED逐渐增大,当A和P重合时,ED最大,这时连结OD,那么OD⊥PH.∴OD∥BH.又POPE EO639,PB12,OD PO,BH ODPB4,BH PB PO ∴BF BH4,EF EB BF642,2由ED=EF·EB得x2 2 612,x0,∴x23.∴0x≤23.〔或由BH=4=y,代入y1x26中,得x23〕617故所求函数关系式为y1 x2 6〔0x ≤2 3〕.639.解:∵yx2m 4m5 x 2m24m 9(x2)[xm24m9],222∴可得A(2,0),Bm 24m 9 ,0,C0,2m 24m9 .22〔1〕∵△ABC 为直角三角形,∴OC 2OB ,AO24m9即4m24m92m,22化得(m 2)20.∴m=2.〔2〕∵AC=BC ,CO ⊥AB ,∴AO=BO ,即m 24m 9 2 .2∴OC2m 24m94.∴ACBC5.22过A 作AD ⊥BC ,垂足为D ,∴ AB·OC=BC ·AD.∴8AD.58∴sin ACBAD 5 4 .AC2 55图代13-3-25〔3〕S ABC1AB CO21m 24m 9 22m 24m9222(u2)u(u1)21.∵u m 2 4m9 1 ,2 2181,即m5∴当u2时,S 有最小值,最小值为.24解:〔1〕∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为32,0,B 点坐标为0,24.55∴⊙C 的圆心C 的坐标为 16 ,12.52〕由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB,∴∠COA=∠CAO ,∠COB=∠CBO.∴ Rt△AOB ∽Rt △OCE ∽Rt △FCO.∴OE OC ,OFOC .AB OA AB OB∴OE5,OF20.3E 点坐标为〔 5,0〕,F 点坐标为0,20,3∴切线EF 解析式为y4x 20 .3 3〔3〕①当抛物线开口向下时,由题意,得抛物线顶点坐标为16,12 4,可得5 5b16, 5,2a 5 a324ac b 2 324ab1,524.24 cc. 55∴y5x 2 x 24 .32 5②当抛物线开口向上时 ,顶点坐标为16,124,得5 519b 16,5,2a 5a 4acb 28, b8 4,4a52424c.c .5541. ∴综合上述,抛物线解析式为〔1〕证明:由y5 x 2 4x 24 .8 5y5x 2 x24或y 5x 2 4x 24.325 85y1x, 2 yxm,有1xxm ,3221∴x mxmy m .2,3 , 32 1∴交点 M()m,m332m 21m此时二次函数为yx3 3x24mx 4m 2 1m .y ,有 3 93由②③联立,消去x24m1x4m 22m0.3934m1 244m 22m39316m 2 8m116m 28m9 3 931 0.∴无论m 为何实数值,二次函数y x 2pxq 的图象与直线yxm 总有两个不同的交点.20图代13-3-26〔2〕解:∵直线y=-x+m过点D〔0,-3〕,∴-3=0+m,∴m=-3.∴M〔-2,-1〕.∴二次函数为y(x2)21x24x3(x3)(x1).图象如图代13-3-26.3〕解:由勾股定理,可知△CMA为Rt△,且∠CMA=Rt∠,∴MC为△CMA外接圆直径.∵P在y 1x上,可设Pn,1n,由MC为△CMA外接圆的直径,P在这个圆上,22∴∠CPM=Rt∠.过P分别作PN⊥y,轴于N,PQ⊥x轴于R,过M作MS⊥y轴于S,MS的延长线与PR的延长线交于点Q.由勾股定理,有222212MP QP(n2)2n1.MQ,即MP222NC2NP231n n2.CP2220.CM而MP 2CP2CM2,21n2∴(n2)21n13n220,22即52260,n n2∴5n24n120,(5n6)(n2)0.21∴n 16,n 22.5 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴n 6,5此时1 32n.5∴P 点坐标为6 ,3.5解:〔1〕根据题意,设点A 〔x 1,0〕、点〔x 2,0〕,且C 〔0,b 〕,x 10,x 20,b0,∵x 1,x 2是方程 x 2 axb0的两根, ∴x 1 x 2a,x 1x 2b .2在Rt △ABC 中,OC ⊥AB ,∴OC=OA ·OB.∵ OA=-x∴ bb0,∴b=1,∴C 〔0,1〕.〔2〕在Rt △AOC 的Rt △BOC 中,1,OB=x 2,2=-x 1·x 2=b.OCOC 1 1 x 1x 2 a tgtgx 1x 2x 1x 22.OAOBb∴a2.∴抛物线解析式为yx 2 2x1.图代13-3-27〔3〕∵y x 2 2x1,∴顶点P 的坐标为〔1,2〕,当x 2 2x 1 0时,x12. ∴A(12,0),B(12,0).延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1, ∴点D 坐标为〔-1 ,0〕. ∴S 四边形ABPC S DPB S DCA221DB y p 1AD yc221(22)21(22)1 2232(平方单位).223。

