初中数学因式分解精华例题

合集下载

(专题精选)初中数学因式分解经典测试题附答案解析

(专题精选)初中数学因式分解经典测试题附答案解析

(专题精选)初中数学因式分解经典测试题附答案解析一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .4.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误;D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.6.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.7.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( ) A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .8.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.9.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.10.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.11.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】 解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B12.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.13.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

因式分解经典例题

因式分解经典例题

因式分解经典例题一、提取公因式法例1:分解因式ax + ay。

解析:公因式为a,所以ax+ay = a(x + y)。

例2:分解因式3x^2-6x。

解析:公因式为3x,3x^2-6x=3x(x - 2)。

例3:分解因式5a^2b - 10ab^2。

解析:公因式为5ab,5a^2b-10ab^2=5ab(a - 2b)。

二、运用平方差公式a^2-b^2=(a + b)(a - b)分解因式例4:分解因式x^2-9。

解析:x^2-9=x^2-3^2=(x + 3)(x-3)。

例5:分解因式16y^2-25。

解析:16y^2-25=(4y)^2-5^2=(4y + 5)(4y-5)。

例6:分解因式(x + p)^2-(x + q)^2。

解析:根据平方差公式a=(x + p),b=(x+q),则(x + p)^2-(x + q)^2=[(x + p)+(x + q)][(x + p)-(x + q)]=(2x + p + q)(p - q)。

三、运用完全平方公式a^2±2ab + b^2=(a± b)^2分解因式例7:分解因式x^2+6x + 9。

解析:x^2+6x + 9=x^2+2×3x+3^2=(x + 3)^2。

例8:分解因式4y^2-20y+25。

解析:4y^2-20y + 25=(2y)^2-2×5×2y+5^2=(2y - 5)^2。

例9:分解因式x^2-4xy+4y^2。

解析:x^2-4xy + 4y^2=x^2-2×2xy+(2y)^2=(x - 2y)^2。

四、综合运用多种方法分解因式例10:分解因式x^3-2x^2+x。

解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以原式=x(x - 1)^2。

例11:分解因式2x^2-8。

解析:先提取公因式2,得到2(x^2-4),再利用平方差公式x^2-4=(x + 2)(x-2),所以原式=2(x + 2)(x - 2)。

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

初二数学《因式分解》练习题

初二数学《因式分解》练习题

初二数学《因式分解》练习题因式分解是初中数学中的一个重要概念,它在方程、函数以及多项式的运算中扮演着重要的角色。

掌握因式分解的方法和技巧,能够帮助我们简化计算过程,解决实际问题。

下面是一些关于因式分解的练习题,通过练习这些题目,我们可以巩固对因式分解的理解和应用。

【练习题一】将下列各式进行因式分解:1. $x^2-4$2. $a^2-b^2$3. $8x^3-27y^3$4. $2x^2+5x-3$5. $2x^3-x^2-6x$6. $4x^2-4xy+y^2$【解析】1. $x^2-4$可以写成$(x-2)(x+2)$,因此进行因式分解后为$(x-2)(x+2)$。

2. $a^2-b^2$是一个差的平方,可以因式分解为$(a+b)(a-b)$。

3. 由于$8x^3=2^3\cdot x^3$,$27y^3=3^3\cdot y^3$,因此可以使用立方差公式进行因式分解,即$(2x-3y)(4x^2+6xy+9y^2)$。

4. 对于$2x^2+5x-3$,我们可以因式分解为$(2x-1)(x+3)$。

5. $2x^3-x^2-6x$可以因式分解为$x(2x+3)(x-2)$。

6. 通过观察可以发现,$4x^2-4xy+y^2$等于$(2x-y)^2$,因此进行因式分解后为$(2x-y)^2$。

【练习题二】解下列各方程:1. $x^2-9=0$2. $x^2-5x+6=0$3. $2x^2-7x+3=0$4. $3(x+2)^2=27$5. $4(x-1)(x+2)-5(x-1)^2=7x+29$【解析】1. $x^2-9=0$是一个差的平方,可以写成$(x-3)(x+3)=0$,所以解为$x=3$或$x=-3$。

2. 对于$x^2-5x+6=0$,我们可以因式分解为$(x-2)(x-3)=0$,所以解为$x=2$或$x=3$。

3. $2x^2-7x+3=0$不易因式分解,我们可以使用求根公式进行解答,即$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$。

因式分解精选例题(附答案)

因式分解精选例题(附答案)

因式分解 例题解说及练习【例题优选】:(1) 5x 2 y 15x 3 y 2 20x 2 y 3评析:先查各项系数(其余字母临时不看) ,确立 5,15,20 的最大公因数是 5,确立系数是 5 ,再查各项能否都有字母 X ,各项都有时,再确立 X 的最低次幂是几,至此确认提取 X 2,同法确立提 Y ,最后确立提公因式 5X 2Y 。

