(完整版)频率分布直方图题型归纳-邓永海,推荐文档
高中数学总结归纳 帮你理解频率分布直方图
帮你理解频率分布直方图通过频率分布表,我们可以确切地知道数据分布在各个不同区间的频率,而通过频率分布直方图我们可以直观地看出数据分布的总体态势,两者相互补充,可以使我们对数据的频率分布情况了解的更加清楚,但在画频率分布直方图时,一定要注意其纵轴的意义.例给出如下样本数据:10,8,6,10,8,13,11,10,12,7,8,9,11,9,11,12,9,10,11,12,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中作出频率分布直方图.错解:(1)频率分布表如下:12(2)频率分布直方图如下:剖析:以上第(2)问的频率分布直方图画错了.原因在于纵轴单位是,而不是频率.例如当数据在[9.5,11.5)时,频率为0.4,而频率组距0.40.22==.故图中最高的这个矩形的高度应为0.2个单位,而不是0.4个单位,其他小矩形的高度可依此求出来. 正解:(1)同上.(2)频率分布直方图如下:[)11.513.5, 4 0.2 合计201.0点悟:频率分布直方图中,各个小长方形的面积等于相应各组的频率,因为各组频率之和为1,故所有长方形面积之和等于1.根据这一点,也可以判断你画出的频率分布直方图是否正确.练习:为了了解某校高三年级男生的身高情况,随机抽取40名高三男生的身高,所得数据如下(单位:cm):171,163,163,166,166,168,168,160,168,165,171,169,167,169,151,168,170,160,168,174,165,168,174,159,167,156,157,164,169,180,176,157,162,161,158,164,163,163,167,161.(1)列出频率分布表;(2)画出频率分布直方图.提示:确定组距和组数是解决该类问题的出发点.只有科学合理的确定组距和组数,才能准确的制表及绘图.3。
八年级数学下册52频数直方图例析频数分布直方图的读与补素材(新版)湘教
八年级数学下册52频数直方图例析频数分布直方图的读与补素材(新版)湘教与频数分布直方图有关的中考题,主要有如下两种题型,下面举例说明这类问题的解法.一、读直方图例1 某市为了节约生活用水,计划制定每位居民统一的月用水量标准,然后根据标准,实行分段收费,为此,对居民上年度的月均用水量进行了抽样调查,并根据调查结果绘制了上年度月均用水量的频数分布直方图(图中分组含最低值,不含最高值),请根据图1中信息解答下列问题:(1)本次调查的居民人数为人;(2)月用水量在_______范围内的居民人数最多?(3)当地政府希望让85%左右居民的月均用水量低于制定的月用水量标准,根据上述调查结果,你认为月用水量标准(取整数)定为多少吨时较为合适?分析:(1)从直方图中可以直接观察到月用水量在各个范围内的居民人数,将各人数相加即可;(2)观察图1,可知在2~2.5吨的人数最多;(3)先算出85%居民的人数,再确定月用水量标准.解:(1)本次调查的居民人数为4+8+15+22+25+12+8+4+2=100(人);(2)在2~2.5吨的居民人数最多是25人;(3)因为100×85%=85人,而月用水量低于3吨的居民人数4+8+15+22+25+12=86人所以居民月用水量标准定为3吨较为合适.图1温馨提示:依据直方图信息解决实际问题,应通过观察弄清统计图横轴和纵轴所表示的意义,及每组数据所对应的长方形的高度,再根据题目要求获取适当的信息.二、补直方图例2 光明中学组织全校1 000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如下的频数分布表和如图2的频数分布直方图(不完整).请根据以上提供的信息,解答下列问题:(1)直接写出频数分布表中a,b ,c 的值,补全频数分布直方图;(2)若80分为优秀,那么这次知识竞赛的优秀率是多少?(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校1 000名学生中约有多少名获奖?分析:(1)根据频数、频率和总数三者之间的关系,先求出总数c,再求出a,然后利用各组频率之和为1,求出第二小组的频率,进而求出b.要补全直方图,再求出第三小组的频数即可;(2)由第四、五小组频率之和可得优秀率;(3)由频数分布表知,可估计全校1 000名学生成绩在90.5~100.5分之间的频率为0.37,由此可估计出获奖数.解:(1)c=52÷0.26=200,a=10÷200=0.05,b=200×(1-0.05-0.2-0.26-0.37)=24. 而70.5~80.5小组的频数为200×0.2=40,50.5~60.5小组的频数为10,由此可补全直方图(图2中的灰色长方形);(2)优秀率为0.26+0.37=0.74=74%;(3)估计全校1 000名学生中获奖人数约有1000×0.37=370(人).温馨提示:补全频数分布图表类的问题,通常是借助频数分布图、表的现有信息,根据频数、频率和总数之间的关系及小长方形的高与频数的关系等来补全频数分布图、表.。
频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc
频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc答案与评分标准一、选择题(共20小题)1、夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是()A、50B、25C、15D、102、为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A、0.1B、0.2C、0.3D、0.4考点:频数(率)分布直方图。
分析:频率=,从直方图可知在5.5~6.5组别的频数是8,总数是40可求出解.解答:解:∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.点评:本题考查频数分布直方图,从直方图上找出该组的频数,根据频率=,可求出解.3、某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A、0.1B、0.17C、0.33D、0.4考点:频数(率)分布直方图。
专题:应用题;图表型。
分析:首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总次数(30)即可得到仰卧起坐次数在25~30之间的频率.解答:解:∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,而仰卧起坐总次数为:3+10+12+5=30,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.4.故选D.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A、0.1B、0.15C、0.25D、0.3考点:频数(率)分布直方图。
(完整word版)频率分布与直方图练习题.doc
频率分布直方图练习题1.(2009 山东卷 )某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品频率 /组距净重的范围是[96 , 106] ,样本数据分组为 [96 ,98), [98,100),0.1500.125[100 , 102), [102 ,104),[104 , 106], 已知样本中产品净重小于x100 克的个数是 36,则样本中净重大于或等于98 克并且0.075 0.050小于 104 克的产品的个数是( ).A.90B.75C. 60D.45 96 98 100 102 104 106 克2.( 2011 杭州质检)某初一年级有500 名同学,将他们的身高(单位: cm)数据绘制成频率分布直方图(如图),若要从身高在 120,130 , 130,140 , 140,150 三组内的学生中,用分层抽样的方法选取30 人参加一项活动,则从身高在 130,140 内的学生中选取的人数为.3(. 2009 湖北卷)下图是样本容量为200 的频率分布直方图。
根据样本的频率分布直方图估计,样本数据落在【6, 10】内的频数为,数据落在( 2,10)内的概率约为。
4(. 2011 华附月考)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1, 0.3, 0.4,第一小组的频数为 5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数、平均数及方差。
5.(2011 惠·州研 )右是 2010 年在惠州市行的全省运会上,七位委某跳水比目打出的分数的茎叶,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分()A . 84, 4.84 B. 84, 1.6C. 85, 1.6 D. 85, 4 798 4 4 6 4 79 36. 2011佛山一)某班同学利用国行社会践,[25,55]的人群随机抽取 n 人(行了一次生活是否符合低碳念的,若生活符合低碳念的称“低碳族”,否称“非低碳族”,得到如下表和各年段人数率分布直方:(Ⅰ)全率分布直方并求n 、 a 、p的;(Ⅱ)略7.下甲是某市当地干部的月收入情况后画出的本率分布直方,已知甲中从左向右第一的数4000.在本中月收入在[1000,1500),[1500 ,2000),[2000,2500),[2500,3000),[3000 ,3500),[3500,4000]的人数依次 A 1、A 2、⋯、A 6.乙是甲中月工收入在一定范内的人数的算法流程,本的容量n= _________ ;乙出的 S= _________ .(用数字作答)8.了了解某地区高三学生的身体育情况,抽了地区100 名年 17.5 ~ 18 的男生体重( kg),得到率分布直方如下:根据上可得100 名学生中体重在[ 56.5,64.5)的学生人数是.9.某班 50 名学生在一次百米中,成全部介于13 秒与19 秒之,将果按如下方式分成六:第一,成大于等于13 秒且小于14 秒;第二,成大于等于14 秒且小于 15 秒;⋯⋯第六,成大于等于18 秒且小于等于 19 秒 .右是按上述分方法得到的率分布直方.成小于17 秒的学生人数占全班人数的百分比x, 成大于等于15 秒且小于17 秒的学生人数y,从率分布直方中可分析出x 和 y 分.10.在学校开展的合践活中,某班行了小制作比,作品上交 5 月 1 日至 30 日,委会把同学上交作品的件数按 5 天一分,制了率分布直方(如所示),已知从左到右各方形高的比2∶ 3∶ 4∶ 6∶ 4∶ 1,第三的数12,解答下列:(1)本次活共有多少件作品参加比?(2)哪上交的作品数量最多?有多少件?(3)比,第四和第六分有10 件、 2 件作品,两哪率高?11.了了解高一学生的体能情况,某校抽取部分学生行一分跳次数,将所得数据整理后,画出率分布直方(如所示),中从左到右各小方形面之比2∶ 4∶ 17∶ 15∶ 9∶ 3,第二小数12. (1)第二小的率是多少?本容量是多少?(2)若次数在 110 以上(含 110 次)达,估学校全体高一学生的达率是多少?。
(学习指导) 频率分布直方图Word版含解析