专题训练(二)确定二次函数的表达式常见的五种方法.docx

专题训练(二)确定二次函数的表达式常见的五种方法.docx

专题训练(二)确定二次函数的表达式常见的五种方法>方法一利用一般式求二次函数表达式1•已知抛物线过点A(2,0),B(—l,0),与y轴交于点C,且OC=2.则这条抛物线的表达式为()A• y = x2—x—2B• y = —X2+X+2C - y=x? —x—2 或y= —x?+x + 2D• y=—x'—x—2 或y=x? + x+22•若二次函数y = x?+bx+c的图象经过点(一4,0),(2,6),则这个二次函数的表达式为 _____________ •3•—个二次函数,当自变量x= —1时,函数值y = 2;当x=0时,y= —1;当x=l时,y=—2.那么这个二次函数的表达式为______________ .4• [2016-安庆外国语学校月考]如图2-ZT-1,在平面直角坐标系中,抛物线y=ax? + bx+c 经过A(-2,-4)> 0(0,0),B(2,0)三点.⑴求抛物线y=ax?+bx+c的表达式;(2)若M是该抛物线对称轴上的一点,求AM + OM的最小值.o V/\图2-ZT-1>方法二利用顶点式求二次函数表达式5•已知二次函数y=ax2+bx+c,当x=l时,有最大值8,其图象的形状、开口方向与抛物线y=—2x?相同,则这个二次函数的表达式是()A• y=—2x2—x+3 B. y=—2x2+4C・y= —2x?+4x + 8 D. y=-2x2+4x+66•已知y是x的二次函数,根据表中的自变量x与函数y的部分对应值,可判断此函数表达式为()A.y = xB. y=—x237.某广场中心有高低不同的各种喷泉,其中一支高度为㊁米的喷水管喷水的最大高度为4米,此时喷水的水平距离为+米,在如图2-ZT-2所示的坐标系屮,这支喷泉喷水轨迹的函数表达式是____________ .图2-ZT-28•已知抛物线y]=ax2+bx+c的顶点坐标是(1,4),它与直线y2=x+l的一个交点的横坐标为2.(1)求抛物线的函数表达式;(2)在如图2-ZT-3所示的平面直角坐标系中画出抛物线yj=ax2+bx+c及直线y2 = x + 1,并根据图象,直接写出使得yi^y2成立的x的取值范闱.图2-ZT-3>方法三利用交点式求二次函数表达式259•若抛物线的最高点的纵坐标是手,且过点(一1,0),(4,0),则该抛物线的表达式为()A• y=—X2+3X+4B. y=—X2—3X+4C • y = x‘一3x—4 D. y=x? —3x+410•抛物线y=ax2+bx+c与x轴的两个交点坐标为(一1,0),(3,0),其形状及开口方向与抛物线y=—2/相同,则抛物线的函数表达式为()A• y=—2x‘一x + 3 B. y=—2x2+4x + 5C - y=—2X2+4X +8D. y = —2X2+4X+611・[2016揪阳实验中学期中]已知抛物线与x 轴交于A (1 ‘ 0),B (-4 ‘ 0)两点‘与y 轴交于点C ,且AB = BC ,求此抛物线对应的函数表达式.>方法四利用平移式求二次函数表达式12 • [2017-绍兴]矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1). 一张透明 纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达 式为y=x?,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为()A - y=x 2 + 8x+ 14 B. y=x 2 —8x+14C • y=x 2+4x + 3 D. y=x 2—4x+313. [2017-盐城]如图2-ZT-4,将函数y =鬆一2)2+1的图象沿y 轴向上平移得到一 条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点Z ,B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图彖的函数表达式是()A • y=*(x —2)2—2 B. y=|(x-2)2 + 7图 2-ZT-414 •如果将抛物线y = 2x 2+bx+c 先向左平移3个单位,再向下平移2个单位,得到了 抛物线 y=2x?—4x+3.⑴试确定b ,c 的值;⑵求出抛物线y=2x?+bx+c 的顶点坐标和对称轴.>方法五 利用对称轴求二次函数表达式15 •如图2-ZT-5 »已知抛物线y = — x?+bx+c 的对称轴为直线x= 1,且与x 轴的一c . y=|(x —2)2—5个交点坐标为(3 ‘ 0),那么它对应的函数表达式是__________y:X=1/f v/ 01图2-ZT-516.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图2-ZT-6,二次函数y, = x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”.(1)直接写出两条“关于y轴对称二次函数”图象所具有的特点.(2)二次函数y=2(x+2)?+l的“关于y轴对称二次函数”表达式为________________ ;二次函数y = a(x—hF+k的“关于y轴对称二次函数”表达式为 _____________ ;(3)平面直角坐标系屮,记“关于y轴对称二次函数”的图彖与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C,得到一个面积为24的菱形‘教师详解详析1 •[解析]C 由题意可知点C 的坐标是(0 ' 2)或(0 ‘ 一2).设抛物线的表达式为r4a+2b+c=0 ‘r a= — \+bx+c.