高中数学 函数的定义域与值域教案 新人教版
高一数学 函数的定义域和值域教案必修一
诚西郊市崇武区沿街学校高一数学必修1函数的定义域和值域
教学目的
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。
(2)掌握两个函数是同一函数的条件。
(3)会求简单函数的定义域和值域。
过程与方法
(1)通过对函数的概念的学习,初步探究客观世界中各种运动域数量间的互相依赖关系。
(2)使学生掌握求函数是=式的值得方法。
(3)培养批判思维才能、自我调控才能、交流与才能。
情感、态度与价值观
(1)懂得变化、联络、制约的辩证唯物主意观点。
(2)学会全面的观察、分析、研究问题。
重点难点
重点:符号“y=f(x)〞的含义。
难点:符号“y=f(x)〞的含义。
教法学法:讨论研究
教学用具:多媒体教学过程
板书设计
教学反思。
人教版数学高二-新课标 《函数的概念》 教学设计
1.2.1 函数的概念(第一课时)课 型:新授课 教学目标:(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的三要素;(3)能够正确使用“区间”的符号表示某些集合。
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、问题链接:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。
表示方法有:解析法、列表法、图象法. 二、合作探究展示: 探究一:函数的概念:思考1:(课本P 15)给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-。
B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见课本P 15图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
(见课本P 16表)讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为:对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B → 函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。
高中数学函数的定义域教案新人教A版必修
课题:函数的定义域目标:掌握函数的定义域的求法:①使式子有意义;②复合函数的定义域重,难点:函数的定义域的求法教学过程:一函数的定义域:①基本知识:函数的定义域_________取值集合,函数的值域取决于函数的_______和_______,研究函数问题应注意定义域优先的原则。
②求函数的定义域的主要依据:分式的分母_______________,偶次方根的被开方数____________;对数函数的真数__________;对数、指数函数的底数必须大于零且______.二、例题讲解:1、使式子有意义的x的集合例1、求下列函数的定义域∴定义域是空集,函数是虚设的函数(2)由函数式可得∴函数的定义域是{x|x=-1},定义域是一个孤立的点(-1,0)的横坐标(3)∵x2-4≠0∴x≠±2∴函数定义域为(-∞,-2)∪(-2,+2)∪(2,+∞)(4)从函数式可知,x应满足的条件为∴函数的定义域为2、复合函数的定义域的求法:例2、设f(x)的定义域为[0,2],求函数f(x+a)+f(x-a)(a>0)的定义域.解:∵f(x)定义域为[0,2]所以f(x+a)+f(x-a)中x应满足又∵a>0,若2-a≥a,则a≤1即0<a≤1时,f(x+a)+f(x-a)的定义域为{x|a≤x≤2-a}当a>1时,x∈评注求f(x)的定义域就是求使函数f(x)有意义的x的取值范围,定义域表示法有:不等式法,集合法,区间表示法等.三、课堂练习:1、求定义域(1)x y 11111++=(2)2322---=x x x y(3)y=24++x x (4) y=)13(log 28+-x a x(a>0且a ≠1) 2、若函数y=aax ax 12+-的定义域为_R ,则a 的范围是____________________。
3、函数f(x)=xx x -+0)1(的定义域为____________________4、已知f (x )的定义域为[-1,2],那么函数f(x+1)+f(x 2-1) 的定义域为_____________________.5、 知f (x )的定义域为[0,1],那么函数f(x 2) 的定义域为_____________________.6、 知f (x )的定义域为[0,1],求函数F(x)=f(x+a)+f(x-a)(-1/2<a ≤0) 的定义域。
函数的定义域与值域教案
函数的定义域与值域教学设计课题:函数的定义域和值域学科:数学授课教师: 数理19.4胡家华教材:高中必修1第一章第2节一、教学目标:1、知识目标:了解函数定义域和值域的定义,熟悉掌握简单函数定文域和值域的求法,会求抽象函数的定义域2、能力目标提高学生对函数工定义域、值域及相关问题的解题能力和运算能力,使学生准确而快速地求出函数定义域和值域3、情感目标通过由易到难的知识点层层递进和对各类题解题思路解法的不断运用掌握来提高学生的信心,二、教学重难点:求函数的定义域和值域,求抽象函数的定义域三、教学方法1.通过知识回顾引出新课,用学生熟悉的知识快速将学生的思绪从课间带回到课堂上来,同时也便于同学们更快的接受新知识,理解新概念。
2.通过提问和互动,使学生集中注意力,跟上老师的思路在思考和回答的过程中更好的理解和掌握新知识。
3.通过竞赛式随堂练习题,促进学生积极思考问题在解题的过程中不断巩固新知,并且让学生主动回答问题,加深同学的印象,同时提升学生的自信心。
四、教学过程1.知识回顾函数的概念:设A、B为非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A B为从集合A到集合B的一个函数记作:y=f(x),x∈A(其中X叫做函数的:自变量y叫做函数的函数值)2.新课引入定义域的概念:使函数有意义的自变量的取值范围,叫做函数的定义域。
值域的概念:函数值的集合,就叫做值域(明确“域”即集合,求函数的定义域值域时要表示成集合的形式)思考:上述函数y=f(x)的定义域是多少?f 那么值域呢?是否为B ?讨论得出,定义域为A ,值域不一定为B例: A B A C通过这个例子得出;f :A →B ,也可以表示成 : f :A →C即:函数:定义域 值域进而得出结论:(同时更好的理解定义域与值域的概率)函数的三要素:定义域、对应关系、值域俩个函数相等即:俩个函数的定义域相同,并且对应关系完全一致。
函数及定义域、值域求法教案
龙文教育一对一个性化辅导教案
学生学校年级高一次数第次科目数学教师侯忠职日期时段
课题函数及定义域、值域求法
教学重点1、理解并掌握函数和映射的概念和它们的异同点
2、理解定义域的概念,会求一些函数的定义域
3、理解值域的概念,会求一些函数的值域
教学难点1、函数与映射的异同点
2、求解函数的定义域和值域
教学目标1、掌握函数与映射的异同点
2、掌握函数定义域和值域的求法
教学步骤及教学内容一、教学衔接:
1、检查学生的作业,及时指点;
2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。
二、内容讲解:
知识点一:函数与映射
知识点二:函数的定义域
知识点三:函数的值域
拓展提升:高考真题
三、课堂总结与反思:
带领学生对本次课授课内容进行回顾、总结
四、作业布置:
复习教案所讲知识点,完成教案上的作业
管理人员签字:日期:年月日
作业布置1、学生上次作业评价:○好○较好○一般○差
备注:
2、本次课后作业:
见教案
课
堂
小
结
家长签字:日期:年月日。
统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计
1+x
所以所求函数的值域为(-1,1].
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
1.定义
3.1.1 函数的概念
例1 例2
例3 例4
例5
2.区间
七、作业
课本 67 页练习、72 页 1-5
本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的
题型三
区间
例 3 已知集合 A={x|5-x≥0},集合 B={x||x|-3≠0},则 A∩B 用区间可表示为
.
【答案】(-∞,-3)∪(-3,3)∪(3,5]
【解析】∵A={x|5-x≥0},∴A={x|x≤5}.
∵B={x||x|-3≠0},∴B={x|x≠±3}.
∴A∩B={x|x<-3 或-3<x<3 或 3<x≤5},
.
x+1
x+1
x+1
6
∵
4
≠0,∴y≠3,
x+1
3x-1
∴y=
的值域为{y|y∈R 且 y≠3}.
x+1
12 15
2
2
④(换元法)设 t= x-1,则 t≥0 且 x=t +1,所以 y=2(t +1)-t=2 t- + ,由 t≥0,再结合函
4 8
15
数的图象(如图),可得函数的值域为 ,+∞.