提取公因式后,再算出括号内各项。

解: 5x 2 y15x 3 y 2 20x 2 y 3=5x 2y(1 3xy4y 2 )(2)3x 2 y 12x 2 yz 9x 3 y 2评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为 3,且同样字母最低次的项是 X 2Y解:3x 2 y 12 x 2 yz 9x 3 y 2= (9x 3 y 212x = 3(3x 3 y 2 4x22yz 3x 2 y)yz x 2 y)=3x 2 y(3xy 42 1)( 3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中, y-x 和 x-y 都能够做为公因式,但应防止负号过多的状况出现,所以应提取 y-x解:原式 =(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4) 把32x 3 y 4 2x 3分解因式评析:这个多项式有公因式 2x 3,应先提取公因式,节余的多项式16y 4-1 具备平方差公式的形式解: 32x 3y42x3=2x 3 (16y 4 1)=2x 3 (4 y 2 1)(4 y 2 1) =2 x3 (2y 1)( 2y 1)( 4y 21)(5)(5) 把 x 7 y 2xy 8 分解因式评析:第一提取公因式xy 2,剩下的多项式x 6-y6能够看作( x 3 ) 2( y 3 ) 2 用平方差公式分解,最后再运用立方和立方差公式分解。

人教版苏科版初中数学—因式分解(经典例题)

人教版苏科版初中数学—因式分解(经典例题)

因式分解班级小组姓名成绩(满分120)一、因式分解(共10组题,40小题,每题3分)(一)因式分解的意义例1.下列从左到右的变形:(1)15x 2y =3x •5xy ;(2)(a +b )(a ﹣b )=a 2﹣b 2;(3)a 2﹣2a +1=(a ﹣1)2;其中是因式分解的个数是()A .0个B .1个C .2个D .3个例1.变式1.若多项式ax 2+bx +c 可以被分解为(x ﹣3)(x ﹣2),则a =,b =,c =.例1.变式2.下列各式由左边到右边的变形中,属于分解因式的是()A .a (x +y )=ax +ayB .x 2﹣4x +4=x (x ﹣4+4x)C .10x 2﹣5x =5x (2x ﹣1)D .x 2﹣16+3x =(x +4)(x ﹣4)+3x例1.变式3.已知22x x p ++可以分解为()()35x x -+,则p =.二、提公因式法(一)公因式的概念例2.下面给出的四组整式中,有公因式的一组是()A .a +b 和a 2+b 2B .a ﹣b 和a 2﹣b 2C .a 2b 2和a 2+b 2D .a 2b 2和a 2﹣b 2例2.变式1.多项式4ab 2+8ab 2﹣12ab 的公因式是()A .4abB .2abC .3abD .5ab例2.变式2.多项式(x +y ﹣z )(x ﹣y +z )﹣(y +z ﹣x )(z ﹣x ﹣y )的公因式是()A .x +y ﹣zB .x ﹣y +zC .y +z ﹣xD .不存在例2.变式3.已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.(二)提公因式法例3.将(﹣2)2015+(﹣2)2016因式分解后的结果是()A .22015B .﹣2C .﹣22015D .﹣1例3.变式1.当a ,b 互为相反数时,代数式a 2+ab ﹣2的值为()A .2B .0C .﹣2D .﹣1例3.变式2.计算(﹣3)m +2×(﹣3)m ﹣1,得()A .3m ﹣1B .(﹣3)m ﹣1C .﹣(﹣3)m ﹣1D .(﹣3)m例3.变式3.已知x y=﹣3,满足x+y=2,求代数式x2y+xy2的值.(三)提取公因式法二例4.把下列各式分解因式:(1)18a3bc﹣45a2b2c2;(2)﹣20a﹣15ab;(3)18x n+1﹣24x n;例4.变式1.把下列各式分解因式:(1)15(a+b)2+3y(b+a);(2)2a(b﹣c)+3(c﹣b).例4.变式2.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1例4.变式3.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.(四)提取公因式法的综合运用例5.简便计算:①1.992+1.99×0.01②20132+2013﹣20142.例5.变式1.选择:2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为(). A.1B.﹣1C.4032D.4031例5.变式2.已知:a﹣b=﹣2015,ab=20162015,求a2b﹣ab2的值.例5.变式3.若a2+a=0,求2a2+2a+2015的值.三、公式法(一)用公式法进行因式分解例6.下列分解因式中,正确的个数为()①x2+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y).A.3个B.2个C.1个D.0个例6.变式1.下列各式能用平方差公式分解因式的有()①x2+y2;②x2﹣y2;③﹣x2﹣y2;④﹣x2+y2;⑤﹣x2+2xy﹣y2.A.1个B.2个C.3个D.4个例6.变式2.下列多项式,在实数范围内能用公式法分解因式的有()①x2+6x+9;②4x2﹣4x﹣1;③﹣x2﹣y2;④2x2﹣y2;⑤x2﹣7;⑥9x2+6xy+4y2.A.3个B.4个C.5个D.6个例6.变式3.因式分解x4﹣4=(实数范围内分解).(二)用公式法进行因式分解二例7.分解因式:x2﹣(x﹣3)2=.(2a+b)2﹣(a+2b)2=.例7.变式1.分解因式:(1)81x4﹣16y4(2)y2+y+1 4.例7.变式2.若x2+x﹣1的值为0,则代数式x3+2x2+2017的值为.例7.变式3.若|m﹣4|与n2﹣8n+16互为相反数,把多项式a2+4b2﹣mab﹣n因式分解.四、因式分解综合运用(一)利用因式分解求值例8.若a+b=3,a﹣b=7,则b2﹣a2的值为()A.﹣21B.21C.﹣10D.10例8.变式1.已知x2+y2﹣2x﹣6y=﹣10,那么x2011y2的值为()A.19B.9C.1D.2例8.变式2.已知a=2017x+2016,b=2017x+2017,c=2017x+2018,那么a2+b2+c2﹣ab﹣bc﹣ca的值为()A.1B.32C.2D.3例8.变式3.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.(二)因式分解跨章节综合例9.n是整数,式子18[1﹣(﹣1)n](n2﹣1)计算的结果()A.是0B.总是奇数C.总是偶数D.可能是奇数也可能是偶例9.变式1.设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c按从小到大的顺序排列为.例9.变式2.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌例9.变式3.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形(三)因式分解材料分析题例10.先阅读以下材料,然后解答问题.分解因式mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y)这种分解因式的方法称为分组分解法.请用分组分解法分解因式a2﹣b2+a2b﹣ab2.例10.变式1.阅读理解:(1)计算后填空:①(x+1)(x+2)=;②(x+3)(x﹣1)=;(2)归纳、猜想后填空:(x+a)(x+b)=x2+()x+();(3)运用(2)的猜想结论,直接写出计算结果:(x﹣3)(x+m)=;(4)根据你的理解,把下列多项式因式分解(两小题中任选1小题作答即可):①x2﹣5x+6=;②x2﹣3x﹣10=.例10.变式2.阅读材料:例分解因式x2+6x﹣7.解:原式=x2+2x×3+32﹣32﹣7=(x2+2x×3+32)﹣32﹣7=(x+3)2﹣42=(x+3+4)(x+3﹣4)=(x+7)(x﹣1).上述例子用到了“在式子变形中,先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫配方法”.请根据这种方法解答下列问题:分解因式:(1)a2﹣6a﹣16;(2)4a2﹣16ab+15b2.例10.变式3.观察并验证下列等式:13+23=(1+2)2=9,13+23+33=(1+2+3)2=36,13+23+33+43=(1+2+3+4)2=100,(1)续写等式:13+23+33+43+53=;(写出最后结果)(2)我们已经知道1+2+3+…+n=12n(n+1),根据上述等式中所体现的规律,猜想结论:13+23+33+…+(n﹣1)3+n3=;(结果用因式乘积表示)(3)利用(2)中得到的结论计算:①33+63+93+…+573+603②13+33+53+…+(2n﹣1)3。

