岩石的基本物理力学性质及其试验方法
岩石力学第2章岩石的基本物理力学性质PPT课件

格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在
岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。
(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。
2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。
公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。
2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。
它间接地反映了岩石中裂隙间相互连通的程度。
四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。
它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。
岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。
它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。
3 岩石的膨胀性:岩石浸水后体积增大的性质。
(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。
(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。
(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。
五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。
第3讲 岩石的力学性质-强度性质

11
3.实验原理
消除方法: ①润滑试件端部(如垫云 母片;涂黄油在端部)机)
12
4.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸 形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;L/D≥(2.5-3)较合理 (3)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对 泥岩、粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高强度 越小。
34
2)实验加载方式:
a. 真三轴加载:试件为立方体,加载方式如图所示。 应力状态:σ1>σ2> σ3 这种加载方式试验装置繁杂,且六个面均可受到由加 压铁板所引起的摩擦力,对试验结果有很大影响,因而实 用意义不大。故极少有人做这样的三轴试验。
b.伪三轴试验:,试件为圆柱体,试件直径25~150mm,长 度与直径之比为2:1或3:1。轴向压力的加载方式与单 轴压缩试验相同。 但由于有了侧向压力,其加载上时的端部效应比单轴加 载时要轻微得多。 应力状态:
a.试验者和时间:意大利人冯· 卡门(Von· Karman) 于1911年完成的。 b.试验岩石:白色圆柱体大理石试件,该大理石 具有很细的颗粒并且是非常均质的。 c.试验发现: ①在围压为零或较低时,大理石试件以脆性方式 破坏,沿一组倾斜的裂隙破坏。 ②随着围压的增加,试件的延性变形和强度都不 断增加,直至出现完全延性或塑性流动变形,并 伴随工作硬化,试件也变成粗腰桶形的。 ③在试验开始阶段,试件体积减小,当达到抗压 强度一半时,出现扩容,泊松比迅速增大。
1.5岩石的工程地质性质

在风干状态下极限抗压强度的比。用小数表示。其值越小, 表明岩石在水作用下的强度和稳定性越差。
岩石的软化性决定于岩石的矿物成分、结构和构造特征。 岩浆岩和变质岩的软化系数大都接近于1.0;粘土矿物含量 高、孔隙度大、吸水率高的岩石,软化系数越小,如泥灰 岩和页岩。
降低岩石的强度。在工程中应当重视岩石中这些低强度 矿物含量的增长对岩石强度的降低作用。
但也不能简单地认为,含有高强度矿物的岩石,其强度一定就 高。因为岩石受力作用后,内部应力是通过矿物颗粒的直接接 触来传递的,如果强度较高的矿物在岩石中互不接触,则应力 的传递必然会受中间低强度矿物的影响,岩石不一定就能显示 出高的强度。
180~300
岩石名称 辉绿岩
抗压强度 (MPa)
200~350
岩石名称 页岩
抗压强度 (MPa)
10~100