1.试判断以下各组函数是否表示同一函数: ①f(x)=
√x
x
x
,g(x)=x-1;
x
②f(x)= ,g(x)= ;
√x
2
③f(x)=√(x + 3) ,g(x)=x+3;
人教A版(2019)高中数学必修第一册第三章3.1函数的基本概念教案
函数的基本概念教学目标:1.理解函数的概念,掌握函数三要素及求法.2.掌握函数解析式的求法,以及同一函数的判断标准.3.学会转化与化归、数形结合思想.问题导入:1.函数的定义:一般地,设A,B 是非空的实数集,如果对于A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.注:判断对应关系是否为函数,主要从以下三个方面去判断:(1)A ,B 必须是非空实数集;(2)A 中任何一个元素在B 中必须有元素与其对应;(3)A 中任何一个元素在B 中的对应元素必须唯一.2.函数三要素:定义域、值域、对应关系 .定义域:x 叫做自变量,x 的取值范围A 叫做函数的定义域.值域:函数值的集合{}f (x )|x ∈A 叫做函数的值域同一函数:如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数. 注:函数定义域及值域的求法总结(1)常见函数求定义域:①分式函数中分母不为0;①偶次根式函数被开方式大于等于0;①对数函数的定义域大于0.(2)抽象函数求定义域:①已知原函数)(x f 的定义域为()b a ,,求复合函数()[]x g f 的定义域:只需解不等式b x g a <<)(,不等式的解集即为所求函数定义域.①已知复合函数()[]x g f 的定义域为()b a ,,求原函数)(x f 的定义域:只需根据b x a <<求出)(x g 的值域,即得原函数)(x f 的定义域.(3)求值域的常规方法ⓐ观察法:一些简单函数,通过观察法求值域.ⓑ配方法:“二次函数类”用配方法求值域.ⓒ换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数也可以用换元法代换求值域.ⓓ分离常数法:形如y =cx +dax +b (a ≠0)的函数可用此法求值域.ⓔ单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.ⓕ数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围. 3. 求函数解析式的方法(1)待定系数法:当函数的类型已知时,可设出函数解析式,根据条件列出方程(组),进而求得函数的解析式.(2)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(3)换元法:已知)]([x g f y =,求)(x f 的解析式:令)(x g t =,并写出t 的取值范围,用t 表示x ,再将用t 表示的x 回代入原式,求出解析式.(4)方程组法:已知关于f (x )与)(xf 1或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).4.分段函数的概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数被称为分段函数. 分段函数虽由几个部分组成,但它表示的是同一个函数.注:(1)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.(2) 分段函数是一个函数而不是几个函数,处理分段函数问题时,首先确定自变量的取值属于哪个区间,再选取相应的对应关系,离开定义域讨论分段函数是毫无意义的.知识点1:函数定义[例1] 下列图象中,可作为函数图象的是________.(填序号)[对点演练1]下列对应关系式中是A 到B 的函数的是( )A .A ⊆R ,B ⊆R ,x 2+y 2=1B .A ={-1,0,1},B ={1,2},f :x →y =|x |+1C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1知识点2:求函数的定义域和值域[例2] 下列选项中能表示同一个函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2[例3] 求下列函数的定义域.(1) y =2x -1-7x ;(2) y =(x +1)0x +2;(3) y =4-x 2+1x.[例4] 求下列函数的定义域:(1)已知函数的定义域为,求函数的定义域.(2)已知函数的定义域为,求函数的定义域. (3)已知函数的定义域为,求函数的定义域.[例5]求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2) y =1-x 21+x 2; (3)3254)(-+-=x x x f[对点演练2]1. 下列各组式子是否表示同一函数?为什么?(1) f (x )=|x |,φ(t )=t 2;(2) y =1+x ·1-x ,y =1-x 2;(3) y =(3-x )2,y =x -3.[2,2]-2(1)y f x =-(24)y f x =+[0,1]f (x)f (x)[1,2]-2(1)(1)y f x f x =+--2. 求下列函数的定义域.(1) y =(x +1)2x +1-1-x ;(2) y =2x 2-3x -2+14-x. 3.已知函数)(x f y =的定义域是]2,0[,那么)1lg(1)()(2++=x x f x g 的定义域是? 4. 求下列函数的值域(1)f(x)=x -3x +1;(2)f(x)=x 2-x x 2-x +1. (3)f(x)=x 2-1x 2+1;(4)f(x)=1x -x 2.知识点3:求函数解析式[例6]待定系数:若)(x f 是一次函数,[()]94f f x x =+,则)(x f = _________________.[例7].配凑:函数2(1)f x x -=,则函数()f x =[例8].换元:已知2(1)2f x x x +=+,求函数)(x f 的解析式为 .[例9] 方程组:已知函数()f x 满足()2()f x f x x --=-,则()f x =________.[对点演练3]1.若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________.2.若,,则( )A .9B .17C .2D .3()43f x x =-()()21g x f x -=()2g =3.已知函数2)1(2-=x x f ,则f (x )=________. 4.已知函数f (x )的定义域为(0,+∞),且f (x )=2)1(xf ·x -1,则f (x )=________.知识点4:分段函数[例10]. 已知函数f (x )=-x 2+2,g (x )=x ,令φ(x )=min{f (x ),g (x )}(即f (x )和g (x )中的较小者). (1)分别用图象法和解析式表示φ(x );(2)求函数φ(x )的定义域,值域.[对点演练4]2. 已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则函数f (x )的图象是()习题演练:1.下列四种说法中,不正确的一个是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3. 函数y =6-x|x |-4的定义域用区间表示为________.4. 若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()5.已知函数f (x )=x +3+1x +2.(1)求函数的定义域;(2)求f (-3),)32(f 的值; (3)当a >0时,求f (a ),f (a -1)的值.6.函数y =x +1+12-x 的定义域为________.7.已知函数()2y f x =-定义域是[]0,4,则()11f x y x +=-的定义域是 .8. 求下列函数的值域:(1)y =3x +1x -2; (2)y =52x 2-4x +3; (3)y =x +41-x9.已知)(x f 是一次函数且满足()())(,1721213x f x x f x f 求+=--+.10. 若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x 11. 已知函数()f x 满足()2()f x f x x --=-,则()f x =________.12. 定义在)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,求函数)(x f 的解析式.13.已知f (x )满足2f (x )+)1(xf =3x ,则f (x )的解析式为 .14.已知1)f x =+,求函数)(x f 的解析式.15.已知f (2x +1)=3x -4,f (a )=4,则a =________.。
函数的定义域和值域教案
函数的定义域和值域教案【教案】一、教学目标:1.了解函数的定义域和值域的概念;2.掌握求函数的定义域的方法;3.掌握求函数的值域的方法;4.能够应用所学知识解决实际问题。
二、教学内容:1.函数的定义域和值域的概念;2.求函数的定义域的方法;3.求函数的值域的方法;4.实际问题的应用。