由抛物线经过点(2,0),(—1,0),(0,2),得v a-b+c=0, 解得< b=l , .c=2,lc=2,物线的表达式是j=-?+x+2.同理,由抛物线经过点(2,0),(—1,0),(0,— 2)求得该抛物线的表达式为y=x 2-x~2.故这条抛物线的表达式为),=—d+x+2或y=F —x —2.2 •[答案]y=?+3x-4(16一4Z?+c=0, (b=3,[解析]将点(—4、0)、(2 ‘ 6)代入y=,+bx+c 、得] 解得]l4+2b+c=6, lc=—4,・・・这个二次函数的表达式为y=/ + 3兀一4.3 • y=x~2x — 14a —2b+c=—4,4a+2b+c=0, c=0,r 1a=~2 '解这个方程组,得<b=},、c=0,所以抛物线的表达式为 尸~y+x.(2)由 y= —|x 2+x= —|(x —1)2+| »平分线段 OB 、:・OM=BM » :.AM+OM=AM+BM.连接4B 交直线x=\于点则此时AM+OM 的值最小.过点A 作AN 丄x 轴于点N , 在RtAABTV 中,AB=y ]AN 2+BN 2=^/42+42=4 ^2,因此 AM+OM 的最小值为 4 迈.5 • D6 •[解析]D J 函数图象过点(0,为和(2,弓),・・・函数图象的对称轴为直线x=\,故该 函数图彖的顶点坐标为(1,2).设函数表达式为.尸吩一1F+2.把(一1,— 1)代入,得4a+2 =—1,解得d=—扌,・•・此函数表达式为y=— |(x —1)2+2.7 •[答案]J =-10(X -|)2+4I 解析]设喷泉喷水轨迹的函数表达式为y=a (x —护+4.将点(0,为代入,得| +4,解得a=-l0,故喷泉喷水轨迹的函数表达式为y= —10(x —护+4.8・解:(I );•抛物线与直线y 2=x+\的一个交点的横坐标为2,・••交点的纵坐标为2+1{则抛可得抛物线的对称轴为直线x=\,并冃.对称轴垂直=3即此交点的坐标为(2,3). 设抛物线的表达式为yi=tz(x—1)2+4. 把(2 » 3)代入,得3=d(2—1)'+4,解得a= — 1,抛物线的表达式为yi = —(X— l)2+4=—x24-Zr+3.(2)令yi=0,即一d+2兀+3=0,解得%i=3 »x2= —1,二抛物线与兀轴的交点坐标为(3,0)和(一1,0).在平面直角坐标系中画出抛物线与直线,如图所示:根据图象、iij知使得yi$y2成立的x的取值氾圉为一1W X W2.1 39 •[解析]A由抛物线的轴对称性可知该抛物线的对称轴为直线1 +4)=^,故该抛物线的顶点坐标为(号,乎).设该抛物线的表达式为尸心+l)(x—4).将(扌,手)代入,得晋=dg+l)(号一4)解得a= —1,故该抛物线的表达式为y=—(兀+1)(尢一4)=—,+3x+4.注意: 本题也可运用顶点式求抛物线的表达式.10•[解析]D设所求的函数表达式为X!)(x—%2)-因为抛物线y=ax2 + bx+c与兀轴的两个交点坐标为(一1,0),(3,0),所以y=a(x~3)(x+l).又因为其形状及开口方向与抛物线y=—2x1相同» 所以y= — 2(兀一3)(x+l),即y=—2x2+4x+6.11•解:由4(1,0),B(_4,0)可知AB=5,OB=4.又・:BC=AB,・・・BC=5.在RtABCO 中,寸52_42=3,・••点C的坐标为(0,3)或(0,-3).设抛物线对应的函数表达式为y=a(x— 1)(兀+4).将点(0 ' 3)代入‘得3=a(0-1)(0+4) >3将点(0,一3)代入,得一3=a(0-l)(0+4),解得°=才3 3该抛物线对应的函数表达式为y=—^(x—l)(x+4)或),=才(兀一l)(x+4),即y= _討_条+3或『=条2+条_3.12 •[解析]A 根据题意可知点C的坐标为(一2,—1),故一个点由点4平移至点C,向左平移了4个单位,向下平移了2个单位.又・・•该点在点A时,抛物线的函数表达式为丿= x2,・••该点在点C时,抛物线的函数表达式为y=(兀+4)2—2=/+8兀+14.O x13•[解析]D 如图,连接AB »B r,过点4作AC丄交BE的延长线于点C,则AC=3.由于平移前后的抛物线形状相同,根据割补的思想可知阴彫部分的面积等于平行四边形ABBA的面积,:・BB‘・AC=3BB,=9,:・BB‘ =AA f=3 ‘故平移后的抛物线的表达式14•解:(1)・・了=2?一4兀+3 = 2(”一2兀+1 — 1) + 3 = 2(.丫一1)2+1,・・・将其向上平移2个单位,再向右平移3个单位可得原抛物线,即y=2(x-4)2+3,.•・),=2,—16兀+35,.*./?= —16,c=35.(2)由y=2(x~4)2+3得顶点坐标为(4,3),对称轴为直线兀=4.15・[答案]y=-?+2x+3c b[解析「・•抛物线y=—/+加+c的对称轴为直线x=l,•逬=1,解得b=2,又・・•与x轴的一个交点坐标为(3,0),・・・0=—9 + 6+c,解得c=3,故函数表达式为)=一"+2兀+3.16•解:(1)(答案不唯一)顶点关于y轴对称,对称轴关于y轴对称.c °(2)y=2(x—2)~ + 1 y=a(x+/?)~+k(3)若点A在y轴的正半轴上,如图所示:顺次连接点A,B,O,C得到一个而积为24的菱形,由BC=6,得OA = S,则点4的坐标为(0,8),点B的坐标为(一3,4).设一个抛物线的表达式为少=°(兀+3尸+4.4将点A的坐标代入,得9d+4=8,解得a=g.4 4二次函数少=刖兀+3F+4的“关于y轴对称二次函数”的表达式为〉=彳(兀一3)2+4.根据对称性,开口向下的抛物线也符合题意,则“关于),轴对称二次函数”的表达式还4 c 4 o可以为y= _§(兀+3)2_4,y=—^(x—3)^-4.综上所述,“关于y轴对称二次函数”的表达式为)=£(X+3)2+4,),=詁一3尸+4或y4 4 o=一姿+3) —4,>=一尹一3)2—4.。