100~250
玄武岩
150~300
砂岩
20~200
180~300
石英岩
150~350
砾岩
10~150
100~250 100~250 80~250
大理岩 片麻岩 灰岩
100~250 50~200 20~200
岩体 = 结构面 + 结构体
岩块的强度高,岩体的强度不一定高。
结构面的发育程度、性质、充填情况以 及连通程度等,对岩体的工程性质有很 大的影响。
29/35
1. 结构面
结构面:存在于岩体中的各种地质界面。
(1)结构面类型: 原生结构面:成岩时形成
沉积结构面:层面、层理、夹层等 火成结构面:原生节理、流纹面、接触面等等 变质结构面:片麻理、片理等等
岩石力学特性研究 – 试验和模型分析

•
•
1951年,在奥地利创建了地质力学研究组,并形成了独具一格的奥地
利学派(Muller和Stini)。
同年,国际大坝会议设立了岩石力学分会。
1956年,美国召开了第一次岩石力学讨论会。
1957年,第一本《岩石力学》专著出版(J.Talobre,法国)。
1959年,法国马尔帕塞坝溃决,引起岩体力学工作者的关注和研究。
•稳定性计算与评价
围岩
有压隧洞
岩基
岩坡
13
岩
石
力
学
二、研究内容与研究方法
1.研究内容
❖ 以边坡为例
14
工
程
地
质
研
究
方
法
(地层、岩性、结构面
岩块、结构面力 应力条件(建筑物
学性质(室内试验: 作用力、天然应力、
特征及分布、地下水等)
求变形、强度参数)
边坡岩体地质特征
地质模型建立
综合
评价
法
岩体力学性质,力学参数
四个特征:
具有一定工程地质岩组
以不连续为特征的岩体结构
赋存于一定的地质物理环境
(地应力、地下水、地温)
作为工程作用对象的地质体
3
一、岩石和其物理性质
四个特性(DIANE):
Discontinuous
Inhomogeneous
Anisotropic
Non-elastic
基本物理指标
1. 容重和密度
容重:岩石单位体积(包括岩石孔隙体积)的重力。可分为:干容重、湿容重
和饱和容重。一般未说明含水状态时是指湿容重。
W
V
▪ 岩石的容重取决于组成岩石的矿物成分、孔隙大小以及含水的多少;
2-2岩石力学性质-强度性质

2.5 岩块强度
2.5.1 岩石的单轴抗压强度
所谓岩石的单轴抗压强度是指岩石在单轴压缩载 荷作用下,达到破坏前所能承受的最大压应力。 亦即岩石受轴向力作用破坏时单位面积上所承受 的荷载。即: P c (2-18)
c
式中:
A
c —单轴抗压强度;
P—只有轴向载荷时的破坏荷载; A—试件的截面面积。
图2-4 在刚性承压板之间压缩时岩石端面的应力分布 图2-5 粗面岩的抗压强度与h/d的关系
(4)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (5)环境 含水量:含水量越大强度越低;岩石越软越明显, 对泥岩、粘土等软弱岩体,干燥强度是饱和强度 的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高 强度越小。
由于试件端面与承压板之间的摩擦力,使试件端 面部分形成了约束作用,而这一作用随远离承压 板而减弱,使其表现为拉应力。 在无侧限的条件下,由于侧向的部分岩石可自由 地向外变形、剥离,最终形成圆锥形破坏的形态。 因此,在试验时一般要求在试件的端面与承压板 之间加润滑剂,以减少试验时的端部效应。
c
c
c d 0.788 0.22 h
(2-19)
由图2—5可见,当 试验结果
h / d 2.0 3.0
时, 曲线趋于稳定,
c
c
值不随
h/d
的变化而明显变化。
国际岩石力学学会实验室和现场试验标准化委员 会制定的《岩石力学试验建议方法》中,建议岩
石单轴抗压强度试验试件的高径比为2.5~3.0。
(1)单轴抗压强度的试验方法 在岩石力学中,岩石的单轴抗压强度是研究 最早、最完善的特性之一。按中华人民共 和国岩石试验方法标准的要求,单轴抗压 强度的试验是在带有上、下块承压板的试 验机上进行,按一定的加载速度单向加压 直至试件破坏。
岩石物理力学性质(物理力学指标)

岩石的物理力学指标(目标:掌握岩石的物理力学指标及其试验方法)密度:单位体积所具有的质量称为密度,公式ρ=m/V(kg/m 3);块体密度(或岩石密度)是指岩石单位体积内的质量,按岩石的含水状态,又有干密度、饱和密度和天然密度之分,在未指明含水状态时一般指岩石的天然密度。
试验方法:岩石颗粒密度是岩石固相物质的质量与体积的比值,采用比重瓶法或水中称量法测定。
比重瓶法测定岩石的颗粒密度,又分为土工试验方法、岩石试验方法和建筑材料试验方法三种。
岩石的块体密度是指单位体积的岩石质量,是岩石试件的质量与其体积之比。