三、教学过程:1.引入(1)复习巩固:复习一元一次方程和二元一次方程的求解方法。
(2)引入新知:通过实际问题引入函数的概念。
比如:某老师设置的体测项目中,小明的体重与身高呈正比关系,我们可以用函数的方式来表达这个关系。
2.教学展开(1)定义域- 介绍函数的定义域的概念:函数的定义域是指使函数有意义的自变量的取值集合。
- 通过例题讲解:比如给出函数f(x) = √(x + 2),问函数 f(x) 的定义域是什么?我们可以解方程x + 2 ≥ 0,得到x ≥ -2,所以函数的定义域为 [-2, +∞)。
(2)值域- 介绍函数的值域的概念:函数的值域是指因变量可能取到的值的集合。
- 通过例题讲解:比如给出函数 f(x) = x^2,问函数 f(x) 的值域是什么?我们可以通过计算函数的图像或者利用二次函数的性质知道,该函数的值域为[0, +∞)。
(3)求解定义域和值域的方法总结:- 定义域的求解方法:根据函数中涉及到的有限性、无理数和分式的限制条件,来确定定义域的范围。
- 值域的求解方法:根据函数的图像或者利用函数的性质来判断函数的取值范围。
3.实践应用通过实际问题的应用来巩固所学内容:(1)例题一:某物体下落的高度与时间的关系可以表示为函数 h(t) = 9.8t^2/2,其中 t 为时间,单位为秒。
请问该函数的定义域和值域分别是什么?- 解答:根据物理知识,时间 t 为正值,所以函数的定义域为 [0,+∞);而高度 h(t) 不会是负值,所以函数的值域为[0, +∞)。
(2)例题二:某商品的销售价格与销售数量的关系可以表示为函数 p(x) = 100 - 2x,其中 x 为销售数量,单位为件。
福建省高中数学新人教版必修一教案:1.2.1 函数的概念
三维目标构建〖知识与技能〗1、掌握一次函数、二次函数、反比例函数的定义域、值域,并会求一些简单函数的定义域和值域。
2、了解区间的意义,并进行区间、不等式与数轴表示的相互转化。
〖过程与方法〗进一步体会集合与对应关系在刻画函数概念中的作用,明确函数定义域在三要素中的地位与作用。
〖情感、态度、价值观〗培养学生分析、解决问题的能力,养成良好的学习习惯。
教学重、难点〖重点〗熟练掌握一次、二次函数与反比例函数的定义域和值域。
〖难点〗含字母参数与抽象函数的定义域的求解。
教学过程设计一、复习引入1、函数的概念:设A 、B 是非空的数集,如果按照某种确定的对应关系,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,则就称B A f →:为从集合A 到集合B 的一个函数,记作:A x x f y ∈=),(。
练习1:已知2()1f x x =+,求(1),(1),(1),(21)f f f a f x --+。
2、函数的三要素:定义域、对应法则、值域。
二、核心内容整合1、区间的概念:设a ,b 是两个实数,而且a <b ,我们规定:〔1〕满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a ,b ];〔2〕满足不等式a <x <b 的实数x 的集合叫做开区间,表示为〔a ,b 〕;〔3〕满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做半开半闭区间,表示为[a ,b >或<a ,b ]。
实数集R 可以用区间表示为〔-∞,+∞〕,"∞"读作"无穷大"。
满足x ≥ a ,x >a ,x ≤b ,x <b 的实数的集合分别表示为[a ,+∞>、<a ,+∞>、<-∞,b ]、<-∞,b >。
注意:① 区间是一种表示连续性的数集;② 定义域、值域经常用区间表示;③ 用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点。
【教案】1.2.1 第2课时 函数的定义域与值域-《新课程同步进阶(人教A版必修一》第一章集合与函数概念
第2课时函数的定义域与值域[目标] 1.了解构成函数的要素,理解函数相等的概念;2.会求简单函数的定义域与值域;3.会求形如f(g(x))的函数的定义域.[重点] 函数相等的概念,求函数的值域.[难点] 求函数的值域,求形如f(g(x))的函数的定义域.知识点一函数相等[填一填]1.条件:①定义域相同;②对应关系完全一致.2.结论:两个函数相等.[答一答]1.若两个函数的定义域和值域相同,它们是否为同一函数?对应关系和值域相同呢?提示:观察下表:对于f1(x)和f2(x),定义域和值域虽相同,但对应关系不同,故不是同一函数;对于f3(x)和f4(x),对应关系和值域虽相同,但定义域不同,故不是同一函数.知识点二函数的定义域[填一填]函数的定义域是使函数有意义的所有自变量的集合.求函数的定义域时,一般遵循以下原则:1.f(x)是整式时,定义域是全体实数的集合.2.f (x )是分式时,定义域是使分母不为0的一切实数的集合. 3.f (x )是偶次根式时,定义域是使被开方式为非负值的实数的集合. 4.零(负)指数幂的底数不能为零.5.对于含字母参数的函数,求其定义域时,需根据问题的具体情况对字母参数进行讨论.6.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.[答一答]2.函数f (x )=x -1x -2+(x -1)0的定义域为( D ) A .{x |x ≥1} B .{x |x >1}C .{x |1≤x <2或x >2}D .{x |1<x <2或x >2}解析:要使函数有意义,则只需⎩⎪⎨⎪⎧x -1≥0,x -2≠0,x -1≠0,解得1<x <2或x >2,所以函数的定义域为{x |1<x <2或x >2}.故选D.知识点三 函数的值域[填一填]求函数的值域是一个较复杂的问题,要首先明确两点:一是值域的概念,即对于定义域A 上的函数y =f (x ),其值域就是指其函数值的集合:{f (x )|x ∈A };二是函数的定义域、对应关系是确定函数的依据.另外,在求函数的值域时,要根据所给的函数的形式,采用相应的方法.[答一答]3.已知函数y =x 2,x ∈{0,1,2,-1},函数y =x 2的值域是什么?提示:当x =0时,y =0;当x =±1时,y =1;当x =2时,y =4.所以函数的值域是{0,1,4}.类型一 函数相等的判断[例1] 下列各组函数: ①f (x )=x 2-xx ,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是____________(填上所有正确的序号). [答案] ③⑤[解析] ①不同,定义域不同,f (x )定义域为{x |x ≠0},g (x )定义域为R .②不同,对应法则不同,f (x )=1x,g (x )=x .③相同,定义域、对应法则都相同.④不同,值域不同,f (x )≥0,g (x )∈R .⑤相同,定义域、对应法则都相同.讨论函数问题时,要保持定义域优先的原则.判断两个函数是否相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再化简函数的解析式,若解析式相同,则相等,否则不相等.[变式训练1] 下列各组中两个函数是否表示相等函数? (1)f (x )=6x ,g (x )=63x 3; (2)f (x )=x 2-9x -3,g (x )=x +3;(3)f (x )=x 2-2x -1,g (t )=t 2-2t -1.解:(1)g (x )=63x 3=6x ,它与f (x )=6x 定义域相同,对应关系也相同,所以是相等函数. (2)f (x )=x 2-9x -3=x +3(x ≠3),它与g (x )=x +3的定义域不同,故不是相等函数.(3)虽然自变量用不同的字母表示,但两个函数的定义域和对应关系都相同,故是相等函数.类型二 函数的定义域 命题视角1:求具体函数的定义域[例2] 求下列函数的定义域,结果用区间表示: (1)y =x +2+1x 2-x -6;(2)y =(x +1)0|x |-x .[解] (1)要使函数有意义,则有⎩⎪⎨⎪⎧ x +2≥0,x 2-x -6≠0⇒⎩⎪⎨⎪⎧x ≥-2,x ≠-2且x ≠3,故函数的定义域是(-2,3)∪(3,+∞).(2)要使函数有意义,必须满足⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,解得⎩⎪⎨⎪⎧x ≠-1,x <0,故函数的定义域是(-∞,-1)∪(-1,0).求函数的定义域就是求使函数式有意义的自变量的取值范围.当一个函数式由两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.[变式训练2] 求下列函数的定义域: (1)y =1-x +1x +5;(2)y =31-1-x.解析:(1)由已知得⎩⎪⎨⎪⎧1-x ≥0,x +5≠0,解得x ≤1且x ≠-5.所求定义域为{x |x ≤1且x ≠-5}.(2)由已知得⎩⎪⎨⎪⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.命题视角2:求抽象函数的定义域[例3] (1)已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. (2)已知函数f (2x +1)的定义域是[-1,4],求函数f (x )的定义域.[分析] 在对应关系相同的情况下, f (x )中x 应与f (g (x ))中g (x )的取值范围相同,据此可解答该题.