精心整理线性代数公式大全

合集下载

线代公式总结

线代公式总结

线代公式总结
线性代数中有很多重要的公式,以下是其中一些主要的公式:
1. 逆矩阵公式:对于一个矩阵A,如果存在一个矩阵B,使得AB=BA=I (单位矩阵),那么矩阵B称为矩阵A的逆矩阵,记作A^(-1)。

2. 行列式公式:对于一个n阶方阵A,其行列式记作det(A),定义为所有
取自不同行不同列的元素的乘积的代数和,即det(A)=a11a22...ann。

3. 特征值公式:对于一个n阶方阵A,如果存在一个数λ和一个非零向量x,使得Ax=λx成立,那么λ称为矩阵A的特征值,x称为矩阵A的对应于特
征值λ的特征向量。

4. 转置矩阵公式:对于一个矩阵A,其转置矩阵记作A^T,定义为将矩阵
A的行列互换得到的矩阵。

5. 行列式性质公式:对于一个n阶方阵A,有det(A^T)=det(A),
det(kA)=k^ndet(A),det(AB)=det(A)det(B)。

6. 向量点乘公式:对于两个向量a和b,其点乘记作a·b,定义为
a1b1+a2b2+...+anbn。

7. 向量叉乘公式:对于两个向量a和b,其叉乘记作a×b,定义为一个新
的向量c,其中c的每个分量c_i是a和b各个分量乘积的和,即
c=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。

这些公式是线性代数中最重要的部分,可以帮助我们解决很多问题。

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。

在学习线性代数的过程中,掌握一些重要的公式是非常重要的。

下面是线性代数中一些常见且重要的公式,希望能够帮助到你。

1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。

2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。

3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。

4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。

线性代数公式大全-互联网类

线性代数公式大全-互联网类

线性代数公式大全-互联网类关键信息项:1、矩阵运算公式矩阵加法矩阵乘法矩阵转置2、行列式计算公式二阶行列式三阶行列式n 阶行列式3、向量运算公式向量加法向量数量积向量叉积4、线性方程组求解公式高斯消元法克莱姆法则5、特征值与特征向量公式特征值计算特征向量求解11 矩阵运算公式111 矩阵加法若有两个矩阵 A =(a_{ij})_{m×n} 和 B =(b_{ij})_{m×n} ,则它们的和为 C = A + B =(a_{ij} + b_{ij})_{m×n} 。

112 矩阵乘法设矩阵 A 为 m×p 矩阵,矩阵 B 为 p×n 矩阵,则矩阵 A 与矩阵 B 的乘积 C = AB 是一个 m×n 矩阵,其中 C 中的元素 c_{ij} 为 A 的第 i 行元素与 B 的第 j 列对应元素乘积之和。

113 矩阵转置若矩阵 A =(a_{ij})_{m×n} ,则其转置矩阵 A^T =(a_{ji})_{n×m} 。

21 行列式计算公式211 二阶行列式对于二阶矩阵 A = a b; c d ,其行列式的值为|A| = ad bc 。

212 三阶行列式对于三阶矩阵 A = a11 a12 a13; a21 a22 a23; a31 a32 a33 ,其行列式的值为|A| = a11a22a33 + a12a23a31 + a13a21a32 a13a22a31a12a21a33 a11a23a32 。

213 n 阶行列式n 阶行列式的计算较为复杂,通常采用按行(列)展开、化上三角(下三角)等方法进行计算。

31 向量运算公式311 向量加法若有向量 a =(a1, a2,, an) 和向量 b =(b1, b2,, bn) ,则它们的和为 c = a + b =(a1 + b1, a2 + b2,, an + bn) 。