岩石的块体密度试验量积法适用于能制备成规则试件的岩石;水中称量法适用于除遇水不崩解、不溶解和不干缩湿胀的其他各类岩石:密封法适用于不能用量积法或直接在水中称量进行试验的岩石。
岩石的比重:岩石的比重就是绝对干燥时岩石固体部分实体积(即不包含孔隙的体积)的重量与同体积水(4℃)的重量之比。
岩石的容重:单位体积内岩石(包括孔隙体积)的重量称为岩石的容重,单位(N/m ³)。
公式γ=G/V (N/m 3),容重等于密度和重力加速度的乘积,即γ=ρg ,单位是牛/立方米(N/m ³)。
干容重:就是指不含水分状态下的容重。
一般用于表示土的压实效果,干容重越大表示压实效果越好。
最大干容重:是在实验室中得到的最密实状态下的干容重。
含水率:岩石含水率反映了岩石在天然状态下的实际情况,用烘干前的质量减去烘干后的质量与烘干后的质量之比来表示。
试验方法:烘干法。
%10000⨯-=d d m m m w岩石试件的含水率对测试成果的影响尤为明显,因为具有膨胀特性的岩石,吸水膨胀。
试验前试件的含水率应尽量接近天然含水状态,实行干法加工。
岩石膨胀特性稳定时间:膨胀试验时间一般在48h 以内,膨胀压力试验则往往超过48h 。
水理性质:岩石在水溶液作用下表现出来的性质; 吸水性:岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。
岩体力学02-岩石的基本物理力学性质.资料

风化系数(Kf):风化岩石的饱和单轴
抗压强度(cw’)与新鲜岩石饱和单轴 抗压强度(cw)之比。
Iw
mw mrd
Kv
vcp vrp
2
Kf
' c
w
cw
硬质岩石风化风化程度分类表
风化程度 全风化 强风化
中等风化 微风化 未风化
代表性岩石
硬质 岩石
极硬岩石 次硬岩石
>60 30~60
花岗岩、花岗片麻岩、闪长岩、玄 武岩、石灰岩、石英砂岩、石英岩、
大理岩、硅质砾岩等
软质 岩石
次软岩石 极软岩石
5~30 <5
粘土岩、页岩、千枚岩、绿泥石片 岩、云母片岩等
§2.2 岩石的基本物理性质
岩石是由固体、液体和气体三相组成的。岩石 的力学性质常与岩石中三相的比例关系及固相 与水相互作用有密切的关系。
m g/cm 3
V—岩石试件的总体积;
V
m—岩石试件的总质量
岩石天然密度越大, 其工程性质越好。影 响因素是矿物成分、 孔隙与微裂隙发育程 度以及含水量。
测定方法有量积法、水中称重法、蜡封法等,试件数量不少于5个
2、饱和密度( sat)
岩石中空隙全部被水充填时单位体积的质量,即
sa tm s V V vw g/c3 m
•岩石的粒间连结分结晶连结与胶结连结 •结晶连结:矿物颗粒通过结晶相互嵌合在一起, 它是通过共用原子或离子使不同晶粒紧密接触。 •胶结连结:矿物颗粒通过胶结物连结在一起。 胶结连结的岩块强度:硅质胶结>铁质、 钙质>泥质胶结
三、岩块的风化
岩石经过风化,矿物组成和结构改变,岩块的物 理力学性质改变:强度降低、抗变形性能减弱、 空隙率增大、渗透性加大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲岩石的基本物理力学性质及其试验方法(之一)一、内容提要:本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。
二、重点、难点:岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。
一、概述岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。
所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。
由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。
岩体是指在一定工程范围内的自然地质体。
通常认为岩体是由岩石和结构面组成。
所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。
这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。
从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。
因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。
【例题1】岩石按其成因可分为( )三大类。
A.火成岩、沉积岩、变质岩B.花岗岩、砂页岩、片麻岩C.火成岩、深成岩、浅成岩D.坚硬岩、硬岩、软岩答案:A【例题2】片麻岩属于( )。