[解] (1)由已知f (x )的定义域是[-1,4], 即-1≤x ≤4.故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32.∴f (2x +1)的定义域是⎣⎡⎦⎤-1,32. (2)由已知f (2x +1)的定义域是[-1,4],即f (2x +1)中,应有-1≤x ≤4,∴-1≤2x +1≤9. ∴f (x )的定义域是[-1,9].因为f (g (x ))就是用g (x )代替了f (x )中的x ,所以g (x )的取值范围与f (x )中的x 的取值范围相同.若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域是指满足不等式a ≤g (x )≤b 的x 的取值范围;而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ],要求f (x )的定义域,就是求x ∈[a ,b ]时g (x )的值域.[变式训练3] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( B )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以对于函数g (x )满足0≤2x ≤2,且x ≠1,故x ∈[0,1).类型三 求函数的值域[例4] 求下列函数的值域. (1)f (x )=3x -1,x ∈[-5,2); (2)y =2x +1,x ∈{1,2,3,4,5}; (3)y =x 2-4x +6,x ∈[1,5);(4)y =5x -14x +2.[解] (1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5). (2)∵x ∈{1,2,3,4,5},∴2x +1∈{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}. (3)y =x 2-4x +6=(x -2)2+2.∵x ∈[1,5),∴其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∴所求函数的值域为[2,11). (4)y =5x -14x +2=54(4x +2)-1-1044x +2=54(4x +2)-1444x +2=54-72(4x +2).∵72(4x +2)≠0,∴y ≠54,∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}.根据函数关系式,选择恰当的方法求函数的值域.(1)对于一次函数,已知自变量的取值范围,依据简单不等式的运算,求得函数的取值范围,即为函数的值域;(2)对于二次函数,可借助图象求函数的值域;(3)通过分离常数,借助反比例函数的特征求值域.无论哪种方法求值域,都应注意定义域的限制.[变式训练4] 求下列函数的值域: (1)y =2x +1,x ∈{0,1,3,4}; (2)y =xx +1;(3)y =x 2-4x ,x ∈[1,4]. 解:(1)∵y =2x +1,x ∈{0,1,3,4}, ∴y ∈{1,3,7,9}.(2)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0, ∴函数y =xx +1的值域为{y |y ≠1}.(3)配方,得y =(x -2)2-4. ∵x ∈[1,4],∴函数的值域为[-4,0].1.函数f (x )=x +1+12-x的定义域为( A ) A .[-1,2)∪(2,+∞) B .(-1,+∞) C .[-1,2)D .[-1,+∞)解析:由⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得x ≥-1且x ≠2.故选A.2.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( D ) A .{x |x ≥1} B .{x |x >1} C .{2,3}D .{2,5}解析:∵0<x ≤2且x ∈N *, ∴x =1或x =2. ∴f (1)=2,f (2)=5, 故函数的值域为{2,5}.3.若函数f (x )与g (x )=32-x -2是相等的函数,则函数f (x )的定义域是[2,6)∪(6,+∞).解析:∵2-x -2≠0,∴x ≠6,又x -2≥0,∴x ≥2,∴g (x )的定义域为[2,6)∪(6,+∞). 故f (x )的定义域是[2,6)∪(6,+∞).4.已知函数f (x )的定义域为{x |-1<x <1},则函数f (2x +1)的定义域为{x |-1<x <0}. 解析:因为f (x )的定义域为{x |-1<x <1}, 所以-1<2x +1<1,解得-1<x <0.所以f (2x +1)的定义域为{x |-1<x <0}. 5.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1; (2)y =5x +4x -1;(3)y =x -x +1.解:(1)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (2)函数的定义域为{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(3)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =(t -12)2-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}.——本课须掌握的三大问题1.两个函数当且仅当它们的三要素完全相同时才表示同一函数,根据它们之间的关系,判断两个函数是否为同一函数,主要看它们的定义域和对应法则是否相同.因为只要定义域相同,对应法则相同,则值域就相同.2.研究函数问题必须树立“定义域优先”原则.求函数定义域一般有三种类型:(1)函数来自实际问题的定义域;(2)已知函数解析式求定义域;(3)抽象函数求定义域.3.求值域的方法有:(1)观察法:根据定义域和对应关系求出;(2)数形结合法:作出函数的图象,然后求解;(3)配方法:配方求解;(4)分离常数法:添一项、减一项,分离出常数再求解;(5)换元法:可以将无理函数转换成有理函数再求解.学习至此,请完成课时作业7 学科素养培优精品微课堂 复合函数与抽象函数开讲啦 1.复合函数的概念如果函数y =f (t )的定义域为A ,函数t =g (x )的定义域为D ,值域为C ,则当C ⊆A 时,称函数y =f (g (x ))为f (t )与g (x )在D 上的复合函数,其中t 叫做中间变量,t =g (x )叫做内层函数,y =f (t )叫做外层函数.2.抽象函数的概念没有给出具体解析式的函数,称为抽象函数. 3.抽象函数或复合函数的定义域理解抽象函数或复合函数的定义域,要明确以下几点: (1)函数f (x )的定义域是指x 的取值范围.(2)函数f (φ(x ))的定义域是指x 的取值范围,而不是φ(x )的范围.(3)f (t ),f (φ(x )),f (h (x ))三个函数中的t ,φ(x ),h (x )在对应关系f 下的范围相同. [典例] 若函数f (x )的定义域为[0,1],求g (x )=f (x +m )+f (x -m )(m >0)的定义域. [解] ∵f (x )的定义域为[0,1],∴g (x )=f (x +m )+f (x -m )中自变量x 需满足⎩⎪⎨⎪⎧ 0≤x +m ≤1,0≤x -m ≤1,解得⎩⎪⎨⎪⎧-m ≤x ≤1-m ,m ≤x ≤1+m .当1-m =m ,即m =12时,x =12;当1-m >m ,即0<m <12时,如图1,m ≤x ≤1-m .当1-m <m ,即m >12时,如图2,x ∈∅.综上所述,当0<m <12时,g (x )的定义域为[m,1-m ];当m =12时,g (x )的定义域为⎩⎨⎧⎭⎬⎫12;当m >12时,函数g (x )的定义域为∅.[对应训练] 已知函数f (x +3)的定义域为[-4,5],则函数f (2x -3)的定义域为⎣⎡⎦⎤1,112. 解析:∵函数f (x +3)的定义域为[-4,5],∴-4≤x ≤5,∴-1≤x +3≤8,即函数f (x )的定义域为[-1,8].由-1≤2x -3≤8,解得1≤x ≤112.故函数f (2x -3)的定义域为⎣⎡⎦⎤1,112.。
高中数学《求函数的定义域与函数值》教案及说课稿
高中数学《求函数的定义域与函数值》教案及说课稿2.若自变量是参数,则讨论参数的范围,明确在定义域中的部分,则代入解析式表示出函数值。
巩固提高变式题已知函数f(x)=2x3,求f(1)+f(﹣1)的值小结作业方法总结,课后练习板书设计逐字稿:《求函数的定义域与函数值》教学设计逐字稿【开场白】谢谢评委老师,我试讲的题目是《求函数的定义域与函数值》,(板书标题)下面开始试讲。
师:上课,同学们好,请坐。
一、课堂引入师:上节课我们从集合对应的角度重新定义了函数,谁来举一个函数的例子?生:1:y=x2-1.师:没错,这是一个二次函数,说说它的定义域、值域分别是什么?能用集合表示吗?生:1:定义域是R,值域是大于等于﹣1,就是{x|x∈R},{y|y≥﹣1}.师:没错,看来这位同学对函数的概念、定义域与值域都掌握的很不错,下面我们继续学习求函数的定义域与函数值。