3.2频率分布直方图学习目标核心素养1.学会用频率分布表,画频率分布直方图表示样本数据.(重点)2.能通过频率分布表或频率分布直方图对数据做出总体统计.(难点、易混点)1.通过对频率分布直方图画法的学习,培养数据分析素养.2.通过与频率分布直方图有关的计算,培养数学运算素养.频率分布直方图中每个矩形的底边长是该组的组距,矩形的高是该组的频率与组距的比,从而矩形的面积等于这个组的频率,即矩形的面积=组距×频率组距=频率.我们把这样的图叫作频率分布直方图.频率分布直方图以面积的形式反映了数据落在各个小组的频率的大小.2.频率分布直方图的应用当考虑数据落在若干个组内的频率之和时,可以用相应矩形面积之和来表示.3.画频率分布直方图的步骤(1)计算极差:即一组数据中最大值和最小值的差;(2)确定组距与组数:当数据在120个以内时,通常按照数据的多少分成5~12组,在实际操作中,一般要求各组的组距相等.(3)分组:按组距将数据分组,分组时,各组均为左闭右开区间,最后一组是闭区间.(4)列表:一般分四列:宽度分组、频数、频率、频率组距.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:画图时,应以横轴表示分组,纵轴表示频率组距组距上的频率等于该组上的小长方形的面积.即每个小长方形的面积=组距×频率组距=频率.4.频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.有时也用它来估计总体的分布情况.随着样本容量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.思考:1.为什么需要用频率分布直方图对原始数据进行整理?[提示]因为通过抽样获得的原始数据多而且杂乱,无法直接从中理解它们的含义,并提取信息,也不便于我们用它来传递信息.正因为如此我们才用频率分布直方图来整理数据.2.为什么要对样本数据进行分组?[提示]不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.1.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为()A.20B.30C.40D.50B[样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.]2.已知样本10,8,10,8,6,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频率为0.2的范围是()A.5.5~7.5 B.7.5~9.5C.9.5~11.5 D.11.5~13.5D[由题意知,共20个数据,频率为0.2,在此范围内的数据有20×0.2=4个,只有在11.5~13.5范围内有4个数据:13,12,12,12,故选D.]3.某地为了了解该地区10 000户家庭的用电情况,采用分层随机抽样的方法抽取了500户家庭的月平均用电量,并根据这500户家庭的月平均用电量画出频率分布直方图如图所示,则该地区10 000户家庭中月平均用电度数在[70,80)的家庭有________户.1 200[根据频率分布直方图得该地区10 000户家庭中月平均用电度数在[70,80)的家庭有10 000×0.012×10=1 200(户).]频率分布直方图的绘制【例1】考察某校初二年级男生的身高,随机抽取40名初二男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 160 168 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图和频率折线图.[解](1)最低身高151,最高身高180,它们的极差为180-151=29.确定组距为3,组数为10,列表如下:(2)频率分布直方图和频率折线图如图所示.绘制频率分布直方图应注意的问题(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“频率组距”所占的比例来定高.如我们预先设定以“”为1个单位长度,代表“0.1”,则若一个组的频率组距为0.2,则该小矩形的高就是“”(占两个单位长度),如此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个左右时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.[跟进训练]1.如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).区间界限[122,126)[126,130)[130,134)[134,138)[138,142) 人数58102233区间界限[142,146)[146,150)[150,154)[154,158]人数201165(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.[解](1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28(2)其频率分布直方图如下:(3)由样本频率分布表可知,身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.频率分布直方图的应用【例2】为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?[解](1)第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.频率分布直方图的性质(1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)样本容量=频数相应的频率.[跟进训练]2.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140D[由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]频率分布与数字特征的综合应用[探究问题]1.什么是一组数据的众数,中位数,平均数?提示:设一组数据为x1,x2,…,x n,则其中出现次数最多的数是众数,把这n个数据按照从小到大的顺序排列,最“中间”的数就是中位数,即当n为奇数时,中间的一个数就是本组数据的中位数;当n为偶数时,中间的两个数的平均数就是本组数据的中位数.本组数据的平均数x=x1+x2+…+x nn.2.如何利用频率分布直方图估计数据的众数、中位数和平均数?提示:(1)众数是最高的矩形的底边的中点;(2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.【例3】某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.求:(1)高一参赛学生成绩的众数、中位数;(2)高一参赛学生的平均成绩.[思路点拨](1)根据频率分布直方图的数据,最高小矩形的底边中点就是数据的众数,数据的中位数左右两边的面积和相等,都等于0.5;(2)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.[解](1)由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.(2)依题意,x=55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,∴平均成绩约为67分.1.利用频率分布直方图估计数字特征(1)众数是最高的矩形的底边的中点;(2)中位数左右两侧小矩形的面积相等;(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为估计值,与实际数据可能不一致.1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.2.当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.3.绘制频率分布直方图的步骤:(1)计算极差,(2)决定组距与组数,(3)分组,(4)列频率分布表,(5)绘制频率分布直方图.1.思考辨析(正确的画“√”,错误的画“×”)(1)频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.()(2)频率分布直方图中小矩形的面积表示该组的个体数.()(3)频率分布直方图中所有小长方形面积之和为1.()[提示](1)正确.(2)错误.频率分布直方图中小矩形的面积表示该组的频率.(3)正确.[答案](1)√(2)×(3)√2.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18C[志愿者的总人数为20(0.24+0.16)×1=50,所以第三组人数为50×0.36×1=18,所以有疗效的人数为18-6=12.]3.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分).现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________.1000.15[设参赛的人数为n,第二小组的频率为0.4,依题意40n=0.4,∴n=100,优秀的频率=0.10+0.05=0.15.]4.随机抽取100名学生,测得他们的身高(单位:cm),按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图如图所示.(1)求频率分布直方图中x的值及身高在170 cm以上的学生人数;(2)将身高在[170,175),[175,180),[180,185]区间内的学生依次记为A,B,C三个组,用分层随机抽样的方法从这三个组中抽取6人,求这三个组分别抽取的学生人数.[解](1)由频率分布直方图可知5×(0.01+0.02+0.04+x+0.07)=1,解得x=0.06.身高在170 cm以上的学生人数为100×(0.06×5+0.04×5+0.02×5)=60(人).(2)A组人数为100×0.06×5=30(人),B组人数为100×0.04×5=20(人),C组人数为100×0.02×5=10(人),由题意可知抽样比k=660=1 10,故应从A,B,C三组中分别抽取30×110=3(人),20×110=2(人),10×110=1(人).。
高中数学复习概率统计题型归纳与讲解03 频率分布直方图