A.火成岩B. 沉积岩C. 变质岩答案:C【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。
A.岩石的种类B.岩石的矿物组成C.结构面的力学特性D.岩石的体积大小答案:C二、岩石的基本物理力学性质及其试验方法(一)岩石的质量指标与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。
1岩石的颗粒密度(原称为比重)岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。
岩石颗粒密度通常采用比重瓶法来求得。
其试验方法见相关的国家标准。
岩石颗粒密度可按下式计算2岩石的块体密度岩石的块体密度是指单位体积岩块的质量。
按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。
(1)岩石的干密度岩石的干密度通常是指在烘干状态下岩块单位体积的质量。
该指标一般都采用量积法求得。
即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。
)。
测量试件直径或边长以及高度后,将试件置于烘箱中,在105~110℃的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。
岩块干密度可按下式分式计算求得:(2)岩块的饱和密度岩块的饱和密度是指岩块的空隙中充满水的状态下(饱和状态)所测得的密度。
饱和密度的试验方法,通常也可采用量积法,只是在岩块称重前,使试件成为饱和状态。
一般可采用真空抽气法和水浸法两种使试件饱和。
而有关规范中建议采用真空抽气法,由此求得的指标偏差较小。
(3)湿密度湿密度一般认为是指岩块在天然状态下的密度。
由于岩块在取样,加工过程中都用水来冷却切割工具,因此在工程中不太采用这个参数而很少求该指标。
但是,在有些工程中的特殊需要,必须提供该指标时,通常采用蜡封法求该指标。
蜡封法可按下式计算岩块的干密度与湿密度。
【例题4】岩石的质量指标包括岩石的( )。
A.颗粒密度和块体密度B.干密度和湿密度C.干密度、饱和密度和湿密度D.颗粒密度和干密度答案:A【例题5】测试岩石的干密度时,需将标准试件置于烘箱中,在( )的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。
A.105~110℃B.70~90℃C.90~110℃D.80~120℃答案:A【例题6】某岩石中颗粒最大粒径为1cm,用该岩石制作标准试件时,试件直径为( )。
A.48mmB.50mmC.54mmD.12cm答案:D(二)岩石的水理性质1岩石的含水率岩石的含水率是指岩石试件中含水的质量与固体质量的比值。
由于大都岩块的含水率比较小,因此对岩块含水率试验也提出了相对比较高的要求,采集试样不得采用爆破或钻孔法。
在试件采取、运输、储存和制备过程中,其含水率的变化不得大于1%。
岩块的含水率试验采用烘干法,即将从现场采取的试件加工成不小40g的岩块,放入烘箱内在105~110℃的恒温下将试件烘干,后将其放置在干燥器内冷却至室温称其质量,重复上述过程直至将试件烘干至恒重为止。
恒重的判断条件是相邻24h两次称量之差不超过后一次称量的0.1%,最后可按下式计算岩石的含水率:2岩石的吸水性岩石的吸水性主要采用其吸水率来表示。
岩石的吸水率是指岩石在某种条件下吸入水的质量与岩石固体的质量之比值。
它是一个间接反映岩石中孔隙多少的一个指标。
岩石的吸水率按其试验方法的不同可分成岩石吸水率和岩石饱和吸水率两个指标。
(1)岩石吸水率岩石吸水率一般都采用规则试件进行试验(规则试件的具体要求同前所述的标准试件要求)。
该试验方法是先将试件放入烘箱,在105~110℃温度下烘24h,取出放入干燥器内冷却至室温后称量。
将试件放入水槽,先放入l/4试件高度的水,以后每隔2h将水分别增至试件高度的1/2和3/4处,6h后将试件全部浸入水中,放置4h后,擦干表面水分称量。
岩石吸水率可按下式求得:(2)岩石饱和吸水率岩石饱和吸水率是采用强制方法使岩石饱和,通常采用煮沸法或者真空抽气法。
当采用煮沸法饱和试件时,要求容器内的水面始终高于试件,煮沸时间不得小于6h;当采用真空抽气法时,同样要求容器内水面始终高于试件,真空压力表面读数为100kPa。
直至无气泡逸出为止,并要求真空抽气时间不得小于4h,最后擦干饱和试件表面水分称量,其饱和吸水率可按下式计算:3岩石的膨胀性和崩解性1)岩石的膨胀性岩石的膨胀性是指在天然状态下含易吸水膨胀矿物岩石的膨胀特性。
这主要反映含有粘土矿物的岩石的性质。
由于粘土矿物遇水后颗粒之间的水膜将增厚,最终导致其体积增大。