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案(1) 1027014ax ay bx by +--(2) 224981981848x y x y --++ (3) 22285132535a b ab bc ca --+-(4) 222712272015x y xy yz zx --+- (5) 60106010mn m n +--(6) 801006480xy x y -+-+(7) 22872124x y xy yz zx -++-(8) 22283251520a b ab bc ca +-+-(9) 20282535xy x y ----(10) 222141939x y xy yz zx ++--(11) 1070428xy x y -++-(12) 221510313521x y xy yz zx +--+(13) 2220358103a c ab bc ca -+-+(14) 60501815xy x y ----(15) 22365452511a c ab bc ca ---+(16) 226123417x z xy yz zx +-+-(17) 754935ab a b -+-(18) 16884xy x y -++-(19) 945945mx my nx ny --+(20) 22201839a c ca ++(21) 22672824a b ab bc ca -+--(22) 2235121220a b ab bc ca --+-(23) 9327ax ay bx by +--(24) 8016204mx my nx ny +++(25) 2231024x z xy yz zx ---+(26) 15502480xy x y ----(27) 221535464935x y xy yz zx ++++(28) 222035154928a b ab bc ca --+-(29) 632412mx my nx ny +--(30) 49214218xy x y +++(31) 4085ax ay bx by +--(32) 16364090xy x y -++-(33) 2220619624x y xy yz zx -+-+(34) 368368mn m n --+(35) 45633549ax ay bx by -+-(36) 2244363217a b a b --++ (37) 25304554mn m n -+-(38) 104156xy x y +++(39) 2221126432x z xy yz zx ++--(40) 24286070ab a b --+(41) 2249281840a b a b -+++(42) 223625652016a b ab bc ca +-+-(43) 226464489m n m ---(44) 223664369m n m ---(45) 224936568433a b a b -++-(46) 22331039a b ab bc ca +-+-(47) 226513510a b ab bc ca +-+-(48) 2294937x z xy yz zx ++--(49) 754935mn m n -+-(50) 2291018447a c ab bc ca +--+(51) 227221272129x z xy yz zx ---+(52) 530636mx my nx ny +--(53) 2249241827a b a b -+-+(54) 312624xy x y --++(55) 225625529x z xy yz zx -++-(56) 242065xy x y +++(57) 2282836x y xy yz zx ++--(58) 2216202548a c ab bc ca ++++(59) 22925204x y y ---(60) 2230736637a c ab bc ca --++(61) 221412461035x y xy yz zx +-+-(62) 2245425733x z xy yz zx -+--(63) 486486mn m n +++(64) 2210530627a c ab bc ca +-+-(65) 205164xy x y --++(66) 2272524331x z xy yz zx ----(67) 2293021353a c ab bc ca -++-(68) 848040ab a b +++(69) 81451810ab a b -+-(70) 223014354952x z xy yz zx +-+-(71)22123574a b ab bc ca-+--(72)222020mx my nx ny-+-(73)153357ab a b-+-(74)18126342mn m n+--(75)99010ax ay bx by+--(76)24241616mn m n-+-(77)16144035xy x y-+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++ (81)20503280xy x y--+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n-+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a---(89) 24361624ax ay bx by --+(90) 20104020mn m n -+-(91) 229961x y y ---(92) 226416647265x y x y ----(93) 229424209m n m n ----(94) 2245220813a c ab bc ca --+- (95) 22449325648m n m n --++(96) 22481412648x y x y -++-(97) 22634276103x z xy yz zx +--+(98) 223030202461x z xy yz zx ++--(99) 221012352126a c ab bc ca +--+(100) 24275663ax ay bx by --+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++(10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++(25)(325)(2)x y z x z--+ (26)(58)(310)x y-++(27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+(30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++(80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+(98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案) 初中因式分解经典题型精选第一组:基础题1.a²b+2ab+b答案:b(a+1)²2.2a²-4a+2答案:2(a-1)²3.16-8(m-n)+(m-n)²答案:(4-m+n)²4.a²(p-q)-p+q答案:(p-q)(a+1)(a-1)5.a(ab+bc+ac)-abc答案:a²(b+c)第二组:提升题6.(x-y-1)²-(y-x-1)²答案:-4(x-y)7.ab-ab⁄4答案:ab(a+b)(a-b)8.b-14b²+1答案:(b²+4b+1)(b²-4b+1)9.x+x²+2ax+1-a²答案:(x+1+a)(x+1-a)10.a+a+1答案:2(a+1)11、化简表达式x-2y-2xy+xy x + xy - 2y - 2xyx(1+y) - 2y(1+x)x+y)(x-2y)12、展开表达式(ac-bd)²+(bc+ad)²a²c² - 2abcd + b²d² + b²c² + 2abcd + a²d²a²c² + b²c² + a²d² + b²d²a²+b²)(c²+d²)13、化简表达式x²(y-z)+y²(z-x)+z²(x-y)x²y - x²z + y²z - y²x + z²x - z²yx²y - y²x + z²x + y²z - x²z - z²yx-y)(x²+y²-z²)14、化简表达式x²-4ax+8ab-4b²x-2a)² - (2a-4b)²x-2a+2a-4b)(x-2a-2a+4b)x-4b)(x-2a)15、化简表达式xy²+4xz-xz²-4xx(y²-4) - z(x²-4)x-2)(x+z)(y+2z)16、将a(a²-b²)和b(b²-a²)的公因式提取出来,得到(a-b)(a+b)a和(b-a)(b+a)b,再利用立方差公式,化简为(a-b)²(a+b)(a²b²+a+b)。