《线性代数》公式大全

《线性代数》公式大全

《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。

它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。

本文将介绍线性代数中的基本概念和相关公式。

1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。

设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。

单位向量表示模为1的向量,计算公式为:u=a/,a。

3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。

外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。

4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。

设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。

线性代数公式总结大全

线性代数公式总结大全

线性代数公式总结大全在线性代数中,有许多重要的公式被广泛应用于向量、矩阵和线性方程组的求解。

下面将对这些公式进行一个全面的总结,并说明它们的应用。

1. 向量的加法和减法- 向量加法:给定两个向量A和B,其加法可以表示为A + B = C,其中C的每个分量等于A和B对应分量的和。

- 向量减法:给定两个向量A和B,其减法可以表示为A - B = C,其中C的每个分量等于A和B对应分量的差。

2. 向量的数量积和向量积- 数量积:给定两个向量A和B,其数量积可以表示为A · B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。

- 向量积:给定两个向量A和B,其向量积可以表示为A × B = |A| |B| sinθ * n,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n是垂直于A和B所在平面的单位向量。

3. 矩阵的基本运算- 矩阵加法:给定两个矩阵A和B,其加法可以表示为A + B = C,其中C的每个元素等于A和B对应元素的和。

- 矩阵减法:给定两个矩阵A和B,其减法可以表示为A - B = C,其中C的每个元素等于A和B对应元素的差。

- 矩阵数乘:给定一个矩阵A和一个标量k,其数乘可以表示为kA = B,其中B的每个元素等于A对应元素乘以k。

4. 矩阵的乘法- 矩阵乘法:给定两个矩阵A和B,其乘法可以表示为AB = C,其中矩阵C的元素等于A的行向量与B的列向量的数量积。

- 矩阵转置:给定一个矩阵A,其转置可以表示为A^T,其中A^T的第i行第j列元素等于A的第j行第i列元素。

- 矩阵的逆:给定一个可逆矩阵A,其逆可以表示为A^−1,其中AA^−1 = I,I是单位矩阵。

5. 线性方程组的解法- 列主元消去法:通过消去矩阵A的部分元素,将其转化为上三角矩阵,然后通过回代法求解线性方程组的解。

- 伴随矩阵法:利用矩阵的伴随矩阵和行列式的性质求解线性方程组的解。

线性代数全公式_线性代数公式定理总结

线性代数全公式_线性代数公式定理总结

线性代数全公式基本运算①A B B A +=+②()()C B A C B A ++=++③()cB cA B A c +=+ ()dA cA A d c +=+ ④()()A cd dA c =⑤00=⇔=c cA 或0=A 。

()A A TT=()TT TB A B A ±=±()()T TA c cA =。

()TT TA B AB =()()()212112-==-n n C n n n τn n A a A a A a D 2222222121+++=转置值不变A A T = 逆值变AA11=- A c cA n =γβαγβαγββα,,,,,,2121+=+()321,,ααα=A ,3阶矩阵 ()321,,βββ=B B A B A +≠+()332211,,βαβαβα+++=+B A332211,,βαβαβα+++=+B A B A B A B A =*=*00()()1,=c j i E有关乘法的基本运算nj in j i j i ij b a b a b a C +++= 2211 线性性质 ()B A B A B A A 2121+=+, ()2121AB AB B B A +=+ ()()()cB A AB c B cA == 结合律 ()()BC A C AB =()TT TA B AB =B A AB =l k l k A A A += ()kl lkA A =()kk kB A AB =不一定成立!A AE =,A EA =()kA kE A =,()kA A kE =E BA E AB =⇔=与数的乘法的不同之处()kk kB A AB =不一定成立!无交换律 因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如 ()()E A E A E A A +-=--3322无消去律(矩阵和矩阵相乘) 当0=AB 时0=⇒/A 或0=B 由0≠A 和00=⇒/=B AB由0≠A 时C B AC AB =⇒/=(无左消去律) 特别的 设A 可逆,则A 有消去律。