二次函数应用题分类超全习题

二次函数应用题分类超全习题

二次函数应用题专项训练【题型一:抛物问题】1、飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是260 1.5s t t =-.飞机着陆后滑行秒才能停下来.2、小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示, 若命中篮圈中心,则他与篮底的距离L 是( ) A 、4.6m B 、4.5m C 、4m D 、3.5m3、某种爆竹点燃后,其上升的高度h (米)和时间t (秒)符合关系式201(02)2h t gt t υ=-<≤,其中重力加速度g 以10米/秒2计算.这种爆竹点燃后以020υ=米/秒的初速度上升,(1)这种爆竹在地面上点燃后,经过多少时间离地15米?(2)在爆竹点燃后在1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.4、如图,足球场上守门员在O 处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距O 点6米的处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C 距守门员多少米?(3)运动员乙要抢到第二个落点,他应再向前跑多少米?【题型二:拱桥问题】1、廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为211040y x =-+,为保护廊桥的安全,在该抛物线上 距水面AB 高为8米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距 离EF 是 (精确到1米).2已知主桥拱为抛物线型,在正常水位下测得主拱宽24m ,最高点离水面8m ,以水平线AB 为x 轴,AB 的中点为yOAE FB原点建立坐标系.①求此桥拱线所在抛物线的解析式.②桥边有一浮在水面部分高4m ,最宽处122m 的河鱼餐船,试探索此船能否开到桥下?说明理由3、如图所示:一座隧道的截面由抛物线和长方形组成,长方形长为8m ,宽为2m , 隧道最高点P 位于AB 的中央,距地面6m 处。