初中数学因式分解100题及答案

初中数学因式分解100题及答案

初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。

初二因式分解经典题35题

初二因式分解经典题35题

初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。

就像大家都有个共同的小秘密一样。

那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。

2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。

把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。

提出来后就变成8mn(m^2 - 2mn + n^2)啦。

4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。

把它提出来,就得到−3xy(x - 2y+3)啦。

5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。

提出来就变成(x - y)(2a - 3b)啦。

6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。

那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。

7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。

8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。

9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。

10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。

七年级因式分解50道题及答案和过程

七年级因式分解50道题及答案和过程

七年级因式分解50道题及答案和过程1.因式分解:(1)2218x -(2)()()244m n m n +-++2.因式分解:(1)2129xyz x y -;(2)2464x -.3.因式分解:(1)249x -;(2)322242m m n mn ++.4.因式分解:(1)2464x -;(2)232a a a -+-.5.因式分解:(1)2422ax ay -.(2)4224817216x x y y -+.6.因式分解:(1)228a -(2)()()24129a b a b +-++7.因式分解:(1)244x x -+;(2)2327x -.8.分解因式:(1)533416m n m n-(2)32221218x x y xy -+9.分解因式:(2)32232x y x y xy ++.10.因式分解:(1)2416x -;(2)23216164a b a ab --.11.因式分解:(1)2296x xy y -+.(2)(1)(3)4x x +-+.12.因式分解:(1)222a ab b -+(2)24()()a ab b a -+-13.因式分解(1)242025x x ++;(2)()()2293a b a b -+-.14.因式分解:(1)a 3-4a 2+4a ;(2)a 4b 4-81;(3)16(x -2y )2-4(x +y )2.15.因式分解:(1)32288a a a -+;(2)328x x -16.因式分解:(1)33a b ab -(2)22363x xy y -+-17.因式分解:(1)2x 2-8(2)4221x x -+18.因式分解:(2)228x -19.因式分解(1)a 2(x+y )﹣b 2(x+y )(2)x 4﹣8x 2+16.20.因式分解:(1)2693x xy x -+;(2)2xy x -;21.因式分解:(1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣422.因式分解:(1)322369x y x y xy -+(2)()()236x x y x y x -+-23.因式分解:(1)32246x x x -+-;(2)222(4)16a a +-.24.因式分解:(1)236x x -;(2)2441a a -+(3)()()229m n m n +--;25.因式分解:(1)4ab b+(2)232x x -+(3)2214a b b -+-(4)2464a -参考答案1.(1)()()21313x x +-(2)()22m n +-【分析】(1)先提公因式2,再按照平方差公式分解即可;(2)把m n +看整体,直接利用完全平方公式分解即可.(1)解:2218x -()2219x =-()()21313x x =+-(2)()()244m n m n +-++()22m n =+-2.(1)()343xy z x -(2)()()444x x +-【分析】(1)提取公因式3xy 即可;(2)先提取公因式4,再利用平方差公式分解因式即可.(1)解:2129xyz x y-()343xy z x =-(2)()()()22464416444.x x x x -=-=+-3.(1)()()2323x x +-(2)()22m m n +【解析】(1)根据平方差公式因式分解即可求解;(2)提公因式2m ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2223x -()()2323x x =+-;(2)原式=()2222m m mn n ++()22m m n =+.4.(1)()()444x x +-(2)()21a a --【解析】(1)后利用平方差公式分解因式;(2)先提取公因数,再结合完全平方公式分解因式;(1)解:原式()()()2416444x x x =-=+-;(2)原式()()22211a a a a a =--+=--.5.(1)()()222a x y x y +-(2)22(32)(32)x y x y +-【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式分解,整理后,再利用平方差公式分解即可.(1)解:2422ax ay -()242a x y =-()()222a x y x y =+-;(2)解:4224817216x x y y -+()22294x y =-()()223232x y x y =+-.6.(1)()()222a a +-(2)()2223a b +-【解析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a -()224a =-()()222a a =+-;(2)()()24129a b a b +-++()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.7.(1)()22x -(2)()()333x x +-【解析】(1)利用完全平方公式法进行因式分解即可;(2)先对整式进行提公因式,再利用平方差公式进行因式分解即可.(1)解:原式=()22x -(2)原式=()239x -=()()333x x +-8.(1)()()3422m n mn mn +-(2)()223x x y -【解析】(1)先提公因式34,m n 再利用平方差公式分解即可;(2)先提公因式2,x 再按照完全平方公式分解因式即可.(1)解:533416m n m n-()32244m n m n =-()()3422m n mn mn =+-(2)解:32221218x x y xy -+()22269x x xy y =-+()223x x y =-9.(1)()()244x x +-(2)()2xy x y +【解析】(1)提出公因式2,然后根据平方差公式因式分解即可求解;(2)提公因式xy ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2216x -()()244x x =+-;(2)解:原式=()222xy x xy y ++()2xy x y =+.10.(1)4(2)(2)x x +-(2)24(2)a a b --【分析】(1)根据提公因式法和公式法即可求解.(2)先利用提公因式法,再利用公式法即可求解.(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b ⎡⎤=--+⎣⎦24(2)a a b =--.11.(1)(3x-y)2(2)(x-1)2【分析】(1)直接利用完全平方公式进行因式分解;(2)先拆开括号,然后利用完全平方公式继续进行因式分解.(1)解:原式=()2236x xy y -+=()23x y -.(2)原式=221x x -+=()21x -.12.(1)2()a b -(2)()(21)(21)a b a a -+-【解析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解.(1)解:()2222a ab b a b -+=-;(2)解:24()()a ab b a -+-()()241a b a =--()()()2121a b a a =-+-13.(1)2(25)x +(2)(3)(31)a b a b -++【解析】(1)根据完全平方公式因式分解即可求解;(2)根据平方差公式与提公因式法因式分解即可求解.(1)242025x x ++=()2222255x x +⋅⋅+=2(25)x +(2)()()2293a b a b -+-=()()2233a b a b ⎡⎤-+-⎣⎦=()()()333a b a b a b +-+-=(3)(31)a b a b -++14.(1)()22a a -(2)()()()22933a b ab ab ++-(3)()()125x y x y --【解析】(1)先提出公因式,再利用完全平方公式解答,即可求解;(2)利用平方差公式解答,即可求解;(3)先利用平方差公式,再提出公因式,即可求解.(1)解:3244a a a-+()244a a a =-+()22a a =-(2)解:4481a b -()()222299a b a b =+-()()()22933a b ab ab =++-(3)解:()()221624x y x y --+()()()()422422x y x y x y x y =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()66210x y x y =--()()125x y x y =--15.(1)()222a a -(2)()()21212x x x +-【解析】(1)先提公因式,然后利用公式法因式分解,即可得到答案;(2)先提公因式,然后利用公式法因式分解,即可得到答案.(1)解:()()232228824422a a a a a a a a -+=-+=-;(2)解:()()()322821421212x x x x x x x -=-=+-;16.(1)()()ab a b a b +-(2)23()x y --【解析】(1)先提取公因式,再利用平方差公式分解因式;(2)先提取公因式,再利用完全平方公式分解因式.(1)解:33a b ab -()22ab a b =-()()ab a b a b =+-;(2)解:22363x xy y -+-()2232x xy y =--+()23x y =--.17.(1)()()222.x x +-(2)()()2211.x x +-【解析】(1)利用提公因式法提公因式后,再按照平方差公式分解即可。

因式分解经典实例及解析50题(打印版)

因式分解经典实例及解析50题(打印版)