高中数学复习概率统计题型归纳与讲解专题3频率分布直方图例1.要调查某地区高中学生身体素质,从高中生中抽取100人进行跳高测试,根据测试成绩制作频率分布直方图如图,现从成绩在[120,140)之间的学生中用分层抽样的方法抽取5人,应从[120,130)间抽取人数为b,则()A.a=0.2,b=2B.a=0.025,b=3C.a=0.3,b=4D.a=0.030,b=3【解析】解:由题得10×(0.005+0.035+a+0.020+0.010)=1,所以a=0.030.在[120,130)之间的学生人数为:100×10×0.030=30人,在[130,140)之间的学生人数为:100×10×0.020=20人,在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50人,又用分层抽样的方法在[120,140)之间的学生50人中抽取5人,即抽取比例为:110,所以成绩在[120,130)之间的学生中抽取的人数应,30×110=3,即b=3,故选:D.例2.从某企业生产的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[70,80) [80,90) [90,100) [100,110) 110,120)频数 14 20 36 18 12估计这种产品质量指标值的平均数为(同一组中的数据用该组区间的中点值作代表)( )A .100B .98.8C .96.6D .94.4【解析】解:平均数x →=0.14×75+0.20×85+0.36×95+0.18×105+0.12×115=94.4.故选:D .例3.“新冠肺炎”席卷全球,我国医务工作者为了打好这次疫情阻击战,充分发挥优势,很快抑制了病毒,据统计老年患者治愈率为71%,中年患者治愈率为85%,青年患者治愈率为91%.如果某医院有30名老年患者,40名中年患者,50名青年患者,则估计该医院的平均治愈率是( )A .86%B .83%C .90%D .84%【解析】解:利用求加权平均数的公式解得:30×71%+40×85%+50×91%30+40+50=0.84=84%,故选:D .例4.已知样本数据x 1,x 2,…,x n (n ∈N *)的平均数与方差分别是a 和b ,若y i =﹣2x i +3(i =1,2,…n ),且样本数据y 1,y 2,…,y n 的平均数与方差分别是b 和a ,则a ﹣b =( )A .1B .2C .3D .4【解析】解:由题意得:{−2a +3=b a =4b ,解得:{a =43b =13,故a ﹣b =1, 故选:A .例5.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀同学为( )A .甲、乙B .乙、丙C .甲、丙D .甲、乙、丙【解析】解:在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,145,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8设x 1<x 2<x 3<x 4,则丙的方差为15[(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2+(135﹣128)2]=19.8, ∴(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2=50,∴(x 1﹣128)2≤50,得|x 1﹣128|≤5,∴x 1≥128﹣5>120,∴丙同学数学成绩优秀,故③成立.∴数学成绩优秀有甲和丙2个同学.故选:C .例6.若数据x 1,x 2,…,x n 的平均数x =3,方差s 2=1,则数据2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为( )A.6,6B.9,2C.9,6D.9,4【解析】解:由题意若数据x1,x2,…,x n的平均数x=3,方差s2=1,可得x1+x2+…+x n=3n,则:2x1+3+x2+3+…+x n+3=2(x1+x2+…+x n)+3n=9n,所以数据2x1+3,2x2+3,…,2x n+3的平均数为9.又S2=1n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=1,所以[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=n,所以1n [(2x1+3﹣9)2+(2x2+3﹣9)2+…+(2x n+3﹣9)2]=4n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=4,则数据2x1+3,2x2+3,…,2x n+3的平均数和方差分别为9,4.故选:D.例7.随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司管理的小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到A区住户满意度评分的频率分布直方图和B 区住户满意度评分的频率分布表.B区住户满意度评分的频率分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数4610128(Ⅰ)在图2中作出B区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(Ⅱ)根据住户满意度评分,将住户和满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个地区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.【解析】解:(Ⅰ)作出如图所示的频率分布直方图,B区住户满意度评分的频率分布直方图如图所示A区住户满意度评分的平均值为45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;B区住户满意度评分的平均值为55×0.1+65×0.15+75×0.25+85×0.3+95×0.2=78.5.通过比较两区住户满意度评分的频率分布直方图可以看出,B区住户满意度评分比较集中,而A 区住户满意度评分比较分散.(Ⅱ)记D表示事件:“A区住户的满意度等级为不满意”,记E表示事件:“B区住户的满意度等级为不满意”,则P(D)=(0.010+0.020+0.030)×10=0.6,P(E)=(0.010十0.015)×10=0.25,所以A区住户的满意度等级为不满意的概率较大.若是要选择一个物业公司来管理老旧小区的物业,从满意度等级为满意来考虑,应该选择乙物业公司来为小区服务,这样的话小区住户满意度会高一些.例8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【解析】解:(1)由频率分布直方图得第七组的频率为:1﹣(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+130×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n=C52=10,他们的分差的绝对值小于10分包含的基本事件个数m=C32+C22=4,∴他们的分差的绝对值小于10分的概率p=mn=410=25.例9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准x,用水量不超过x的部分按平价收费,超出x的部分按议价收费.下面是居民月均用水量的抽样频率分布直方图.①求直方图中a的值;②试估计该市居民月均用水量的众数、平均数;③设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;④如果希望85%的居民月均用水量不超过标准x ,那么标准x 定为多少比较合理?【解析】解:①由概率统计相关知识,各组频率之和的值为1,∵频率=(频率/组距)*组距,∴0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a )=1,解得:a =0.3,∴a 的值为0.3;②由频率分布直方图估计该市居民月均用水量的众数为2+2.52=2.25(吨),估计该市居民月均用水量的平均数为:0.5(0.25×0.08+0.75×0.16+1.25×0.3+1.75×0.4+2.25×0.52+2.75×0.3+3.25×0.12+3.75×0.08+4.25×0.04)=2.035(吨).③由图,不低于3吨人数所占百分比为0.5×(0.12+0.08+0.04)=12%,∴全市月均用水量不低于3吨的人数为:30×12%=3.6(万);④由频率分布直方图得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%,月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%,∴x=2.5+0.5×0.85−0.730.3×0.5=2.9(吨).例10.如图是某校高三(1)班的一次数学知识竞赛成绩的基叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求全班人数以及频率分布直方图中的x,y;(2)估计学生竞赛成绩的平均数和中位数(保留两位小数).【解析】解:(1)分数在[50,60)的频率为0.020×10=0.2,由茎叶图知,分数在[50,60)之间的频数为5,所以全班人数为50.2=25(人);分数在[90,100)之间的频数为2,由225=10y,解得y=0.008;又10x=1﹣10×(0.036+0.024+0.020+0.008),解得x=0.012.(2)由频率分布直方图,计算平均数为x=55×0.2+65×0.24+75×0.36+85×0.12+95×0.08=71.4,由0.2+0.24+0.36=0.80,所以中位数在[70,80)内,设中位数为m,则0.20+0.24+(m﹣70)×0.036=0.5,解得m≈71.67,所以中位数约为71.67.例11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2+77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为r=0.99→1,线性相关很强,故可以用线性回归直线来刻画中学生身高与体重的相关,x=145+155+165+175+1855=165,y=45+75+60+53.6+66.45=60,b=∑8i=1x i y i−8x⋅y∑8i=1x i2−8x2=38608+175×66.4−5×165×601000=0.728,a=y−b x=60−0.728×165=−60.12,所以回归直线方程为:y=0.728x−60.12,(3)残差平方和越小或相关指数R2越接近于1,线性回归模型拟合效果越好.例12.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t),频数分布如下:分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由);(2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).【解析】解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5,∴中位数为2+0.5−0.490.25×0.5=2.02,(3)由频率分布直方图得平均数为:0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.例13.某地区100居民的人均用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的众数;(坐标轴单位自定)(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【解析】解:(1 )分组频数频率[0,0.5 )40.04[0.5,1 )80.08[1,1.5 )150.15[1.5,2 )220.22[2,2.5 )250.25[2.5,3 )140.14[3,3.5 )60.06[3.5,4 )40.04[4,4.5 )20.02(2):频率分布直方图如下图,由图知,这组数据的众数为2.25.(3)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.例14.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.【解析】解:(Ⅰ)众数是最高小矩形中点的横坐标,所以众数为m=75(分);(3分)前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4,∵中位数要平分直方图的面积,∴n=70+0.5−0.40.03=73.3(7分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75% (11分)利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.