(完整版)二次函数(应用题求最值)(含答案)

(完整版)二次函数(应用题求最值)(含答案)

二次函数应用题1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.x(第13题)3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a -=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月 销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 34 5.83135 5.91637 6.08338 6.164)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

2017届中考数学专项训练二次函数及其图象含解析

2017届中考数学专项训练二次函数及其图象含解析

二次函数及其图象一、选择题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大2.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=33.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<34.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s (cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题6.二次函数y=x2+1的图象的顶点坐标是.7.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).8.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.9.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= .10.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的序号有.三、解答题(共40分)11.当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.12.已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.①当△ABC的面积为1时,求a的值.②当△ABC的面积与△ABD的面积相等时,求m的值.13.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?14.)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.二次函数及其图象参考答案与试题解析一、选择题1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:A、抛物线的开口方向向下,则a<0.故A选项错误;B、根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,所以当﹣1<x<3时,y>0.故B选项正确;C、根据图示知,该抛物线与y轴交于正半轴,则c>0.故C选项错误;D、根据图示知,当x≥1时,y随x的增大而减小,故D选项错误.故选:B.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.2.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3【考点】抛物线与x轴的交点.【分析】关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.【点评】本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.3.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】二次函数图象上点的坐标特征.【专题】压轴题.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.【点评】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.4.已知二次函数y=a(x+1)2﹣b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定【考点】二次函数的最值.【专题】压轴题;探究型.【分析】根据函数有最小值判断出a的符号,进而由最小值求出b,比较a、b可得出结论.【解答】解:∵二次函数y=a(x+1)2﹣b(a≠0)有最小值,∴抛物线开口方向向上,即a>0;又最小值为1,即﹣b=1,∴b=﹣1,∴a>b.故选A.【点评】本题考查的是二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s (cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题6.二次函数y=x2+1的图象的顶点坐标是(0,1).【考点】二次函数的性质.【分析】根据顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=x2+1的图象的顶点坐标是(0,1).故答案为:(0,1).【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.7.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1>y2(填“>”、“<”或“=”).【考点】二次函数图象上点的坐标特征.【分析】先根据二次函数的解析式得出函数图象的对称轴,再判断出两点的位置及函数的增减性,进而可得出结论.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.【点评】本题考查的是二次函数图象上点的坐标特点,根据题意判断出A、B两点的位置是解答此题的关键.8.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】二次函数的性质.【专题】压轴题.【分析】根据∠AOB=45°求出直线OA 的解析式,然后与抛物线解析式联立求出有一个公共点时的k 值,即为一个交点时的最大值,再求出抛物线经过点B 时的k 的值,即为一个交点时的最小值,然后写出k 的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA 的解析式为y=x ,联立消掉y 得,x 2﹣2x+2k=0,△=b 2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA 有一个交点,此交点的横坐标为1,∵点B 的坐标为(2,0),∴OA=2,∴点A 的坐标为(,), ∴交点在线段AO 上;当抛物线经过点B (2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x 2+k 与扇形OAB 的边界总有两个公共点,实数k 的取值范围是﹣2<k <.故答案为:﹣2<k <. 【点评】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.9.