12.(分解因式):4小瓶—4十九—炉机+人2九
解:原式=4q2(m 一九)一炉(加一九)
=(4。2 —》2)(加—九)
=(2Q + b)(2α —
一九)
13.(分解因式):%(% - 2) -(y + l)(y - 1) 解:原式二%2 - 2% - V + 1 二(/ - 2% + 1) -y2 = (% — I)? — y2 =(% — 1 + y)(% - 1 - y)
10.(分解因式):/ 一 4孙+ 8y + 4y2 一轨 解:原式二(/ - 4%y + 4y2) + (8y - 4%) =(% — 2y7 — 4(% — 2y) =(% - 2y)(% - 2y - 4)
11.(分解因式):%4 - 2/ + %2 - 36 解:原式=%2(%2 一 2% + 1) - 36 =%2(χ - 1)2 — 36 = [%(% — 1) + 6] [%(% — 1) — 6] =(%2 — % + 6)(%2 _ % _ 6) =(%? — % + 6)(% — 3)(% + 2)
二.答案解析
L(分解因式):α% — b% + αy — by 解:原式=%(α - b) + y(α - b)
=(α-b)(% + y)
2.(分解因式):2mα — IOmb + 5献)一九Q 解:原式=2m(α — 5b)—九(G — 5b) =(2租 一 九)(Q _ 5b)
3.(分解因式):/ — %y + * - yz 解:原式二%(% - y) + z(% - y) 二(% + z)(% — y)

初中因式分解典型例题汇总(附答案)

初中因式分解典型例题汇总(附答案)