二、新课讲授(一)分析与解答师:同学们请看大屏幕的例题1:已知函数f(x)=,(1)求函数的定义域;(2)求f(﹣3),f()的值;(3)当a>0时,求f(a),f(a-1)的值。
(板书)师:根据题目先思考什么是定义域?生:2:自变量的范围,这个题里就是的范围。
师:没错,如果题目没有明确自变量的范围,那么函数的定义域就是指能使得这个式子有意义的实数的集合。
本题中使得解析式有意义的的范围是什么呢?生:3:根号里面的数是非负的,所以要x+3≥0,分母不为零,所以要x≠﹣2.师:条理很清晰,请坐。
同学们注意,这里要同时满足两个条件,也就是说使根式有意义的实数x的集合是{x|x≥﹣3},使分式有意义的实数x的集合是{x|x≠﹣2},所以函数的定义域是他们的交集,{x|x≥﹣3}{x|x≠﹣2},写成{x|x≥﹣3,且x≠﹣2}(板书)。
师:还有一个问题,f(x),f(﹣3),f(a)都表示什么含义?生:4:表示f乘x.师:哦,你有不同意见。
生:5:f(x)表示一个函数,f(﹣3)表示x=﹣3时候的函数结果,f(a)表示x=a时候的函数结果。
函数的定义域和值域教案模板
函数的定义域和值域教案模板【前导部分】(引入概念,简述重要性)函数的定义域和值域是数学中非常重要的概念。
函数的定义域指的是自变量的取值范围,而值域指的是函数在定义域内能够取到的所有函数值。
了解一个函数的定义域和值域,有助于我们理解函数的性质和应用,能够更好地解决与函数相关的问题。
【正文部分】一、定义域的概念及判定方法在介绍函数的定义域之前,我们先回顾一下函数的定义。
函数是一种将一个集合中的元素与另一个集合中的元素建立起对应关系的规则。
在函数的定义中,自变量是我们输入的元素,而函数值则是和输入元素对应的输出。
1. 定义域的概念函数的定义域是指在这个函数中,自变量可以取哪些值。
在数学中,我们通常用一组数的集合来表示定义域。
2. 判定定义域的方法a. 对于代数式函数,我们需要注意函数中是否存在某些禁止的运算,例如分母为零的情况,以及根号内是负数的情况;b. 对于分段函数,我们则需要考虑每一段函数的定义域,并求取它们的交集。
二、值域的概念及判定方法1. 值域的概念函数的值域是函数在定义域内可以取到的所有函数值所组成的集合。
换句话说,值域是函数在纵坐标上的投影。
2. 判定值域的方法针对不同类型的函数,我们有不同的方法来判定其值域:a. 对于线性函数,我们可以通过函数的斜率来判断值域的范围;b. 对于二次函数,我们可以观察其开口方向和顶点坐标,从而确定值域的区间;c. 对于三角函数,我们则需要根据其周期性、奇偶性等特点来判定值域;d. 对于指数函数和对数函数,我们需要注意底数和对数的取值范围等条件。
【拓展应用】函数的定义域和值域不仅仅在数学中有重要的应用,也在其他学科中发挥着重要的作用。
1. 物理学中的应用在物理学中,我们经常需要建立各种物理量之间的函数关系。
函数的定义域和值域在解决物理问题时能够帮助我们确定物理量的取值范围、判断物理规律的适用范围等。
2. 经济学中的应用在经济学中,函数的定义域和值域能够帮助我们确定经济模型中各个变量的取值范围,理解经济规律的限制条件,以及进行经济政策的制定和分析。
人教版高中数学教案-函数的定义域和值域
函數的定義域與值域 【學習目標】1. 掌握求常規函數的定義域與值域的方法。
2. 瞭解特殊情形下的函數的定義域與值域的求法。
3. 以極度的熱情投入學習,體會成功的快樂。
【學習重點】基本初等函數的定義域與值域的求法。
【學習難點】複合函數的定義域與值域的求法。
[自主學習] 一、定義域:1.函數的定義域就是使函數式 的集合. 2.常見的三種題型確定定義域:① 已知函數的解析式,就是 .② 複合函數f [g(x )]的有關定義域,就要保證內函數g(x )的 域是外函數f (x )的 域. ③實際應用問題的定義域,就是要使得 有意義的引數的取值集合. 二、值域:1.函數y =f (x )中,與引數x 的值 的集合.2.常見函數的值域求法,常用的方法有:①觀察法;②配方法;③反函數法;④不等式法;⑤單調性法;⑥數形法;⑦判別式法;⑧有界性法;⑨換元法 例如:① 形如y =221x +,可採用 法;② y =)32(2312-≠++x x x ,可採用 法或法;③ y =a [f (x )]2+bf (x )+c ,可採用 法;④ y =x -x -1,可採用 法;⑤ y =x -21x -,可採用 法;⑥ y =xx cos 2sin -可採用 法等.[典型例析](A )例1. 求下列函數的定義域:(1)y=xx x -+||)1(0; (2)y=232531x x -+-; (3)y=1·1-+x x變式訓練1:求下列函數的定義域: (1)y=212)2lg(x x x -+-+(x-1)0 ;(2)y=)34lg(2+x x +(5x-4)0; (3)y=225x -+lgcosx;( B)例2. 設函數y=f(x)的定義域為[0,1],求下列函數的定義域. (1)y=f(3x); (2)y=f(x1); (3)y=f()31()31-++x f x ; (4)y=f(x+a)+f(x-a).小結:(B)例3. 求下列函數的值域:(1)y=;122+--x x xx (2)y=x-x 21-; (3)y=1e 1e +-x x .(4)y=521+-x x; (5)y=|x|21x -.小結:(C)例4已知函數f(x)=x2-4ax+2a+6 (x∈R).(1)求函數的值域為[0,+∞)時的a的值;(2)若函數的值均為非負值,求函數f(a)=2-a|a+3|的值域.[當堂檢測]1.若函數)(x f y =的定義域為[-1,1],求函數)41(+=x f y )41(-⋅x f 的定義域__________。
新人教A版必修1高中数学§1.2.1函数的定义域与值域学案
高中数学 §1.2.1函数的定义域与值域学案 新人教A 版必修1学习目标:1. 会求一些简单函数的定义域与值域,并能用“区间”的符号表示;2. 掌握判别两个函数是否相同的方法.学习重点:求一些简单函数的定义域与值域 学习难点:求一些简单函数的定义域与值域知识链接:1、函数的三要素是 、 、 .2、求函数定义域的规则:①整式: ②分式: ③偶次根式: ④零次幂式: ⑤如果f (x )是由几个部分的数学式子构成的例题剖析:例1、下列函数中哪个与函数y=x 相等? (1)y = (x )2 ; (2)y = (33x ) ; (3)y =2x ; (4)y =x x 2小结:① 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关. 例2、 求下列函数的定义域 (用区间表示).(1)23()2x f x x -=-; (2)()f x (3)1()2f x x =-.例3、求下列函数的值域。
(1)y=2x-5 x ∈[-1,2]; (2) y =53x -+; (3)2()3x f x x -=+; (4)y =x 2-3x +4;(5)y =x 2-3x +4 x ∈[-1,2]; (6)y =x 2-3x +4 x ∈[2,4] ;求函数值域的常用方法有:观察法、配方法、拆分法、基本函数法. 当堂检测:1、判断下列函数()f x 与()g x 是否表示同一个函数,说明理由?① ()f x = 0(1)x -;()g x = 1. ② ()f x = x ; ()g x .③ ()f x = x 2;()g x = 2(1)x +. ④ ()f x = | x | ;()g x .2. 函数()1f x 的定义域是3. 函数2132x y x -=+的值域是( ). A. 11(,)(,)33-∞--+∞ B. 22(,)(,)33-∞+∞ C. 11(,)(,)22-∞--+∞ D. R4.求函数(0)ax by ac cx d +=≠+的值域.。
函数定义域,值域,解析式教案
授课目的:认识函数三要素,并且掌握求函数三要素的方法。
具体内容:函数的定义域、值域、解析式一、知识点1、定义域的概念和求法2、值域的概念和求法3、映射、对应法则分段函数:1、定义在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,叫做分段函数。
它是一类较特殊的函数。
2、分段函数问题例1、市内电话费是这样规定的:每打一次电话不超过3分钟话费为0.18元,超过3分钟而没有超过6分钟话费为0.36元;依次类推。
每次打电话x(0≤x ≤10 )分钟应付话费y 元,写出此函数的解析式并画出图像。
思路分析:由于是分段计费,因此所付话费y 必须用分段函数来表示。
解:依题意应付话费y 的解析式为 0.18(03)0.36(36)0.54(69)0.72(910)x x y x x ≤⎧⎪≤⎪=⎨≤⎪⎪≤⎩<<<< 期函数图像如右图所示 注:本题所列函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,需要用分段函数来表示。
应注意分段函数尽管在各段上的解析式不同,但分段函数是一个函数,而不是几个函数.例2、设定义在N 上的函数f (x )满足f (n )=⎩⎨⎧-+)]18([13n f f n ),2000(),2000(>≤n n 试求f (2008)的值。