(14分)例15.为应对新冠疫情,重庆市于2020年1月24日启动重大突发公共卫生事件一级响应机制,要求市民少出门,少聚集,于是快递业务得到迅猛发展.为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(Ⅰ)请分别求出这两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(Ⅱ)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5054565860频数(天)23221回答下列问题:①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这10天中甲、乙两种方案的日薪X的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1369)【解析】解:(1)甲方案,y =100+n ;乙方案,y ={150,n ≤5510n −400,n >55.(2),①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50﹣55)2+0.3×(54﹣55)2+0.2×(56﹣55)2+0.2×(58﹣55)2+0.1×(60﹣55)2=9.8,所以,由(1)中变量之间的关系,可以指,甲方案的日薪X 的平均数为155,方差为9.8. 乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150﹣163)2+0.2×(160﹣163)2+0.2×(180﹣163)2+0.1×(200﹣163)2=213.4.(3)若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.例16.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收垃圾”箱 “有害垃圾”箱“其他垃圾”箱厨余垃圾 300 70 30 80 可回收垃圾 30 210 30 30 有害垃圾 20 20 60 20 其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800.当数据a,b,c,d的方差s2最大时,写出a,b,c,d的值(结论不要求证明),并求此时s2的值.【解析】解:(1)根据题意,厨余垃圾共300+70+30+80=480吨,其中投放正确的有300吨,则厨余垃圾投放正确的概率P1=300480=58,有害垃圾共20+20+60+20=120吨,其中投放正确的有60吨,则害垃圾投放正确的概率P2=60120=12;(2)根据题意,厨余垃圾在四种垃圾箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800,则其平均数x=8004=200,则其方差S2=14[(a﹣200)2+(b﹣200)2+(c﹣200)2+(d﹣200)2],当a=600,b=c=d=0时,s2最大,而x=a+b+c+d4=200,此时s2=14[(600﹣200)2+(0﹣200)2+(0﹣200)2+(0﹣200)2]=120000例17.某市教育局为了解全市高中学生在素质教育过程中的幸福指数变化情况,对8名学生在高一,高二不同学习阶段的幸福指数进行了一次跟踪调研.结果如表:学生编号12345678高一阶段幸福指数9593969497989695学生编号12345678高二阶段幸福指数9497959695949396(1)根据统计表中的数据情况,分别计算出两组数据的平均值及方差;(2)请根据上述结果,就平均值和方差的角度分析,说明在高一,高二不同阶段的学生幸福指数状况,并发表自己观点.【解析】解:(1)8名学生在高一阶段的幸福指数的平均数为:x=18(95+93+96+94+97+98+96+95)=95.5,方差为:S12=18∑8i=1(x i−x1)2=2.25,8名学生在高二阶段的幸福指数的平均数为:y=18(94+97+95+96+95+94+93+96)=95,方差为:S22=18∑8i=1(y i−y)2=1.5;(2)①∵x>y,∴可以认为这8名学生在高一的平均幸福指数大于在高二的平均幸福指数,②∵S12>S22,∴可以认为这8名学生在高二的幸福指数的稳定性大于在高一的幸福指数的稳定性.例18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求从2012年至2019年,每年新材料产业市场规模年增长量的平均数(精确到0.1);(2)从2015年至2019年中随机挑选两年,求两年中至少有一﹣年新材料产业市场规模年增长率超过20%的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大.(结论不要求证明)【解析】解:(1)从2012年起,每年新材料产业市场规模的年增加值依次为:0.3,0.2,0.3,0.5,0.6,0.4,0.8,0.6,(单位:万亿元),∴年增加的平均数为:0.3+0.2+0.3+0.5+0.6+0.4+0.8+0.68=0.5万亿元.(2)设A表示事件“从2015年至2019年中随机挑选两个,两年中至少有一年新材料产业市场规模增长率超过20%”,依题意P(A)=1−C22C52=910.(3)从2017年开始连续三年的新材料产业市场规模的方差最大.。
第63讲根据频率分布直方图求中位数众数和平均数 高中数学常见题型解法归纳反馈训练(含答案)
【知识要点】一、用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确,分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.二、频率分布是指一个样本数据在各个小范围内所占比例的大小.一般是用频率分布直方图反映样本频率分布.三、样本的数字特征众数:就是数据中出现次数最多的那个,比其他的都多,如果几个数据出现的次数都是最多,则它们都是众数;每个数据都只有一次,那么数据没有众数.所以众数可以不止一个或者没有.中位数:就是这些数据排列好了以后中间的那个数字,那么如果有偶数个数据,那么就是中间两个数字的平均数,如果有奇数个数据,则中间那个就是数据的中位数.所以数据的中位数不一定在数据中.平均数:这个就是把所有数据相加,除以个数,就是数据的平均数. nx n++(n x x ++-2)(n x x x n++-四、茎叶图茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出的叶子,因此通常把这样的图叫做茎叶图.【方法讲评】【例1】对某小区100户居民的月均用水量进行统计,得到样本的频率分布直方图如图,则估计此样本的众数、中位数分别为()A. 2.25,2.5 B.2.25,2.02 C.2,2.5 D.2.5,2.25【点评】(1)求频率分布图中的众数,一般先计算出频率分布直方图中的每个小矩形的面积,找到面积最大的那个矩形,取该矩形的横边中点对应的数为众数.(2)求众数也可以直接找最高矩形的横边的中点.【反馈检测1】某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14],第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计学校900名学生中,成绩属于第四组的人数;(3)请根据频率分布直方图,求样本数据的众数和中位数.【例2】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数. (2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01).(3)设n m ,表示该班两个学生的百米测试成绩,已知[)[]18,1714,13, ∈n m ,.6个基本事件组成.【点评】求频率分布直方图中的中位数,一般先计算出每个小矩形的面积,通过解方程找到左边面积为0.5的点P ,点P 对应的数就是中位数.【反馈检测2】某公路段在某一时刻内监测到的车速频率分布直方图如图所示. (Ⅰ)求纵坐标中参数h 的值及第三个小长方形的面积; (Ⅱ)求车速的众数1v ,中位数2v 的估计值;1122n n xx p x p x p 计算.的中点对应的数,n p 代表第n 个矩形的面积【例3】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.【解析】(Ⅰ)成绩落在[70,80)上的频率是0.3,频率分布直方图如下图.(Ⅲ) 成绩是70分以上(包括70分)的学生人数为(0.03+0.025+0.005)×10×60=36 所以所求的概率为【点评】求频率分布直方图中的平均数,1122n n x x p x p x p 计算.其中nx 代表第n 个矩形的横边的中点对应的数,n p 代表第n 个矩形的面积.【反馈检测3】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.高中数学常见题型解法归纳及反馈检测第63讲: 根据频率分布直方图求中位数众数和平均数参考答案【反馈检测1答案】(1)3;(2)288;(3)15.5,15.74.【反馈检测2答案】(1)0.01h =,第三个小长方形的面积为65;(2)1265,62.5v v ==;(3【反馈检测2详细解析】(Ⅰ)∵所有小长形面积之和为1,∴10h +10×3h +10×4h +10×2h =1, 解得h =0.01, ∴第三个小长方形的面积为:10×4h =10×0.04=0.4. (Ⅱ)车速的众数1v =,车速的中位数是两边直方图的面积相等, 于是得:10×0.01+10×0.03+(2v ﹣60)×0.04=0.5,解得2v =62.5.×10×45+0.03×10×55+0.04×10×65+0.02×10×75=62. 【反馈检测3答案】(1)005.0=a ;(2)73;(3)10.【反馈检测3详细解析】(1)依题意得,()104.003.002.0210=+++a ,解得005.0=a(2)这100名学生语文成绩的平均分为:()分7305.0952.0853.0754.06505.055=⨯+⨯+⨯+⨯+⨯ (3)数学成绩在[50,60)的人数为:100×0.05=5数学成绩在[60,70[70,80数学成绩在[80,90所以数学成绩在[50,90)之外的人数为:102540205100=----。
第39讲 频率分布直方图、总体取值规律、总体百分位数的估计5种常考题型(解析版) 高一数学同步必修二