初中因式分解典型例题汇总(附答案)初中因式分解典型例题汇总例1 多项式x +ax+b因式分解为(x+1)(x-2),求a+b的值.分析根据因式分解的概念可知因式分解是一种恒等变形,而恒等式中的对应项系数是相等的,从而可以求出a 和 b,于是问题便得到解决.解2 2由题意得:x +ax+b=(x+1)(x-2),所以22x +ax+b=x -x-2,从而得出 a=-1,b=-2,所以 a+b=(-1)+(-2)=-3.点评“恒等式中的对应项系数相等”这一知识是求待定系数的一种重要方法.例2 分析解点评因式分解 6a b+4ab -2ab.此多项式的各项都有因式2ab,提取2ab 即可.6a b+4ab -2ab=2ab(3a+2b-1).用“提公因式法”分解因式,操作时应注意这样几个问题:首2 2 2 2先,所提公因式应是各项系数的最大公约数与相同字母最低次幂的乘积,即提取的公因式应是多项式各项的最高公因式,否则达不到因式分解的要求;其次,用“提公因式法”分解因式,所得结果应是:最高公因式与原多项式各项分别除以最高公因式所得商式的乘积.如果原多项式中的某一项恰是最高公因式,则商式为 1,这个 1 千万不能丢掉.本例题中,各项的公因式有 2,a,b,2a,2b,ab,2ab 等.其中 2ab 是它们的最高公因式,故提取 2ab.作为因式分解后的一个因式,另一个因式则是分别用 6a b,4ab 和-2ab除以 2ab所得的商式代数和,其中-2ab÷2ab=-1,这个-1 不能丢.例3 分析因式分解 m(x+y)+n(x+y)-x-y.将-x-y 变形为-(x+y),于是多项式中各项都有公因式 x+y,提2 2取 x+y 即可.解 m(x+y)+n(x+y)-x-y=m(x+y)+n(x+y)-(x+y) =(x+y)(m+n-1).点评例4 分析3注意添、去括号法则.因式分解 64x -1. 64x 可变形为(8x ) ,或变形为(4x ) ,而 1 既可看作 1 ,也可6 3 2 2 3 2 6看作1 ,这样,本题可先用平方差公式分解,也可先用立方差公式分解.解6方法一3 264x -1=(8x ) -1 =(8x +1)(8x -1) =[(2x) +1][(2x) -1] =(2x+1)(4x -2x+1)(2x-1)(4x +2x+1) 方法二2 23 3 3 364x -1=(4x ) -1 =(4x -1)(16x +4x +1) =(2x+1)(2x-1)(16x +8x +1-4x ) =(2x+1)(2x-1)[(4x +1) -(2x) ] =(2x+1)(2x-1)(4x +2x+1)(4x -2x+1) 点评在分解因式时,尽管采用的方法不同,但结果应是相同的.本2 2 2 2 2 4 2 2 2 4 262 3题的两种解法,显然第一种方法比较简单.点评分解因式时,应首先考虑各项有没有公因式,如果有公因式,一定先提公因式,然后再考虑能否用其它方法继续分解.本题如果先提 2,应如何分解?例6 分析因式分解(x+y) -6(x+y)+9.可将x+y 当作一个整体,此多项式便是关于这个整体的二次三2项式,显然它可用完全平方公式分解.解 (x+y) -6(x+y)+92 2 2=(x+y) -2×3×(x+y)+3 =(x+y-3) .点评2在运用公式分解因式时,一定要掌握公式的特点,尤其要注意完全平方公式中一次项系数的特点.例7 分析因式分解x +6x-7.这个二次三项不符合完全平方公式的特点,首先,二次项与常2数项不同号,其次,常数项的绝对值不是一次项系数一半的平方,所以不能直接用公式分解,但经过适当的变形后,便可用公式分解.另外,这样的二次三项式可用十字相乘法分解.解2方法一2 2x +6x-7=x +6x+9-9-7=(x+3) -16 =(x+3+4)(x+3-4)=(x+7)(x-1) 方法二 x +6x-7=(x+7)(x-1)2点评方法一叫配方法.用配方法分解二次三项式时,其前提是二次项系数为 1(如果二次项系数不是 1,则提取这个系数,使二次项系数转化为 1);其关键是,加上紧接着减去一次项系数绝对值一半的平方,这样便达到配方的目的.在用十字相乘法分解二次三项式时,主要考虑的是十字相乘后的代数和应是一次项.例8 分析因式分解 3x -7x-6.本题二次项系数不是 1,如果用配方法分解,则应首先提取二2次项系数3,然后再加、减一次项系数一半的平方;如果用十字相乘法分解,既要考虑好首尾两项的分解,更要考虑到十字相乘后的代数和应是中间项(即一次项).解方法一方法二3x -7x-6=(3x+2)(x-3).2点评用十字相乘法分解因式,在排列算式时,应想到同行不应有公因式(如本题二次项所分出的 3x与常数项所分出的 3 不能放在同行,只能与分解出的另一个因式 2 放在同行)这是因为,如果同行有公因式,此公因式在开始分解时就应提出.掌握这一点会简化操作过程.从上述两例可以明显看出,在有理数范围内分解二次三项式ax +bx+c用十字相乘法比较方便,但随着数的范围的扩大,就看出配方法的重要了.于是便出现这样的问题:在分解二次三项式ax +bx+c 时,何时用公式法?何时用十字相乘法?何时用配方法?我们可用b -4ac的结果来判别: b -4ac=0 时,用完全平方公式分解; b -4ac>0 且是一个完全平方数时,用十字相乘法分解;b -4ac>0 但不是完全平方数时,用配方法分解;在有理数范围内和将来学到的实数范围内都不能分解. b -4ac<0 时,至于为什么可用b -4ac的结果来作上述判断,这个问题在今后的学习中会得到解决.2 2 2 2 2 2 2 2例9 分析因式分解2ax-10ay+5by-bx.用分组分解法.可将一、二两项和四、三两项分别作为一组,这样不仅每组可分解,而且确保继续分解.解2ax-10ay+5by-bx=2ax-10ay-bx+5by =(2ax-10ay)-(bx-5by) =2a(x-5y)-b(x-5y) =(x-5y)(2a-b).点评本题还可以一、四两项一组,二、三两项一组,但不能一、三项和二、四项分组,可见分组要恰当.分组是否恰当,以能否达到因式分解的目的为标准.所以,分组后各组系数成比例则是恰当分组的重要条件.例 10 因式分解:2 2(1)x -2xy+y -1 分析(2)x -2y-y -122这两小题都不能平均分组,因为平均分组后,各组系数不可能成比例,从而达不到因式分解的目的,但经过观察可知,如果将(1)题前三项和第四项分组,将(2)题第一项和后三项分组,则可先用完全平方公式继而用平方差公式将其分解.