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= 9 .【考点】抛物线与x轴的交点.【分析】首先,由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c;其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,则A(﹣﹣3,n),B(﹣+3,n);最后,根据二次函数图象上点的坐标特征知n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9,所以把b2=4c代入即可求得n的值.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(m,n),B(m+6,n),∴点A、B关于直线x=﹣对称,∴A(﹣﹣3,n),B(﹣+3,n)将A点坐标代入抛物线解析式,得:n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9∵b2=4c,∴n=﹣×4c+c+9=9.故答案是:9.【点评】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1的实数),其中正确结论的序号有①③④.【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故答案为:①③④.【点评】此题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(共40分)11.当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.【考点】二次函数的最值.【专题】分类讨论.【分析】当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k表示不同类型的函数,需要分类讨论,最终确定函数的最值.【解答】解:k可取值﹣1,1,2(1)当k=1时,函数为y=﹣4x+4,是一次函数(直线),无最值;(2)当k=2时,函数为y=x2﹣4x+3,为二次函数.此函数开口向上,只有最小值而无最大值;(3)当k=﹣1时,函数为y=﹣2x2﹣4x+6,为二次函数.此函数开口向下,有最大值.因为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,则当x=﹣1时,函数有最大值为8.【点评】本题考查了二次函数的最值.需要根据k的不同取值进行分类讨论,这是容易失分的地方.12.已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.①当△ABC的面积为1时,求a的值.②当△ABC的面积与△ABD的面积相等时,求m的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把(x﹣m)看作一个整体,令y=0,利用根的判别式进行判断即可;(2)①令y=0,利用因式分解法解方程求出点A、B的坐标,然后求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解;②令x=0求出点D的坐标,然后利用三角形的面积列式计算即可得解.【解答】(1)证明:令y=0,a(x﹣m)2﹣a(x﹣m)=0,△=(﹣a)2﹣4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:①y=0,则a(x﹣m)2﹣a(x﹣m)=a(x﹣m)(x﹣m﹣1)=0,解得x1=m,x2=m+1,∴AB=(m+1)﹣m=1,y=a(x﹣m)2﹣a(x﹣m)=a(x﹣m﹣)2﹣,△ABC的面积=×1×|﹣|=1,解得a=±8;②x=0时,y=a(0﹣m)2﹣a(0﹣m)=am2+am,所以,点D的坐标为(0,am2+am),△ABD的面积=×1×|am2+am|,∵△ABC的面积与△ABD的面积相等,∴×1×|am2+am|=×1×|﹣|,整理得,m2+m﹣=0或m2+m+=0,解得m=或m=﹣.【点评】本题是对二次函数的综合考查,主要利用了根的判别式,三角形的面积,把(x﹣m)看作一个整体求解更加简便.13.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【考点】二次函数的应用.【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由总利润=销售量•每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.【点评】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式;(2)根据两点之间线段最短作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD 的值最小;(3)需要分类讨论:①当点E在线段AC上时,点F在点E上方,则F(x,x+3)和②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),然后利用二次函数图象上点的坐标特征可以求得点E的坐标;(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1.设Q(x,x+1),则P(x,﹣x2+2x+3).根据两点间的距离公式可以求得线段PQ=﹣x2+x+2;最后由图示以及三角形的面积公式知S△APC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2.设Q(x,x+1),则P(x,﹣x2+2x+3).根据图示以及三角形的面积公式知S△APC=S△APH+S直角梯形PHGC﹣S△AGC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)如图1,作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),故直线DN′的函数关系式为y=﹣x+,当M(3,m)在直线DN′上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2),∵点E在直线AC上,设E(x,x+1),①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E的坐标为(0,1)、(,)或(,);(4)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3)∴PQ=(﹣x2+2x+3)﹣(x+1)=﹣x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ•AG=(﹣x2+x+2)×3=﹣(x﹣)2+∴面积的最大值为.方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图3,设Q(x,x+1),则P(x,﹣x2+2x+3)又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3=﹣x2+x+3=﹣(x﹣)2+∴△APC的面积的最大值为.【点评】本题考查了二次函数综合题.解答(3)题时,要对点E所在的位置进行分类讨论,以防漏解.。