第39讲频率分布直方图、总体取值规律、总体百分位数的估计5种常考题型【考点分析】考点一:频率分布直方图作频率分布直方图的步骤①求极差:极差为一组数据中最大值与最小值的差.②决定组距与组数将数据分组时,一般取等长组距,并且组距应力求“取整”,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.③将数据分组④列频率分布表各小组的频率=小组频数样本容量.⑤画频率分布直方图纵轴表示频率组距,频率组距实际上就是频率分布直方图中各小长方形的高度,小长方形的面积=组距×频率组距=频率.考点二:频率分布直方图的性质①因为小矩形的面积=组距×频率组距=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.②在频率分布直方图中,各小矩形的面积之和等于1.③频数相应的频率=样本容量.④频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性.考点三:常见统计图表的特点与区别扇形图主要用于直观描述各类数据占总数的比例,条形图和直方图主要用于直观描述不同类别或分组数据的频数和频率,条形图适用于描述离散型数据,直方图适用于描述连续型数据.折线图主要用于描述数据随时间的变化趋势.考点四:百分位数①百分位数定义:一般地,一组数据的第p 百分位数是这样一个值,它使得这组数据中至少有p %的数据小于或等于这个值,且至少有(100-p )%的数据大于或等于这个值.②常用的百分位数1.四分位数:第25百分位数,第50百分位数,第75百分位数.2.其它常用的百分位数:第1百分位数,第5百分位数,第95百分位数,第99百分位数.③计算一组n 个数据的第p 百分位数的一般步骤如下:第1步,按从小到大排列原始数据;第2步,计算i =n ×p %;第3步,若i 不是整数,而大于i 的比邻整数为j ,则第p 百分位数为第j 项数据;若i 是整数,则第p 百分位数为第i 项与第(i +1)项数据的平均数.【题型目录】题型一:频率分布表题型二:频率分布直方图题型三:总体百分数的估算题型四:频率分布直方图平均数、中位数、众数的计算题型五:频率分布直方图中的方差、标准差【典型例题】题型一:频率分布表【例1】已知样本数据:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的是()A .[)5.57.5,B .[)7.5,9.5C .[)9.5,11.5D .[]11.5,13.5从表中可以看出频率为0.2的是[]11.5,13.5,故选:D.【例2】考查某校高三年级男同学的身高,随机地抽取50名男同学,测得他们的身高(单位:cm)如下表所示:171170165169167167170161164167 171163163169166168168165160168 158160163167173168169170160164 171169167159151168170174160168 176157162166158164180179169169(1)这组数据的极差为______,数据160的频数为______,数据171的频率为______;(2)填写下面的频率分布表:身高频数频率[)150.5,153.5[)153.5,156.5[)156.5,159.5[)159.5,162.5[)162.5,165.5[)165.5,168.5[)168.5,171.5[)171.5,174.5[)174.5,177.5(3)画出该校高三年级男同学身高的频率分布直方图.(3)解:由频率分布表,可得频率分布直方图,如下:【题型专练】1.根据中国银行的外汇牌价,第一季度的60个工作日中,欧元的现汇买入价(100欧元的外汇可兑换人民币)的分组和各组的频数如下:[)1080,1090,11;[)1100,1110,1090,1100,13;[)1070,1080,20;[)1060,1070,7;[)1050,1060,1;[)1110,1120,2.6;[)(1)列出欧元的现汇买入价的频率分布表;1065,1105内的频率;(2)估计欧元的现汇买入价在[)(3)若欧元的现汇买入价不超过x的频率的为0.95,求x.【答案】(1)频率分布表见解析(2)0.8415(2)解:估计欧元的现汇买入价在[)1065,1105内的频率约为0.1170.50.3330.1830.2170.10.50.8415⨯++++⨯=.(3)解:因为0.0170.1170.3330.1830.2170.8670.95++++=<,0.8670.10.9670.95+=>,所以,[)1100,1110x ∈,且有11000.8670.10.9510x -+⨯=,解得1108.3x =.。
数学f1初中数学中考中的频率分布直方图(2021年整理)
(完整)数学f1初中数学中考中的频率分布直方图(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)数学f1初中数学中考中的频率分布直方图(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)数学f1初中数学中考中的频率分布直方图(word版可编辑修改)的全部内容。
本文为自本人珍藏 版权所有 仅供参考中考中的频率分布直方图频率分布反映了样本数据(或一组数据)落在各个小范围内的比的大小.当今社会是一个信息社会,每个人必须学会收集信息和数据,并且利用统计的方法,整理处理数据,利用频率分布直方图综合分析,就能得出正确的结论,所以学好数据的收集与处理是非常有用的.由于这方面的知识与现实社会联系非常紧密,中考题中频频出现.下面以中考试题为例介绍频率分布直方图在中考中(07-08年考题)的考查。
例1、(黑龙江)在一次环保知识测试中,三年一班的两名同学根据班级成绩(分数为整数)分别绘制了不同的频率分布直方图,如下图。
已知左图从左到右每个小组的频率分别为0。
04、0。
08、0。
24、0.32、0。
20、0.12,其中68。
5~76。
5小组的频数为12;右图从左到右每个小组的频数之比为1∶2∶4∶7∶6∶3∶2,请结合条件和频率分布直方图回答下列问题:⑴ 三年一班参加测试的人数是多少?⑵ 若这次测试的成绩80分以上(含80分)为优秀,则优秀率是多少?⑶ 若这次测试的成绩60分以上(含60分0为及格,则及格率是多少?解:(1)12÷0.24=50(人) 答:三年一班参加测试的人数是50人 (2)由条件和图可知,优秀人数为22人 ∴优秀率为5022×100﹪=44﹪92.5(3)这次测试的成绩及格率是96﹪例2、(沈阳)某校课外活动小组为了解本校初三学生的睡眠时间情况,对学校若干名初三(如图6)。
频率分布直方图大题 -完整获奖版
1、某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…[80,90),[90,100].(Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.2、名学生某次数学考试成绩(单位:分)的频数分布直方图如下: (Ⅰ)求频数直方图中a的值;(Ⅱ)估计这20名学生所在班级在本次数学考试中的平均成绩;(Ⅲ)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.频率/组距成绩(分)3a2a3、为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是,,,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)估计在这次测试中,学生跳绳次数的中位数、众数、平均数。
10.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?11.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?18、初三两个班电脑参赛成绩(均为整数)整理后分成五组,绘出频率分布直方图,从左到右一、三、四、五小组的频率分别是, , , ,第二小组的频数是40。
第八章第一讲频率分布直方图
第一讲 频率分布直方图一:考纲解读、有的放矢统计部分要求不太高,主要是考抽样方法与频率分布直方图和茎叶图有关的问题,最多一个小题(选择或填空)属容易题,但应充分注意以统计为载体、问题实质涉及期望与方差计算的综合解答题.二:核心梳理、茅塞顿开3. 作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.4. 频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.5. 作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.三:例题诠释,举一反三知识点1:利用频率分布直方图分析总体分布例题1:(2011中山期末A )2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 ( ) A .30辆 B .60辆 C .300辆D .600辆变式:(2009山东卷理B)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且 小于104克的产品的个数是 ( ). A.90 B.75 C. 60 D.45变式:(2011杭州质检B )某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2(2010安徽卷B )某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
频率分布直方图总结知识点
频率分布直方图总结知识点一、频率分布直方图的概念频率分布直方图是用矩形条表示不同数值范围内的频率大小,通常横轴表示变量取值范围,纵轴表示频率大小,每一个矩形条代表一个数值范围内的频数或频率。
通过频率分布直方图可以很直观地了解数据的情况,包括集中趋势、离散程度、分布形态等。
频率分布直方图通常用于展示定量数据的分布情况,对于分布形态的观察和分析有很大帮助。
二、频率分布直方图的绘制方法绘制频率分布直方图,首先需要确定数据的分组方式,然后计算每个组别的频数或频率,最后将这些频数或频率用矩形条表示出来。
具体步骤如下:1、确定数据的分组方式。
根据数据的范围和集中趋势等情况,确定每个组别的宽度和数量,通常选择等宽分组或等频分组。
2、计算每个组别的频数或频率。
根据所选的分组方式,对数据进行分组,然后统计每个组别的数据个数或频率大小。
3、绘制直方图。
将每个组别的频数或频率用矩形条表示出来,横坐标为变量的取值范围,纵坐标为频数或频率的大小,通过矩形条的高度来表示频数或频率的大小。
4、添加标签和标题。
在直方图上添加变量名称、频数或频率大小的标签,以及整个图形的标题,使得图形更加清晰和完整。
通过以上步骤,就可以绘制出频率分布直方图,从而观察和分析数据的分布情况。
三、频率分布直方图的解析内容频率分布直方图提供了丰富的信息,可以从多个方面对数据的情况进行解析,主要包括以下几个方面:1、集中趋势。
通过直方图的形状和位置来判断数据的集中趋势,例如对称分布、偏态分布、峰态分布等,从而了解数据的平均值和中位数等位置指标。
2、离散程度。
通过直方图的分布形态和宽窄程度来判断数据的离散程度,例如集中分布、散布分布等,从而了解数据的标准差和离散系数等离散程度指标。
3、分布形态。
通过直方图的形态和峰度来判断数据的分布形态,例如正态分布、偏态分布等,从而了解数据的分布形状和规律性。
4、异常值检测。
通过直方图来观察是否存在异常值或者极端值,从而对数据的异常情况进行检测和判断。
频率分布直方图如下
(1)解:如图:茎为成绩的整环数,叶为小数点后的数字
甲
乙
85 2 74
7
1
8
57
4
9
112 78
8751
10
11
(2)乙成绩大致对称,甲成绩的中位数为9.05, 乙成绩的中位数为9.15,所以乙成绩较甲好, 乙成绩较集中于峰值,甲成绩分散
所以乙发挥的稳定性好,甲波动大
练习2:课本71页练习第三题
作业:课本71页练习1,上面的练习1和2。
优化设计
小结:1.什么是频率折线图
2.什么是总体密度曲线及其意义 3.1)认识茎叶图,如何做茎叶图 2)分析茎叶图,3)茎叶图的优缺点
频率分布直方图如下:
频率
连接频率分布直方图
组距
中各小长方形上端的
中点,得到频率分布折
线图
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
利用样本频率分布对总体分布进行相应估计
(1)上例的样本容量为100,如果增至1000, 其频率分布直方图的情况会有什么变化?假如增 至10000呢?