这对于岩石的力学特性以及岩石工程的施工将造成较大的影响,有必要掌握这类岩石遇水时的膨胀性,以改进施工与支护设计的参数。
岩石的膨胀性通常可用自由膨胀率、侧向约束膨胀率和膨胀压力来表示。
(1)自由膨胀率自由膨胀率是表示易崩解的岩石在天然状态下不受任何条件的约束,岩石浸水后自由膨胀(径向和轴向)变形量与试件原尺寸之比。
自由膨胀率试验一般是将采用干法加工成的试件放入自由膨胀率试验仪器(见图15-1-1),按图示的方法放置好试件及其量测仪表,最后缓慢地向盛水容器四周注入纯水,直至淹浸上部透水板。
随后测度千分表的变形读数。
最先的一小时内,每隔10min测读一次,以后每小时测读一次,直至3次读数差不大于0.001mm后终止试验。
另外要求浸水后试验时间不得小于48h。
岩石的自由膨胀率可按下式计算:岩石侧向约束膨胀率是岩石试件在有侧限条件下,轴向受有限荷载时,浸水后产生的轴向变形与试件原高度之比值。
岩石侧向约束膨胀试验,一般将加工好的试件放入内涂有凡士林的金属套环内,并在试件上下分别设置薄型滤纸和透水板,随后在试件顶部放上能对试件持续施加5kPa压力的金属荷载块,并在上面安装垂直千分表,安装完毕后可按上述自由膨胀率的试验方法及终止试验条件进行试验。
岩石侧向约束膨胀率可按下式求得:(3)膨胀压力岩石的膨胀压力是指岩石试件浸水后保持原表体积不变所需的压力。
岩石的膨胀压力通常是将按要求加工成的试件放入金属套环内,并在试件上下两端放置薄型滤纸和金属透水板,随后安装加压系统及位移量测系统。
可利用测得的荷载按下式计算膨胀压力。
2)岩石的耐崩解性岩石的耐崩解性是表示粘土类岩石和风化岩石抗风化能力的一个指标。
是模拟日晒雨淋的过程,在特定的试验设置中,经过干燥和浸水两个标准循环后,试件残留的质量与原质量之比值。
岩石的耐崩解性用岩石耐崩解性指数(Id2)来表示。
岩石耐崩解性指数可按下式计算:表15-1-1例示甘布尔指出的耐崩解性分级,可对岩石的抗风化特性作定性的分析。
4岩石的超声波波速岩石的超声波波速是利用超声波在岩石中的传播过程中,由于其微裂隙和孔隙的存在影响其传播的速度特性,进而评价岩石致密程度的一个指标。
岩石超声波可根据质点的振动方向与其传播方向的异同分成二类波速,当给予岩石一个脉冲后,质点振动的方向与其传播的方向垂直的波速称为横波或剪切波;岩质点的振动方向与传播的方向一致的波速称为纵波或压缩波。
岩石的超声波波速一般都在规则试件上进行的。
根据换能器布置的方法,波速测试有直透法或平透法两种。
其中,直透法是最常用的方法。
试验时要求将试件放置于测试架中,并能对换能器施加约0.15MPa的压力,并测试纵波或横波在试件中行走的时间,最后将发射、接收换能器对接,测读零延时。
超声波波速按下式求得:【例题7】下列不属于岩石的水理性质的是( )。
A.岩石的含水率B.岩石的吸水性C.岩石的膨胀性和崩解性D.岩石的湿密度答案:D【例题8】岩石的超声波波速可以作为评价岩石( )的一个指标。
A.坚硬程度B.致密程度C.膨胀性D.崩解性答案:B三、岩石的强度特性岩石的强度分成单轴抗压强度、抗拉强度、抗剪强度以及三向压缩强度等。
下面主要介绍岩石在这些不同荷载作用下的强度特性。
(一)岩石单轴抗压强度岩石单轴抗压强度是指岩石试件在无侧限条件下,受轴向力作用破坏时,单位面积上所施加的荷载。
其值可按下式求得1岩石单轴抗压强度的试验方法按照国家“工程岩体试验方法标准”中的要求,岩石试件的加工应满足前面所叙述的标准试件的要求,并其放在试验机中心,以每秒0.5~1.0MPa的加载速度直至破坏。
同时要求在试验前对试件作详细的描述,内容包括岩性和岩石中所包含的节理之间的关系、含水状态等项目,并记录下试件破坏后的形态。
2岩石在单轴抗压试验破坏后的形态特征在外荷载作用下岩石试件破坏后的形态是表现岩石破坏机理的重要特征,它不仅表现出岩石受力过程中的应力分布状况,还反映了不同试验条件中对它的影响。
岩石在单轴抗压强度试验中出现的破坏形态大约可分成两种:1)圆锥形破坏(见图15-1-2a):这类破坏形态的试件,由于中间的岩石被剥离使得岩石破坏后呈两个尖顶的圆锥体。
经分析可知,产生这种破坏形态的主要原因是上、下压板在施加荷载时,与岩石试件端面之间产生了较大的摩擦力,促使岩石端部产生了一个相当于箍的约束作用。
此时,岩石试件内的应力分布如图15-1-3所示。
由于拉应力的作用使得这部分岩石被剥离而形成圆锥体。
因此从某种意义上来说圆锥体的破坏形态并没有真正反映其破坏特征,而是带有试验系统所给予的影响。
2)柱状劈裂破坏(见图15-1-2b):在发现圆锥形破坏的真正原因之后有人在上下压板与试件端面之间,涂上了一层薄薄的凡士林以减小接触面之间的摩擦力,最终岩石试件由于产生平行于所施加的轴向力的裂缝而破坏。