线代基本公式

线代基本公式

线代基本公式
线性代数的基本公式包括:
1. 转置矩阵:行列翻转。

2. 代数余子式矩阵:显然一个n阶行列式共有n^2个余子式,这n^2个余子式的值(代数余子式)构成的矩阵即代数余子式矩阵。

3. 标准伴随矩阵:接上,即代数余子式构成的方阵进行转置后得到。

4. 向量点乘与其向量夹角之间的关系。

5. 向量b在向量a上的投影(其中为向量ab之间的夹角)。

6. 向量a和b的叉乘(积):其中i, j, k为基向量,a和b的向量积同时垂直于这两个向量,维向量不存在向量积,计算二维向量的向量积时,第三维补0,同上公式。

7. (AB)^T=(B^T)(A^T),(AB)^(-1)=[B^(-1)][A^(-1)]。

以上信息仅供参考,如有需要,建议查阅线性代数相关书籍。

(完整版)精心整理线性代数公式大全,推荐文档

(完整版)精心整理线性代数公式大全,推荐文档

1.行列式共有个元素,展开后有项,可分解为行列式;n 2n !n 2n2.代数余子式的性质:①、和的大小无关;ij A ija ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;A3.代数余子式和余子式的关系:(1)(1)i ji jijijijijM A A M ++=-=-4.设行列式:n D 将上、下翻转或左右翻转,所得行列式为,则;D 1D (1)21(1)n n D D -=-将顺时针或逆时针旋转,所得行列式为,则;D 902D (1)22(1)n n DD-=-将主对角线翻转后(转置),所得行列式为,则;D 3D 3DD=将主副角线翻转后,所得行列式为,则;D 4D 4DD=5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;(1)2(1)n n -⨯ -③、上、下三角行列式():主对角元素的乘积; = ◥◣④、和:副对角元素的乘积;◤ ◢(1)2(1)n n -⨯ -⑤、拉普拉斯展开式:、A O A CA B C B O B==(1)m n C A O AA B B O B C==-:⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主n A 1(1)nnkn k kk E A S λλλ-=-=+-∑kS k 子式;7.证明的方法:0A =①、;A A =-②、反证法;③、构造齐次方程组,证明其有非零解;0Ax =④、利用秩,证明;()r A n<⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:An (是非奇异矩阵);⇔0A ≠(是满秩矩阵)⇔()r A n =的行(列)向量组线性无关;⇔A 齐次方程组有非零解;⇔0Ax =,总有唯一解;⇔n b R ∀∈Ax b =与等价;⇔A E 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔A是正定矩阵;⇔T A A 的行(列)向量组是的一组基;⇔A nR 是中某两组基的过渡矩阵;⇔AnR 2.对于阶矩阵: 无条件恒成立;n A **AA A A A E ==3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:A B 若,则:12s A AA A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭Ⅰ、;12sA A A A = Ⅱ、;111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭②、;(主对角分块)111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③、;(副对角分块)111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭④、;(拉普拉斯)11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑤、;(拉普拉斯)11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是m n ⨯A 唯一确定的:;rm nE OF O O⨯⎛⎫= ⎪⎝⎭等价类:所有与等价的矩阵组成的一个集合,称为一个等A 价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;A B ()()r A r B A B = ⇔ :2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;(,)(,)rA E E X :A 1X A -=②、对矩阵做初等行变化,当变为时,就变成,(,)A B A E B 1A B -即:;1(,)(,)cA B E AB - ~ ③、求解线形方程组:对于个未知数个方程,如果n n Ax b =,则可逆,且;(,)(,)rA b E x :A 1x A b -=4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλAiλA乘的各列元素;iλA ③、对调两行或两列,符号,且,例如:(,)E i j 1(,)(,)E i j E i j -=;1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭④、倍乘某行或某列,符号,且,例如:(())E i k 11(())(())E i k E i k-=;1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤、倍加某行或某列,符号,且,如:(())E ij k 1(())(())E ij k E ij k -=-;11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭5.