26
思考: 数据大于俩位数的整数时又如何选茎,叶?
数据为小数时又如何选茎,叶?
结论:1>当数据为整数时:通常个位数字在叶上, 其他位数在茎上(一位数时,茎为0)
2>当数据为小数时:通常小数部分在叶上, 整数部分在茎上
甲的茎叶图画法
也可以画一组数据的茎叶图,竖线左边为茎,
右边为叶。
茎
叶
08
1 364
甲的中位数为26,乙的中位数为36,所以乙较甲成绩要好, 另,乙的叶较甲的更集中于峰值附近,所以乙较甲发挥 更稳定
第9章统计专题3 频率分布直方图常考题型专题练习——【含答案】
1频率分布直方图【知识总结】 1.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个小方形的面积总和等于1 . 2.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3. 频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2【巩固练习】1、随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如表所示.分组 频数 频率[25,30] 3 0.12(30,35] 5 0.20(35,40] 8 0.32(40,45] n 1 f 1(45,50] n 2 f 2(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值;(2)根据上述频率分布表,画出样本频率分布直方图和频率分布折线图. 【答案】(1) n 1=7,n 2=2,f 1=0.28,f 2=0.08 (2)见解析【解析】(1)由所给数据知,落在区间(40,45]内的有7个,落在(45,50]内的有2个,故1n =7,2n =2,所以f 1=125n =725=0.28,f 2=225n =225=0.08. (2)样本频率分布直方图和频率分布折线图如图所示.32. 为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是( )A .35B .48C .60D .75【答案】C【解析】设被抽查的美术生的人数为n ,因为后2个小组的频率之和为(0.0375+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n =515250.75++=60.故选:C.3、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为若低于60分的人数是15人,则该班的学生人数是( )A .B .C .D.【答案】B【解析】根据频率分布直方可知成绩低于60分的有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20,则成绩低于60分的频率P=(0.005+0.010)×20=0.3.又因为低于60分的人数是15人,所以该班的学生人数是15÷0.3=50.本题选择B选项.4、某校初三年级有400名学生,随机抽查了40名学生测试1分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )4A.该校初三学生1分钟仰卧起坐的次数的中位数为25B.该校初三学生1分钟仰卧起坐的次数的众数为24C.该校初三学生1分钟仰卧起坐的次数超过30的人数约有80D.该校初三学生1分钟仰卧起坐的次数少于20的人数约为8[解析] 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,∴中位数在第三组内,设中位数为25+x,则x×0.08=0.5-0.1-0.3=0.1,∴x=1.25,∴中位数为26.25,故A错误;第三组数据所在的矩形最高,第三组数据的中间值为27.5,∴众数为27.5,故B错误;1分钟仰卧起坐的次数超过30的频率为0.2,∴超过30次的人数为400×0.2=80,故C正确;1分钟仰卧起坐的次数少于20的频率为0.1,∴1分钟仰卧起坐的次数少于20的人数为400×0.1=40,故D错误.故选C.[答案] C5、某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用[)0,0.1[)0.1,0.2[)0.2,0.3[)0.3,0.4[)0.4,0.5[)0.5,0.6[)0.6,0.756水量频数132 49 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:7(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析;(2)0.48;(3)347.45m . 【解析】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为8()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.6、某电视台为宣传本省,随机对本省内1565~岁的人群抽取了n 人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示(1)分别求出a b x y 、、、的值;(2)从第234、、组回答正确的人中用分层抽样的方法抽取6人,求第234、、组每组各抽取多少人?(3)指出直方图中,这组数据的中位数是多少(取整数值)?【答案】(1)5a =,27b =,0.9x =,0.2y =;(2)2人,3人,1人;(3)42【解析】(1)由已知第4组人数为9250.36=,∴251000.02510n ==⨯,9由频率分布直方图得第一组人数为:1000.011010⨯⨯=,100.55a =⨯=,第二组人数为:1000.021020⨯⨯=,180.920x ==, 第三组人数为:1000.031030⨯⨯=,300.927b =⨯=,第五组人数为:1000.0151015⨯⨯=,30.215x ==. (2)第2、3、4组回答正确人数分别18、27、9,共54人,设第234、、组分别抽取,,x y z 人,则65418279x y z===,解得2,3,1x y z ===. (3)第1、2组频率和为0.10.20.3+=,第4、5组频率和为0.250.150.4+=,第3组频率为0.3,设中位数为m ,则350.50.3100.3m --=,241423m =≈. ∴中位数为42.7、某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.10(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=,∴0.0075x =.(2)月平均用电量的众数是2202402302+=, ∵(0.0020.00950.011)200.450.5++⨯=<, 月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.0020.00950.011)200.0125(220)0.5a ++⨯+⨯-=,可得224a =, ∴月平均用电量的中位数为2248、为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.频率分布表组别分组频数频率1 [50,60) 9 0.182 [60,70) a3 [70,80) 20 0.404 [80,90) 0.085 [90,100] 2 b合计 1请根据以上频率分布表和频率分布直方图,回答下列问题:(1)求出a,b,c,d的值;(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内.1112【答案】(1) a =15,b =0.04,c =0.03,d =0.004 (2) 70≤x <80 【解析】(1)样本容量为9÷0.18=50,50×0.08=4, 所以a =50-9-20-4-2=15,b =2÷50=0.04,c =15÷50÷10=0.03,d =0.04÷10=0.004.(2)因为样本容量为50,则样本的中位数是第25,26个数据的平均数, 而第25,26个数据均位于70≤x <80范围内, 所以小王的测试成绩在70≤x <80范围内.9、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[)50,60,[)60,70,[)70,80,[)80,90,[]90,100.分数段[)50,60[)60,70[)70,80[)80,90:x y1∶12∶13∶44∶513(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[)50,90之外的人数. 【答案】(1)0.005a =;(2)73(分);(3)10.【解析】(1)由频率分布直方图知(20.020.030.04)101a +++⨯=,解得0.005a =. (2)由频率分布直方图知这100名学生语文成绩的平均分为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(分).(3)由频率分布直方图知语文成绩在[)50,60,[)60,70,[)70,80,[)80,90各分数段的人数依次为:0.005101005,0.041010040,0.031010030,0.021010020⨯⨯=⨯⨯=⨯⨯=⨯⨯=由题中给出的比例关系知数学成绩在上述各分数段的人数依次为1455,4020,3040,2025234⨯=⨯=⨯=.故数学成绩在[50,90)之外的人数为100(5204025)10-+++=.10.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分[75,85) [85,95) [95,105) [105,115) [115,125) 组频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?14【答案】(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【解析】(1)直方图如图,(2)质量指标值的样本平均数为x=⨯+⨯+⨯+⨯+⨯=.800.06900.261000.381100.221200.08100质量指标值的样本方差为22222s=-⨯+-⨯+⨯+⨯+⨯=.(20)0.06(10)0.2600.38100.22200.08104(3)质量指标值不低于95的产品所占比例的估计值为++=,0.380.220.080.68由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.11、从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量1516结果得到如下频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228()1在图中作出这些数据的频率分布直方图;()2估计这种产品质量指标值的平均数、中位数(保留2位小数);()3根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?【答案】(1)直方图见解析;(2)平均数100,中位数99.74;(3)不能. 【解析】()1由已知作出频率分布表为:质量指标值分组[)75,85 [)85,95 [)95,105 [)105,115 [)115,12517频数 6 26 38 22 8频率0.06 0.26 0.38 0.22 0.08由频率分布表作出这些数据的频率分布直方图为:()2质量指标值的样本平均数为:800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=,[)75,95内频率为:0.060.260.32+=,∴中位数位于[)95,105内,设中位数为x ,则0.50.260.06951099.740.38x --=+⨯≈,∴中位数为99.74.()3质量指标值不低于95 的产品所占比例的估计值为0.380.220.080.68++=.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.18。