解:∵2008>2000,∴f (2008)=f [f (2008-18)]=f [f (1990)]=f (1990+13)=f (2003)= f [f (2003-18)]=f(1985)=1985+13=1998。
练习、o x10 9 3 6 0.540.18 0.72 0.36 y 图3-2-2 [.3[2[1[∈∈⎧⎪∈⎨⎪∈⎩1、(改编题)函数f(x)=[x]的函数值表示不超过x 的最大整数,例如[-3.5]=-4,[2.1]=2,当x -2.5,0)时,则函数的解析式为 - x -2.5,-2)答案: f(x)=- x -2,-1)- x -1,0)2、已知f (x)=⎩⎨⎧<+≥-)6)(2()6(5x x f x x 则f (3)= .. 答案23.设函数1122,0(),0x x f x x x --⎧≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是A.(-1,1)B.(1,)-+∞C.(,2)(0,)-∞-⋃+∞D. (,1)(1,)-∞-⋃+∞ 答案:D三、本次课后作业:四、学生对于本次课的评价:○ 特别满意 ○ 满意 ○ 一般 ○ 差五、教师评定:1、 学生上次作业评价:○ 好 ○ 较好 ○ 一般 ○ 差2、 学生本次上课情况评价:○ 好 ○ 较好 ○ 一般 ○ 差。
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A版必修第一册
新教材高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念教学案新人教A 版必修第一册3.1.1 函数的概念(教师独具内容)课程标准:1.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.在此基础上学习用集合与对应的符号语言来刻画函数,体会对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求一些简单函数的定义域.教学重点:1.理解函数的定义,会求一些简单函数的定义域和值域.2.明确函数的两个要素,了解同一个函数的定义,会判定两个给定的函数是否是同一个函数.教学难点:1.对应关系f 的正确理解,函数符号y =f (x )的理解.2.抽象函数的定义域.3.一些简单函数值域的求法.【知识导学】知识点一 函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有□01唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作□02y =f (x ),x ∈A .其中,x 叫做□03自变量,x 的取值范围A 叫做函数的□04定义域;与x 的值相对应的y 值叫做□05函数值,函数值的集合{f (x )|x ∈A }叫做函数的□06值域.显然,□07值域是集合B 的子集. 注意:(1)两个非空实数集间的对应能否构成函数,主要看是否满足三性:任意性、存在性、唯一性.这是因为函数概念中明确要求对于非空实数集A 中的任意一个(任意性)元素x ,在非空实数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足便不能构成函数.(2)集合A 是函数的定义域,因为给定A 中每一个x 值都有唯一的y 值与之对应;集合B 不一定是函数的值域,因为B 中的元素可以在A 中没有与之对应的x ,也就是说,B 中的某些元素可以不是函数值,即{f (x )|x ∈A }⊆B .(3)在函数定义中,我们用符号y =f (x )表示函数,其中f (x )表示“x 对应的函数值”,而不是“f 乘x ”.知识点二 函数的两要素从函数的定义可以看出,函数有三个要素:□01定义域、□02对应关系、□03值域,由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:□04定义域和对应关系.即要检验给定的两个变量(变量均为数值)之间是否具有函数关系,只要检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值是否都有唯一的函数值y 和它对应.知识点三 区间的概念(1)设a ,b 是两个实数,而且a <b .我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做□01闭区间,表示为□02[a ,b ]; ②满足不等式a <x <b 的实数x 的集合叫做□03开区间,表示为□04(a ,b ); ③满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做□05半开半闭区间,分别表示为□06[a ,b ),(a ,b ].这里的实数a 与b 都叫做相应区间的□07端点. 实数集R 可以用区间表示为□08(-∞,+∞),“∞”读作“□09无穷大”,“-∞”读作“□10负无穷大”,“+∞”读作“□11正无穷大”. 我们可以把满足x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合,用区间分别表示为□12[a ,+∞),□13(a ,+∞),□14(-∞,b ],□15(-∞,b ). (2)区间的几何表示在用数轴表示区间时,用实心点表示□16包括在区间内的端点,用空心点表示□17不包括在区间内的端点.(3)含“∞”的区间的几何表示注意:(1)无穷大“∞”只是一个符号,而不是一个数,因而它不具备数的一些性质和运算法则.(2)以“-∞”或“+∞”为区间一端时,这一端必须用小括号. 知识点四 同一个函数如果两个函数的□01定义域相同,并且□02对应关系完全一致,即相同的□03自变量对应的□04函数值也相同,那么这两个函数是同一个函数.【新知拓展】(1)函数符号“y =f (x )”是数学中抽象符号之一,“y =f (x )”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,f (x )也不一定是解析式,还可以是图表或图象.(2)函数的概念中强调“三性”:任意性、存在性、唯一性,这是因为函数定义中明确要求是对于非空实数集A 中的任意一个(任意性)数x ,在非空实数集B 中都有(存在性)唯一确定(唯一性)的数y 和它对应,这“三性”只要有一个不满足,便不能构成函数.1.判一判(正确的打“√”,错误的打“×”)(1)函数值域中的每一个数都有定义域中的数与之对应.( ) (2)函数的定义域和值域一定是无限集合.( )(3)定义域和对应关系确定后,函数值域也就确定了.( )(4)若函数的定义域中只有一个元素,则值域中也只有一个元素.( )(5)对于定义在集合A 到集合B 上的函数y =f (x ),x 1,x 2∈A ,若x 1≠x 2,则f (x 1)≠f (x 2).( )答案 (1)√ (2)× (3)√ (4)√ (5)× 2.做一做(请把正确的答案写在横线上)(1)下列给出的对应关系f ,不能确定从集合A 到集合B 的函数关系的是________. ①A ={1,4},B ={-1,1,-2,2},对应关系:开平方; ②A ={0,1,2},B ={1,2},对应关系:③A =[0,2],B =[0,1],对应关系:(2)下列函数中,与函数y =x 是同一个函数的是________. ①y =x 2;②y =3x 3;③y =(x )2;④s =t . 答案 (1)①③ (2)②④题型一 求函数的定义域 例1 求下列函数的定义域: (1)y =2x +3;(2)f (x )=1x +1;(3)y =x -1+1-x ;(4)y =x +1x 2-1;(5)y =(1-2x )0. [解] (1)函数y =2x +3的定义域为{x |x ∈R }.(2)要使函数式有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(3)要使函数式有意义,则⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥1,x ≤1,所以x =1,从而函数的定义域为{x |x =1}.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以函数的定义域是{x |x ≠±1}. (5)∵1-2x ≠0,即x ≠12,∴函数的定义域为{|x x ≠12}.例2 已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. [解] 已知函数f (x )的定义域是[-1,4],即-1≤x ≤4. 故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32,∴函数f (2x +1)的定义域是⎣⎢⎡⎦⎥⎤-1,32. 例3 如图所示,用长为1 m 的铁丝做一个下部为矩形、上部为半圆形的框架(铁丝恰好用完),若半圆的半径为x (单位:m),求此框架围成的面积y (单位:m 2)与x 的函数关系式.[解] 由题意可得,AB =2x ,CD ︵的长为πx , 于是AD =1-2x -πx2,∴y =2x ·1-2x -πx 2+πx 22,即y =-π+42x 2+x .由⎩⎪⎨⎪⎧2x >0,1-2x -πx2>0,得0<x <1π+2,∴此函数的定义域为⎝ ⎛⎭⎪⎫0,1π+2. 故所求的函数关系式为y =-π+42x 2+x ⎝ ⎛⎭⎪⎫0<x <1π+2.