矩阵秩的基本性质:①、;0()min(,)m nr A m n ⨯≤≤②、;()()Tr A r A =③、若,则;A B :()()r A r B =④、若、可逆,则;(可逆矩阵不影响P Q ()()()()r A r PA r AQ r PAQ ===矩阵的秩)⑤、;(※)max((),())(,)()()r A r B r A B r A r B ≤≤+⑥、;(※)()()()r A B r A r B +≤+⑦、;(※)()min((),())r AB r A r B ≤⑧、如果是矩阵,是矩阵,且,则:(※)A m n ⨯B n s ⨯0AB =Ⅰ、的列向量全部是齐次方程组解(转置运算后的B 0AX =结论);Ⅱ、()()r A r B n+≤⑨、若、均为阶方阵,则;A B n ()()()r AB r A r B n ≥+-6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵⨯(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭二项展开式:;1111110()nnnn m n mmn n n nm m n mnnnnnnm a b C a C ab C ab Ca b C b Ca b -----=+=++++++=∑ 注:Ⅰ、展开后有项;()na b +1n +Ⅱ、0(1)(1)!1123!()!--+====- ::: :m n nn n n n n m n CC C m m n m Ⅲ、组合的性质:;11112---+-===+==∑nmn mm m m r nr r nnn n nnn n r CCCC CCrC nC ③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩②、伴随矩阵的特征值:;*1*(,)AAAX X AA A A X X λλλ- == ⇒ =③、、*1AA A -=1*n AA-=8.关于矩阵秩的描述:A ①、,中有阶子式不为0,阶子式全部为0;(两()r A n =A n 1n +句话)②、,中有阶子式全部为0;()r A n <A n ③、,中有阶子式不为0;()r A n ≥A n 9.线性方程组:,其中为矩阵,则:Ax b =A m n ⨯①、与方程的个数相同,即方程组有个方程;m Ax b =m②、与方程组得未知数个数相同,方程组为元方程;n Ax b =n 10.线性方程组的求解:Ax b =①、对增广矩阵进行初等行变换(只能使用初等行变换);B ②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:n m n ①、;11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ②、(向量方程,为矩阵,个111211*********2n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A m n ⨯m 方程,个未知数)n ③、(全部按列分块,其中);()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭④、(线性表出)1122n n a x a xa x β+++= ⑤、有解的充要条件:(为未知数的个数或维数)()(,)r A r A n β=≤n 4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵mn A 12,,,mααα n m ⨯;12(,,,)mA = ααα个维行向量所组成的向量组:构成矩阵;mn B 12,,,T T T mβββ m n ⨯12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次0Ax ⇔=线性方程组)②、向量的线性表出是否有解;(线性方程组)Ax b ⇔=③、向量组的相互线性表示是否有解;(矩阵方程)AX B ⇔=3.矩阵与行向量组等价的充分必要条件是:齐次方程组m nA ⨯l nB ⨯和同解;(例14)0Ax =0Bx =101P 4.;(例15)()()Tr A A r A =101P 5.维向量线性相关的几何意义:n ①、线性相关;α⇔0α=②、线性相关坐标成比例或共线(平行);,αβ⇔,αβ③、线性相关共面;,,αβγ⇔,,αβγ6.线性相关与无关的两套定理:若线性相关,则必线性相关;12,,,sααα 121,,,,ss αααα+ 若线性无关,则必线性无关;(向量的个数加12,,,sααα 121,,,s ααα- 加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:r A n r -n B 若线性无关,则也线性无关;反之若线性相关,则也线A B B A 性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且A r B s 线性无关,则(二版定理7);A r s ≤74P 向量组能由向量组线性表示,则;(定理3)A B ()()r A r B ≤86P 向量组能由向量组线性表示A B 有解;AX B ⇔=(定理2)()(,)r A r A B ⇔=85P 向量组能由向量组等价(定理2推论)A B ()()(,)r A r B r A B ⇔ ==85P 8.方阵可逆存在有限个初等矩阵,使;A ⇔12,,,lP P P 12lA P P P = ①、矩阵行等价:(左乘,可逆)与同~rA B PA B ⇔=P 0Ax ⇔=0Bx =解②、矩阵列等价:(右乘,可逆);~cA B AQ B ⇔=Q ③、矩阵等价:(、可逆);~A B PAQ B ⇔=P Q 9.对于矩阵与:m nA ⨯l nB ⨯①、若与行等价,则与的行秩相等;A B A B ②、若与行等价,则与同解,且与的任何对应A B 0Ax =0Bx =A B 的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;A 10.