1431432 频率直方图Word版含解析
14.3.2频率直方图学习目标核心素养1.通过对实例的分析,体会总体分布的意义和作用.2.在表示样本数据的过程中,学会列频率分布表,画频率直方图、频率折线图,体会它们各自的特点,学会应用频率直方图分析个体在总体中的分布位置.(重点)3.会利用样本数据的四种图表估计总体分布.1.通过对问题中数据样本进行分析,培养学生数据分析的数学核心素养.2.通过对样本数据的计算来培养学生数学运算的数学核心素养.频数直方图可以直观地看出各组数据地频数,但是当所取的组距不全相等时,任意给人以错觉,认为矩形面积越大,频数就越多,因此需要进一步学习频率直方图,能否运用频率直方图分析个体在总体中的分布位置?把横轴均分成若干段,每一段对应的长度称为组距,然后以此线段为底作矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组的频率,这些矩形就构成了频率直方图.思考1:(1)对数据分组时,组距、组数的确定有没有固定的标准?(2)当样本容量不超过100时,分多少组合适?提示:(1)组距与组数的确定没有固定的标准,将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.在确定分组区间的端点,即分点时,应对分点进行适当调整,使分点比数据多一位小数,并确保每个数据均能落在一个区间内,而不是处于区间的端点.(2)组数与样本容量有关,一般地,样本容量越大,分的组数也越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.2.频率折线图如果将频率直方图中各个矩形的上底边的中点顺次连接起来,并将两端点向外延伸半个组距,就得到频率折线图,简称折线图.1.下列关于频率直方图的说法,正确的是()A.直方图的高表示取某数的频率B.直方图的高表示该组上的个体在样本中出现的频数与组距的比值C.直方图的高表示该组上的个体在样本中出现的频率D.直方图的高表示该组上的个体在样本中出现的频率与组距的比值D[频率直方图的高表示该组上的个体在样本中出现的频率与组距的比值.] 2.将一批数据分成四组,列出频率表,其中第一组的频率是0.27,第二组与第四组的频率之和为0.54,那么第三组的频率是________.0.19[根据题意知,四个组的频率之和为1,所以第三组的频率为1-0.27-0.54=0.19.]3.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率直方图如图所示,其中支出在[50,60]的同学有30人,若想在这n个人中抽取50个人,则在[50,60]之间应抽取的人数为________.15[根据频率直方图得总人数n=301-(0.01+0.024+0.036)×10=100,依题意知,应采取分层抽样,再根据分层抽样的特点,则在[50,60]之间应抽取的人数为50×30100=15.]频率表的制作及应用分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数234542(2)已知一个样本数据:27232527293127303231 28262729282426272830以2为组距,列出频率表.(1)0.45[数据落在区间[10,40)内的频数为9,样本容量为20,所求频率为9 20=0.45.故填0.45.(2)[解]①计算最大值与最小值的差:最大值为32,最小值为23,它们的差为32-23=9.②已知组距为2,决定组数:因为92=4.5,所以组数为5.③决定分点:[22.5,24.5),[24.5,26.5),[26.5,28.5),[28.5,30.5),[30.5,32.5].④列频率表如下:1.频率、频数和样本容量的关系为频率=样本容量,利用此式可知二求一.2.制作频率表的步骤(1)求全距,决定组数与组距,组距=全距组数;(2)分组,通常对组内数值所在区间取左闭右开区间(或左开右闭区间),最后一组取闭区间;(3)登记频数,计算频率,列出频率表.提醒:(1)在制作频率表时,分组过多或过少都不好.分组过多会给制作频率表带来困难,分组过少虽减少了操作,但不能很好地反映总体情况.一般样本容量越大,所分组数应越多.(2)所分的组数应力求“取整”.组数k=全距组距,若k∈Z,则组数为k;否则,组数为大于k的最小整数,这时需适当增大全距,在两端同时增加适当的范围.(3)在决定分点时,应避免将样本中的数据作为分点,常将分点的数值取比样本中的数据多一位小数.[跟进训练]1.一个容量为n的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n等于________.120[某一组的频率等于该组的频数与样本容量的比.由于30n=0.25,所以n=120.]2.对某电子元件进行寿命追踪调查,情况如下:(2)估计寿命在100 h~400 h以内的电子元件所占的百分比.[解](1)(2)由频率表可以看出,寿命在100 h~400 h的电子元件出现的频率为0.65,因此我们估计寿命在100 h~400 h的电子元件所占的百分比为65%.频率直方图、折线图的制作与应用情况,现从中随机抽出10辆在同一条件下进行耗油1 L所行路程试验,得到如下样本数据(单位:km):13.7,12.7,14.4, 13.8,13.3,12.5,13.5,13.6,13.1,13.4,其分组如下:分组频数频率[12.45,12.95)[12.95,13.45)[13.45,13.95)[13.95,14.45]合计10 1.0(1)(2)根据上表,在给定坐标系中画出频率直方图及频率折线图;(3)根据上述图表,估计总体数据落在[12.95,13.95)中的可能性.[思路点拨](1)依据频率表的制作步骤完成上面的频率表.(2)依据制作频率直方图及频率折线图的方法步骤绘制频率直方图及频率折线图.(3)计算出样本数据落在[12.95,13.95)中的频率.[解](1)频率表:分组频数频率[12.45,12.95) 2 0.2[12.95,13.45) 3 0.3[13.45,13.95) 4 0.4[13.95,14.45] 1 0.1合计10 1.0(2)频率直方图及频率折线图如图.(3)根据上述图表,可知数据落在[12.95,13.95)中的频率为0.3+0.4=0.7,故总体数据落在[12.95,13.95)中的可能性为0.7.1.制作频率直方图的方法步骤 (1)制作频率表.(2)建立直角坐标系:把横轴分成若干段,每一段对应一个组的组距,纵轴表示频率组距. (3)画矩形:在横轴上标明各组端点值,以相邻两点间的线段为底,作高等于该组的频率组距的矩形,这样得到一系列矩形,就构成了频率直方图.2.频率折线图的制作步骤 (1)取每个矩形上底边中点. (2)顺次连接各个中点.(3)取值区间两端点需分别向外延伸半个组距,并取此组距上在x 轴上的点与折线的首、尾分别相连.3.解决频率直方图的相关计算,需掌握下列关系式:(1)频率组距×组距=频率,即小长方形的高乘以宽即为落在相应区间数据的频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量. 提醒:频率直方图中,每个矩形的高为频率组距,面积为对应组的频率.[跟进训练]3.如图是容量为100的样本的频率直方图,试根据图中的数据填空: 样本数据落在[6,10)内的频率为________,样本数据落在[10,14)内的频率为________.0.320.36[样本数据落在[6,10)内的频率为0.08×4=0.32,样本数据落在[10,14)内的频率为0.09×4=0.36.]4.通过全国人口普查工作,得到我国人口的年龄频率直方图如图,那么在一个总人口数为200万的城市中,年龄在[20,60)之间的人大约有________万.116[在频率直方图中,小矩形的面积表示频率,年龄在[20,60)之间的频率约为(0.018+0.011)×20=0.58,200×0.58=116(万),故年龄在[20,60)之间的人大约有116万.]1.本节课的重点是会列频率表,会画频率直方图、频率折线图,难点是理解用样本的频率估计总体分布的方法.2.本节课要重点掌握的规律方法(1)绘制频率直方图的步骤.(2)会用频率直方图的意义解决问题.1.在某次赛车中,50名参赛选手的成绩(单位:min)全部介于13到18之间(包括13和18),将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18].其频率分布直方图如图所示,若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为()A.39B.35C.15D.11D[由频率分布直方图知成绩在[15,18]内的频率为(0.38+0.32+0.08)×1=0.78.所以成绩在[13,15)内的频率为1-0.78=0.22.则成绩在[13,15)内的选手有50×0.22=11(人),即这50名选手中获奖的人数为11,故选D.]2.容量为100的某个样本,数据拆分为10组,并填写频率表,若前七组频率之和为0.79,而剩下三组的频率依次相差0.05,则剩下的三组中频率最高的一组的频率为________.0.12[设剩下的三组中频率最高的一组的频率为x,则另两组的频率分别为x -0.05,x-0.1,而由频率总和为1,得0.79+(x-0.05)+(x-0.1)+x=1,解得x =0.12.]3.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5),2;[15.5,19.5),4;[19.5,23.5),9;[23.5,27.5),18;[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5],3.根据样本的频率,估计大于或等于31.5的数据约占________. 13[根据各组数据可知,符合条件的数据占12+7+366=13.]4.在一个容量为80的样本中,数据的最大值是140,最小值是56,组距是10,则应将样本数据分为多少组?[解]当全距组距不是整数时,组数=⎣⎢⎢⎡⎦⎥⎥⎤全距组距+1.本题全距=140-56=84,组距为10,故应分9组.。