金版点睛求函数定义域的基本要求(1)整式:若y =f (x )为整式,则函数的定义域是实数集R .(2)分式:若y =f (x )为分式,则函数的定义域为使分母不为0的实数集.(3)偶次根式:若y =f (x )为偶次根式,则函数的定义域为被开方数非负的实数集(特别注意0的0次幂没有意义).(4)几部分组成:若y =f (x )是由几部分数学式子的和、差、积、商组成的形式,定义域是使各部分都有意义的集合的交集.(5)对于抽象函数的定义域:①若f (x )的定义域为[a ,b ],则f [g (x )]中,g (x )∈[a ,b ],从中解得x 的解集即f [g (x )]的定义域.②若f [g (x )]的定义域为[m ,n ],则由x ∈[m ,n ]可确定g (x )的范围,设u =g (x ),则f [g (x )]=f (u ),又f (u )与f (x )是同一个函数,所以g (x )的范围即f (x )的定义域.③已知f [φ(x )]的定义域,求f [h (x )]的定义域,先由f [φ(x )]中x 的取值范围,求出φ(x )的取值范围,即f (x )中的x 的取值范围,即h (x )的取值范围,再根据h (x )的取值范围便可以求出f [h (x )]中x 的取值范围.(6)实际问题:若y =f (x )是由实际问题确定的,其定义域要受实际问题的约束.如:例3中,任何一条线段的长均大于零.[跟踪训练1] (1)若函数f (x +1)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则函数f (x -1)的定义域为________;(2)求下列函数的定义域:①y =(x +1)2x +1-1-x ;②y =x +1|x |-x ;(3)①求函数y =5-x +x -1-1x 2-9的定义域; ②将长为a m 的铁丝折成矩形(铁丝恰好用完),求矩形的面积y (单位:m 2)关于一边长x (单位:m)的解析式,并写出此函数的定义域.答案 (1)⎣⎢⎡⎦⎥⎤32,4 (2)见解析 (3)见解析解析 (1)由题意知,-12≤x ≤2,则12≤x +1≤3,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,3,∴12≤x -1≤3,解得32≤x ≤4.∴f (x -1)的定义域为⎣⎢⎡⎦⎥⎤32,4.(2)①要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,即⎩⎪⎨⎪⎧x ≠-1,x ≤1,∴函数的定义域为{x |x ≤1,且x ≠-1}.②要使函数有意义,需满足|x |-x ≠0,即|x |≠x , ∴x <0.∴函数的定义域为{x |x <0}. (3)①解不等式组⎩⎪⎨⎪⎧5-x ≥0,x -1≥0,x 2-9≠0,得⎩⎪⎨⎪⎧x ≤5,x ≥1,x ≠±3.故函数的定义域是{x |1≤x ≤5,且x ≠3}.②因为矩形的一边长为x ,则另一边长为12(a -2x ),所以y =x ·12(a -2x )=-x 2+12ax ,定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <a 2. 题型二 已知函数值求自变量的值例4 已知函数f (x )=2x 2-4,x ∈R ,若f (x 0)=2,求x 0的值. [解] 易知f (x 0)=2x 20-4, ∴2x 20-4=2,即x 20=3. 又∵x 0∈R ,∴x 0=± 3. 金版点睛就本例而言,已知函数值求自变量的值就是解方程,需要注意:所求的自变量的值必须在函数的定义域内.如果本例中加一个条件“x ∈[0,+∞)”,则x 0=3(-3不符合题意,舍去).[跟踪训练2] 已知函数f (x )=x 2-2x ,x ∈(-∞,0),若f (x 0)=3.求x 0的值. 解 由题意可得f (x 0)=x 20-2x 0. ∴x 20-2x 0=3,即x 20-2x 0-3=0. 解得x 0=3或x 0=-1.又∵x 0∈(-∞,0),∴x 0=-1. 题型三 已知自变量的值求函数值 例5 已知f (x )=x 2,x ∈R ,求: (1)f (0),f (1); (2)f (a ),f (a +1).[解] (1)f (0)=02=0,f (1)=12=1. (2)∵a ∈R ,a +1∈R , ∴f (a )=a 2,f (a +1)=(a +1)2. 金版点睛对于函数定义域内的每一个值,都可以求函数值(当然函数值唯一),本例可以直接应用公式:f (x )=x 2求解,实质上就是求代数式的值,例如f (1)就是当x =1时,代数式x 2的值,而f (a +1)就是当x =a +1时,代数式x 2的值.[跟踪训练3] 已知f (x )=x +1x +1,求: (1)f (2);(2)当a >0时,f (a +1)的值. 解 (1)f (2)=2+13.(2)易知f (x )的定义域A =[0,+∞), ∵a >0,∴a +1>1,则a +1∈A , ∴f (a +1)=a +1+1a +2. 题型四 求函数的值域 例6 求下列函数的值域: (1)y =x +1,x ∈{1,2,3,4,5}; (2)y =x 2-2x +3,x ∈[0,3); (3)y =2x +1x -3;(4)y =2x -x -1.[解] (1)(观察法)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.(2)(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(3)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x -3≠0,所以y ≠2. 故函数的值域为(-∞,2)∪(2,+∞).(4)(换元法)设t =x -1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t=2⎝ ⎛⎭⎪⎫t -142+158,由t ≥0,再结合函数的图象(如右图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞. 金版点睛求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算法则确定其值域. (2)常用方法①观察法:对于一些比较简单的函数,其值域可通过观察法得到. ②配方法:是求“二次函数”类值域的基本方法.③换元法:运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且ac ≠0)型的函数常用换元法.④分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域.[跟踪训练4] 求下列函数的值域: (1)y =xx +1;(2)y =x 2-4x +6,x ∈[1,5); (3)y =x +x +1. 解 (1)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0,∴函数y =xx +1的值域为{y |y ≠1}.(2)配方,得y =(x -2)2+2. ∵x ∈[1,5),∴结合函数的图象可知,函数的值域为{y |2≤y <11}. (3)(换元法)设t =x +1,则x =t 2-1,且t ≥0,所以y =t 2+t -1=⎝ ⎛⎭⎪⎫t +122-54,由t ≥0,再结合函数的图象可得函数的值域为[-1,+∞). 题型五 相同函数的判断例7 下列各组函数表示同一函数的是( ) A .f (x )=x ,g (x )=(x )2B .f (x )=x 2+1,g (t )=t 2+1 C .f (x )=1,g (x )=x xD .f (x )=x ,g (x )=|x |[解析] A 项中,由于f (x )=x 的定义域为R ,g (x )=(x )2的定义域为{x |x ≥0},它们的定义域不相同,所以它们不是同一函数.B 项中,函数的定义域、值域和对应关系都相同,所以它们是同一函数.C 项中,由于f (x )=1的定义域为R ,g (x )=x x的定义域为{x |x ≠0},它们的定义域不相同,所以它们不是同一函数.D 项中,两个函数的定义域相同,但对应关系不同,所以它们不是同一函数. [答案] B 金版点睛判断两个函数为同一函数的条件(1)判断两个函数是相同函数的准则是两个函数的定义域和对应关系分别相同.定义域、对应关系两者中只要有一个不相同就不是相同函数,即使定义域与值域都相同,也不一定是相同函数.(2)函数是两个实数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的.另外,在化简解析式时,必须是等价变形.[跟踪训练5] 下列函数中哪个与函数y =x 相同?(1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x.解 (1)y =(x )2=x (x ≥0),y ≥0,定义域不同且值域不同,所以不相同. (2)y =3x 3=x (x ∈R ),y ∈R ,对应关系相同,定义域和值域都相同,所以相同. (3)y =x2=|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,y ≥0;值域不同,且当x <0时,它的对应关系与函数y=x 不相同,所以不相同.