2017年试题二次函数应用

2017年试题二次函数应用

一.解答题(共39小题)1.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.2.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?3.如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.4.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.(1)求y与x的函数关系式;(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.12.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.13.随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少?16.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx (a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边OA的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?5.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?6.某网络经销商销售一款夏季时装,进价每件60元,售价每件130元,每天销售30件,每销售一件需缴纳网络平台管理费4元.未来30天,这款时装将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该时装单价每降1元,每天销售量增加5件,设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式;(2)在这30天内,哪一天的利润是6300元?(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.7.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?8.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)9.青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数10 0日总收入(元)24000 40000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?10.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?11.夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W 元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.14.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?15.如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头 1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).17.荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.18.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.时间t(天)0 5 10 15 20 25 300 25 40 45 40 25 0日销售量y1(百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.19.铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x天(1≤x≤15且x为整数)时每盒成本为p元,已知p与x之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y盒,y与x之间的关系如下表所示:第x天1≤x≤6 6<x≤15每天的销售量y/盒10 x+6(1)求p与x的函数关系式;(2)若每天的销售利润为w元,求w与x的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.20.小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售单价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x;②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.(1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售单价﹣平均成本)21.今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=﹣x+m(m为常数).(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围.(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价﹣成本)×月生产量﹣工人月最低工资].22.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=﹣0.01x2﹣20x+30000(0≤x≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.23.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)24.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种..果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?25.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?26.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70销售量y(千克)100 80 60(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?27.某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x 与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.月份n(月) 1 2成本y(万元/件)11 12需求量x(件/月)120 100(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.28.为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;②当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?29.宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y件,y与x满足如下关系:y=.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x 的函数关系式,并求出第几天时,利润最大,最大利润是多少?30.某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如表:销售第x天第1天第2天第3天第4天 (30)销售单价m(元/件)49 48 47 46 (20)日销售量n(件)45 50 55 60 (190)(1)观察表中数据,分别直接写出m与x,n与x的函数关系式:,;(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?31.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?32.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v(千米/小时)… 5 10 20 32 40 48 …流量q(辆/小时)…550 1000 1600 1792 1600 1152 …(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只填上正确答案的序号)①q=90v+100;②q=;③q=﹣2v2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.33.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?34.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?35.“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数关系:y=﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).(1)试求w与x之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?36.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.37.2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮.某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A 种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价x(元)之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?38.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<9 9≤x<15 x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x 120﹣x储存和损耗费用(元)40+3x 3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?39.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)30 35 40 45 50日销售量p(千克)600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)。

知识点20 二次函数几何方面的应用2017(选择题)

知识点20  二次函数几何方面的应用2017(选择题)
104.
105.
106.
107.
108.
109.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
1.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
44.
43.
44.
45.
46.
47.
48.
49.
50.
51.
55.
53.
55.
一、选择题
1.8.(2017江苏扬州,,3分)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数 的图像与阴影部分(含边界)一定有公共点,则实数 的取值范围是
A. B.
C. D.
【答案】C
【解析】由二次函数系数a、b、c的几何意义可知该函数的开口方向和开口大小是确定不变的,与y轴的交点(0,1)也是确定不变的。唯一变化的是“b”,也就是说对称轴是变化的。若抛物线经过点(0,1)和C(2,1)这组对称点,可知其对称轴是直线 ,即b=-2时是符合题意的,所以可以排除B、D两个选择支,如果将该抛物线向右平移,此时抛物线与阴影部分就没有公共点了,向左平移才能符合题意,所以 ,即 。
55.
56.
57.
58.
59.
60.
61.
66.
63.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017二次函数应用题专题训练1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.(1)当每吨售价为240元时,计算此时的月销售量;(2)求y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.2.(2010德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.(2010恩施)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇 远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克 香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香 菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?4(2010河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a--.5.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?6.(2010贵阳)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是.(3分)(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;(4分)(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?(3分)7.(2010荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式; (2)求月产量x 的范围;(3)当月产量x (套)为多少时, 这种设备的利润W (万元)最大?最大利润是多少?8.(2010青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)9、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?10、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?11. (2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

(1)请建立销售价格y (元)与周次x 之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(812+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? 12、(2009年茂名市)茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式(注:利润=总收入-总支出);(6分)(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?(4分)13.(2009年黄石市)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.14.宏志中学九年级300名同学毕业前夕给灾区90名同学捐赠了一批学习用品(书包和文具盒),由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每个同学都只参加一件学习用品的购买),书包和文具盒的单价分别是54元和12元.(1)若有x 名同学参加购买书包,试求出购买学习用品的总件数y 与x 之间的函数关系式(不要求写出自变量的取值范围);(2)若捐赠学习用品总金额超过了2300元,且灾区90名同学每人至少得到了一件学习用品,请问同学们如何安排购买书包和文具盒的人数?此时选择其中哪种方案,使购买学习用品的总件数最多?) 图②15.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1)求y与x的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?16.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.17.丹东市“建设社会主义新农村”工作组到东港市大棚蔬菜生产基地指导菜农修建大棚种植蔬菜。

相关文档
最新文档