解2(1)x -2xy+y -1222=(x -2xy+y )-1 =(x-y) -1=(x-y+1)(x-y-1) (2)x -2y-y -1=x -y -2y-12 2 2 2 2=x -(y +2y+1) =x -(y+1) =(x+y+1)(x-y-1) 点评在分解四项式时,也应首先考虑是否有公因式,如果有,要先2 222提公因式然后再考虑分组,在分组时,又有两两分组、一三分组和三一分组三种不同分法,这就需要做到具体问题具体分析.对某些特殊的四项式也可直接用完全立方公式分解,即a ±3a b+3ab ±b =(a± b) .对五项式或五项以上的多项式也采用分组分解法.例 11 分析因式分解x +4xy+3y +x+3y.本题的前三项可以分解为(x+y)(x+3y),其中(x+3y)正好与后2 23 3 2 2 3两项完全一样,所以本题作三二分组,问题便得到解决.解2x +4xy+3y +x+3y222=(x +4xy+3y )+(x+3y) =(x+y)(x+3y)+(x+3y) =(x+3y)(x+y+1).例 12 因式分解:2 2(1)a +2ab+b +2a+2b+1,(2)a +2ab+b +2a+2b-3,(3)a +3ab+2b +2a+b-3.分析这三道题都不能平均分组,经观察,它们都可以三二一分组,2 2 2 2分组后,(1)题可经过两次完全平方公式分解,(2)题可经过一次公式和一次十字相乘分解,而(3)题则可经过两次十字相乘分解.解(1)a +2ab+b +2a+2b+12 2=(a +2ab+b )+(2a+2b)+1 =(a+b) +2(a+b)+1=(a+b+1) .(2)a +2ab+b +2a+2b-3 =(a +2ab+b )+(2a+2b)-3 =(a+b) +2(a+b)-3 =(a+b+3)(a+b-1).2 2 2 2 2 2 222(3)a +3ab+2b +2a+b-3 =(a +3ab+2b )+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =(a+b-1)(a+2b+3).2 222例 132已知 4x +4xy+y -4x-2y+1=0,求证:2222x +3xy+y -x-y=0 分析要证明一个多项式的值为零,通常是将此多项式分解因式.若分解后的因式中有一个值为零,则原多项式的值为零.经过分组分解,可知 2x +3xy+y -x-y=(x+y)(2x+y-1),若x+y或 2x+y-1 为零,则原多项式的值为零.为达此目的,就要从条件入手.证明因为4x +4xy+y -4x-2y+1=0,所以2 2 2 2 2(2x+y) -2(2x+y)+1=0, (2x+y-1) =0.所以22x+y-1=0.又因为 2x +3xy+y -x-y=(x+y)(2x+y-1).而 2x+y-1=0,所以2x +3xy+y -x-y=0.例14 已知3x -4xy-7y +13x-37y+m能分解成两个一次因式的乘积,2 2 2 2 2 2求m的值.并将此多项式分解因式.分析根据因式分解的概念和乘法法则可知,原多项式所分解得的两个因式必然都是三项式,而原多项式的前三项可分解为(3x-7y)(x+y),于是可设原多项式分解为(3x-7y+a)(x+y+b),再根据恒等式中的对应项系数相等,便能使问题得到解决.解设3x -4xy-7y +13x-37y+m2 2=[(3x-7y)+a][(x+y)+b] =3x -4xy-7y +(a+3b)x+(a-7b)y+ab.对应项系数相等,所以2 2由(1)(2)解得 a=-2,b=5.将 a=-2,b=5 代入(3),得m=-10,所以 3x -4xy-7y +13x-37y+m2 2=3x -4xy-7y +13x-37y-10 =(3x-7y+a)(x+y+b) =(3x-7y-2)(x+y+5).例 15 分析已知|x-3y-1|+x +4y =4xy,求x与y的值.在通常情况下,由一个方程求两个未知数的值,条件是不够的,2 222但在特殊条件下又是可行的,这“特殊条件”包括非负数的和等于零的性质.本题已有一个明显的非负数,即|x-3y-1|,而另一个非负数可由因式分解得到.于是问题能够解决.解因为|x-3y-1|+x +4y =4xy,所以2 2 2 2|x-3y-1|+x -4xy+4y =0 即|x-3y-1|+(x-2y) =0 所以2解这个方程组,得 x=-2,y=-1.例 16 因式分解:4 4(1)x +4y ;分析(2)x +5x-6.3这两个多项式既无公因式可提,也不能直接用公式或直接分组2 2 2 2分解.经过观察:(1)题若加上 4x y ,随之减去 4x y ,这样既保证多项式的值不变,又可先用完全平方公式继而用平方差公式分解. 2)(题如果将 5x拆成-x+6x便可分组分解.或者,将-6 拆成-1-5 也可分组分解.解2(1)x +4y =x +4x y +4y -4x y2 2 24442 242 2=(x +2y ) -(2xy)2 2 2=(x +2xy+2y )(x -2xy+2y ).(2)x +5x-6=x -x+6x-6 =(x -x)+(6x-6) =x(x+1)(x-1)+6(x-1) =(x-1)(x +x+6) 点评例 17 分析若将-6 拆成-1-5,应如何分解?已知x -2xy-3y =5,求整数x和y的值.原式左端可分解为两个一次因式的乘积,由题意可知,这两个2 2 23 3 32因式都表示整数,这样只能是一个因式为1(或-1),而另一个因式为 5(或-5).于是便可列出方程组求出 x 和 y 的值.解因为x -2xy-3y =5,所以2 2(x-3y)(x+y)=5.依题意 x,y 为整数,所以 x-3y 和 x+y 都是整数,于是有:解上述方程组得:例 18已知 A=(x+2)(x-3)(x+4)(x-5)+49(x 为整数),求证:A 为一个完全平方数.证明2因为 A=(x+2)(x-3)(x+4)(x-5)+492=(x -x-6)(x -x-20)+49 =(x -x) -26(x -x)+169 =(x -x-13)2 2 2 2 2所以 A 是一个完全平方数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中因式分解的常用方法(例题详解)一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-μ写出结果.三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。