(4)y =x 2x的定义域为{x |x ≠0},与函数y =x 的定义域不相同,所以不相同.1.下列各图中,可能是函数y =f (x )的图象的是( )答案 D解析 A ,B 中的图象与y 轴有两个交点,即有两个y 值与x =0对应,所以A ,B 不可能是函数y =f (x )的图象;对于C 中图象,过x =1作与x 轴垂直的直线,与图象有两个交点,所以C 不可能是函数y =f (x )的图象.故选D.2.函数f (x )=x +2-x 的定义域是( )A .{x |x ≥2} B.{x |x >2}C .{x |x ≤2} D.{x |x <2}答案 C解析 要使函数式有意义,则2-x ≥0,即x ≤2.所以函数的定义域为{x |x ≤2}.3.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 ∵原函数的定义域为(-1,0),∴-1<2x +1<0,解得-1<x <-12. ∴函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. 4.已知函数f (x )=x 2-2ax +5的定义域和值域都是[1,a ],则a =________.答案 2解析 因为f (x )=(x -a )2+5-a 2,所以f (x )在[1,a ]上是减函数,又f (x )的定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧ 1-2a +5=a ,a 2-2a 2+5=1,解得a =2. 5.已知函数f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ,f (a +1); (2)若f (x )=5,求x . 解 (1)f (2)=22+2-1=5,f ⎝ ⎛⎭⎪⎫1x =1x 2+1x -1=1+x -x 2x 2, f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0,解得x =2或x =-3.。
【参考教案2】《函数的概念》(数学人教版必修一)
《函数的概念》教材分析函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目标(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重难点【教学重点】理解函数的模型化思想,用合与对应的语言来刻画函数;【教学难点】符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关。
新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function)。
记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。
高中数学 函数的定义域和值域教案 新人教A版必修1
专题三 求函数的定义域、值域的常用方法 高考要求 函数的值域及其求法是近几年高考考查的重点内容之一 本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题 重难点归纳(1)求函数的值域 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强题型综合训练:1、求下列函数的定义域(1)2log (2)y x =+ (2)y =2、若函数()y f x =的定义域是[0, 2],求函数2()()1f xg x x =-的定义域。
3、设2()lg 2x f x x +=-,求2()()2x f f x+的定义域。
4、求下列函数的值域(1)22y x x =+ (2)|1||4|y x x =-++(3)2121x x y +=- (4)2y x =+5、用min(,,)a b c 表示,,a b c 三个数中的最小值,设()min{2,2,10}x f x x x =+-(0)x ≥,求()f x 的最大值。
6、设函数21()2f x x x =++的定义域是[,1]()n n n N +∈,那么在()f x 的值域中共有多少个整数?8、已知实数,x y 满足22410x y x +-+=,求y x的取值范围。
9、已知实数,x y 满足10x y ++=,求22x y +的最小值。
10、求下列函数的值域(1))4(log 221x x y -= (2) x x y 2231+-⎪⎭⎫ ⎝⎛=11、(1)求函数x x y -+-=53 的值域。
(2)求函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义域与值域
例1.下列各组函数中,表示同一函数的是( ).
A. 1,x
y y x ==
B. 11,y x y
+C.
,y x y ==
2||,y x y == 解:
变式训练1:下列函数中,与函数
y=x 相同的函数是 ( ) A.y=
x
x 2
x
)
2x
D.y=x 2lo g 2
解:
变式训练2:下列是映射的是………………………………………( )
(A)1、
2、
3 (B)1、
2、5 (C)1、
3、5 (D)1、2、3、5 变式训练3:下面哪一个图形可以作为函数的图象……………………( )
(A) (B) (C) (D)
变式训练4:如果(x ,y )在映射f 下的象为(x +y ,x -y ),那么(1,2)的原象是…………( ) (A )(-23,21) (B) (23,-21) (C) (-23,-21) (D) (23,2
1
)
例2.给出下列两个条件:(1)f(x +1)=x+2x
(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式
解:(1)令t=x +1,∴t≥1,x=(t-1)
2
则f(t)=(t-1)2+2(t-1)=t 2-1,即f(x)=x 2
-1,x∈[1,
(2)设f(x)=ax
2
∴f(x+2)=a(x+2)2
+b(x+2)+c
则f(x+2)-
∴⎩⎨
⎧=+=2244
4b a a ,
⎩⎨
⎧-==1
1b a ,又f(0)=3⇒c=3,∴f(x)=x 2
-
变式训练2:(1)已知f (12+x
)=lgx ,求f (x );
(2)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x )
; (3)已知f (x )满足2f (x )+f (x
1
)=3x ,求f (x
)
解:(1)令
x
2+1=t ,则x=12
-t ,
∴f(t )=lg
12
-t ,∴f(x )=lg 1
2-
x
(2)设f (x )=ax+b ,则
3f (x+1)-2f (x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17, ∴a=2,b=7,故f (x )=2x+7. (3)2f (x )+f (
x
1
)=3x ,
①
把①中的x 换成
x 1,得2f (x 1)+f (x )=x
3
①×2-②得3f (x )=6x-
x 3,∴f(x )=2x-x
1
.
变式训练3:求满足下列条件的函数解析式: ⑴2
1)11(x x
x f -=+ ⑵)(,14))((x f x x f f -=是一次函数.
例3、已知函数f(x)=⎪⎪
⎩⎪⎪⎨⎧<-=>.
0,1,0,
1,0,2x x
x x x
(1)画出函数的图象;(2)求f(1),f(-1),f [])1(-f 的值.
解:(1)分别作出f(x)在x >0,x=0,x <0段上的图象,如图所示,作法略. (2)f(1)=12
=1,f(-1)=-,11
1
=-f [])1(-f =f(1)=1.
变式训练:⎪⎩
⎪⎨⎧≥<<--≤+=2 221 1 |1|)(2
x x x x x x x f ,那么f (f (-2))= ;如果f (a)=3,那么实数
a= .
例4、求下列函数的定义域: (1)y=
x
x x -+||)1(0 (2)y=
23
2
53
1
x x -+-;
1
·1-+x x
解:(1)由题意得,0
||0
1
⎩⎨⎧>-≠+x x x 化简得,||1⎩⎨
⎧>-≠x x x 即.01
⎩
⎨
⎧<-≠x x 故函数的定义域为{x|x <0且x≠-
(2)由题意可得,05032
2⎩⎨⎧≥-≠-x x 解得.553
⎪⎩
⎪⎨⎧≤≤-±≠x x
故函数的定义域为{x|-5≤x≤5且x≠±3
(3)要使函数有意义,必须有
,0
10
1⎩⎨
⎧≥-≥+x x 即,11⎩⎨⎧≥-≥x x ∴x≥1,故函数的定义域为[1,+∞)
例5、设函数y=f(x)的定义域为[0,1],求下列函数的定义域
(1)y=f(3x); (2)y=f(
x
1
(3)y=f()
3
1()31-++x f x (4)y=f(x+a)+f(x-
例6、若函数f (x )=2
1
x 2
-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值
解:∵f(x )=2
1(x-1)2
+a-2
1.
∴其对称轴为x=1,即[1,b ]为f (x )的单调递增区间. ∴f(x )min =f (1)=a-2
1=1 ① f (x )max =f (b )=2
1b 2
-b+a=b ②
由①②解得⎪⎩
⎪⎨⎧
==.3,
23b a。