(完整版)频率分布直方图题型归纳-邓永海,推荐文档
频率分布直方图题型归纳1.频率、频数、样本容量三个量产生的知二求一2.补全频率分布表3.做频率分布直方图4.性质“面积和为1”的应用,补全直方图5.与分层抽样、数列等知识综合6.估计总体的频率分布,区间内的频数问题【例 1】14.I2[2012·ft东卷] 如图1-4 是根据部分城市某年6 月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为.图1-414.9 [解析] 本题考查频率分布直方图及样本估计总体的知识,考查数据处理能力,容易题.11样本容量=1 × (0.10+0.12)=50,样本中平均气温不低于25.5℃的城市个数为50×1×0.18=9.【例2】18.I2[2012·安徽卷] 若某产品的直径长与标准值的差的绝对值不超过1 mm 时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取 5 000 件进行检测,结果发现有50 件不合格品.计算这50 件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:(1)将上面表格中缺少的数据填在答题卡的相应位置.(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20 件不合格品,据此估算这批产品中的合格品的件数.18.解:(1)频率分布表分组频数频率[-3,-2) 5 0.10[-2,-1) 8 0.16(1,2] 25 0.50(2,3] 10 0.20(3,4] 2 0.04合计50 1.00(2)由频率分布表知,长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70;(3)设这批产品中的合格品数为x 件,50 20依题意有5000=x+20,5000 × 20解得x=50 -20=1 980.所以该批产品的合格品件数估计是1 980 件.【例3】18.I2[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100 件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标[75,85) [85,95) [95,105) [105,115) [115,125) 值分组频数 6 26 38 22 8(1)在答题卡上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 的产品至少要占全部产品80%”的规定?18.解:(1)频率分布直方图如下:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95 的产品所占比例的估计值为0.38+0.22+0.8=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95 的产品至少要占全部产品80%”的规定.【例4】11.I2[2013·湖北卷] 从某小区抽取100 户居民进行月用电量调查,发现其用电量都在50 至350 度之间,频率分布直方图如图1-3 所示.(1)直方图中x 的值为;(2)在这些用户中,用电量落在区间[100,250)内的户数为.图1-311.(1)0.004 4 (2)70 [解析] (1)(0.001 2+0.002 4×2+0.003 6+x+0.006 0) ×50=1 x=0.004 4.(2)[1-(0.001 2+0.002 4×2)×50]×100=70.【变式】17.I2、K2[2014·重庆卷] 20 名学生某次数学考试成绩(单位:分)的频率分布直方图如图1-3 所示.y 力 力力 力0.3 0.1o 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.15.2力 力 x为( )图 1-3(1) 求频率分布直方图中 a 的值;(2) 分别求出成绩落在[50,60)与[60,70)中的学生人数;(3) 从成绩在[50,70)的学生中任选 2 人,求此 2 人的成绩都在[60,70)中的概率. 17.解:(1)据直方图知组距为 10,由 (2a +3a +7a +6a +2a )×10=1,1解得 a =200=0.005.(2)成绩落在[50,60)中的学生人数为 2×0.005×10×20=2. 成绩落在[60,70)中的学生人数为 3×0.005×10×20=3.(3)记成绩落在[50,60)中的 2 人为 A 1,A 2,成绩落在[60,70)中的 3 人为B 1,B 2,B 3,则从成绩在[50,70)的学生中任选 2 人的基本事件共有 10 个,即(A 1,A 2), (A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3), (B 2,B 3).其中 2 人的成绩都在[60,70)中的基本事件有 3 个,即(B 1,B 2),(B 1,B 3),(B 2,B 3).3故所求概率为 P =10.【例 5】(12)从某小学随机抽取 100 名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率分布直方图题型归纳
1.频率、频数、样本容量三个量产生的知二求一
2.补全频率分布表
3.做频率分布直方图
4.性质“面积和为1”的应用,补全直方图
5.与分层抽样、数列等知识综合
6.估计总体的频率分布,区间内的频数问题
【例1】14.I2[2012·山东卷] 如图1-4是根据部分城市某年6月份的平均气温(单位:
℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________
.
图1-4
14.9 [解析] 本题考查频率分布直方图及样本估计总体的知识,考查数据处理能力,容易题.
样本容量==50,样本中平均气温不低于25.5℃的城市个数为11
1×(0.10+0.12)50×1×0.18=9.
【例2】18.I2[2012·安徽卷] 若某产品的直径长与标准值的差的绝对值不超过1 mm 时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:
分组频数频率[-3,-2)0.10
[-2,-1)8
(1,2]0.50
(2,3]10
(3,4]合计
50 1.00
(1)将上面表格中缺少的数据填在答题卡的相应位置.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.
18.解:(1)频率分布表
分组频数频率[-3,-2)50.10[-2,-1)80.16(1,2]250.50(2,3]100.20(3,4]20.04合计
50
1.00
(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区
间(1,3]内的概率约为0.50+0.20=0.70;
(3)设这批产品中的合格品数为x 件,
依题意有=,50500020x +20解得x =-20=1 980.
5000×20
50所以该批产品的合格品件数估计是1 980件.
【例3】18.I2[2014·全国新课标卷Ⅰ] 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)
[85,95)[95,105)
[105,115)
[115,125)
频数
6
26
38
22
8
(1)在答题卡上作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均值及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
18.解:(1)频率分布直方图如下:
(2)质量指标值的样本平均数为
x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
质量指标值的样本方差为s2=(-20)2×0.06+
(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.
(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.8=0.68.
由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.
【例4】11.I2[2013·湖北卷] 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图1-3所示.
(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.
图1-3
11.(1)0.004 4 (2)70 [解析] (1)(0.001 2+0.002 4×2+0.003 6+x+0.006 0)×50=1 x=0.004 4.
(2)[1-(0.001 2+0.002 4×2)×50]×100=70.
【变式】17.I2、K2[2014·重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图13所示.
(1)求频率分布直方图中a 的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.17.解:(1)据直方图知组距为10,由(2a +3a +7a +6a +2a )×10=1,
解得a ==0.005.
1
200(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.
(3)记成绩落在[50,60)中的2人为A 1,A 2,成绩落在[60,70)中的3人为
B 1,B 2,B 3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个,即(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3).
其中2人的成绩都在[60,70)中的基本事件有3个,即(B 1,B 2),(B 1,B 3),(B 2,B 3).
故所求概率为P =.
3
10【例5】(12)从某小学随机抽取100名同学,将他们身高
(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a= 。
若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 。
【例6】12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力
情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别
为( )
A .0,27,78
B .0,27,83
C .2.7,78
D.2.7,83。