例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---注意这两个例题的区别!练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++=)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2(-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、主元法.例11、分解因式:910322++--x y xy x解法一:以x 为主元 解:原式=)2910()13(22+----y y y x x=)12)(25(-++-y x y x -(5y-2)+(2y-1)= -(3y-1)解法二:以y 为主元解:原式=)93(102+---x y y =)93(10[2-+-y x y =2- 2 (x -1)=- 5 -(x +2)=)25)(12(---+-x y x y 5(x -1)-2(x +2)=(3x -9)2222(3)613622-++-+y x y xy x (4)36355622-++-+b a b ab a六、双十字相乘法。

定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式。

条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f c x a f y c x a ++++例12、分解因式(1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2-xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x练习12、分解因式(1)67222-+--+y x y xy x(2)22227376z yz xz y xy x -+---七、换元法。

例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。

原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x (3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。

这种多项式属于“等距离多项式”。

方法:提中间项的字母和它的次数,保留系数,然后再用换元法。

解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x x x x 设t x x =+1,则21222-=+t x x∴原式=[]6)2222---t t x (=()10222--t t x=()()2522+-t t x =⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x=)2)(12()1(2--+x x x(2)144234+++-x x x x解:原式=⎪⎭⎫⎝⎛+++-2221414x x x x x =⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x设y x x =-1,则21222+=+y x x∴原式=()3422+-y y x =()()312--y y x=)31)(11(2----x x x x x =()()13122----x x x x练习14、(1)673676234+--+x x x x (2))(2122234x x x x x +++++八、添项、拆项、配方法。

相关文档
最新文档