若,则:m s s n m nA B C ⨯⨯⨯=①、的列向量组能由的列向量组线性表示,为系数矩阵;C A B ②、的行向量组能由的行向量组线性表示,为系数矩阵;C B TA (转置)11.齐次方程组的解一定是的解,考试中可以直接作0Bx =0ABx =为定理使用,而无需证明;①、只有零解只有零解;0ABx =0Bx ⇒ =②、有非零解一定存在非零解;0Bx =0ABx ⇒ =12.设向量组可由向量组线性表示为:12:,,,n rrB b b b ⨯ 12:,,,n ssA a a a ⨯ (题19结论)110P ()1212(,,,)(,,,)r sb b b a a a K = B AK =其中为,且线性无关,则组线性无关;(与K s r ⨯A B ()r K r ⇔=B 的列向量组具有相同线性相关性)K (必要性:;充分性:反证法)()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= 注:当时,为方阵,可当作定理使用;r s =K 13.①、对矩阵,存在,、的列向量线性m nA ⨯n mQ ⨯mAQ E =()r A m ⇔=Q 无关;()87P ②、对矩阵,存在,、的行向量线性无关;m n A ⨯n m P ⨯nPA E =()r A n ⇔=P 14.线性相关12,,,sααα 存在一组不全为0的数,使得成立;⇔12,,,sk k k 11220ssk k k ααα+++= (定义)有非零解,即有非零解;⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭0Ax =,系数矩阵的秩小于未知数的个数;⇔12(,,,)s r sααα< 15.设的矩阵的秩为,则元齐次线性方程组的解集m n ⨯A r n 0Ax =的秩为:;S ()r S n r =-16.若为的一个解,为的一个基础解系,则*ηAx b =12,,,n rξξξ- 0Ax =线性无关;(题33结论)*12,,,,n rηξξξ- 111P 5、相似矩阵和二次型1.正交矩阵或(定义),性质:TA A E ⇔=1TA A -=①、的列向量都是单位向量,且两两正交,即A ;1(,1,2,)0T iji j a a i j n i j=⎧==⎨≠⎩②、若为正交矩阵,则也为正交阵,且;A 1TA A -=1A =±③、若、正交阵,则也是正交阵;A B AB 注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:12(,,,)ra a a ;11b a =1222111[,][,]b a b a b b b =-: ;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----: 3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;A B ⇔A B ,、可逆;⇔=PAQ B P Q ,、同型;()()⇔=r A r B A B ②、与合同,其中可逆;A B ⇔=TC AC B 与有相同的正、负惯性指数;⇔Tx Ax T x Bx ③、与相似;A B 1-⇔=P AP B 5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件C TC AC B =⇒A B :不同,相似的更严格);6.为对称阵,则为二次型矩阵;A A7.元二次型为正定:n Tx Ax 的正惯性指数为;A ⇔n 与合同,即存在可逆矩阵,使;A ⇔E C TC AC E=的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;A ⇔;(必要条件)0,0iia A ⇒>>。

线性代数公式大全

线性代数公式大全

线性代数公式大全1、行列式1. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 2. 代数余子式和余子式的关系:(1)(1)i j i jij ij ij ijM A A M ++=-=-3. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -; ⑤、拉普拉斯展开式:A O A C AB CB OB==、(1)m nC A O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积;; 4. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax=,证明其有非零解;④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax=有非零解;⇔nb R ∀∈,Axb=总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()TT TT A A A A A A ----===***111()()()TTTAB B A AB B A AB BA---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12s A A A A = ;3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m nE OF OO ⨯⎛⎫=⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b=,如果(,)(,)rA b E x ,则A 可逆,且1xA b-=;4. 伴随矩阵:(2)*1A A A -=、1*n A A-=5. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;6. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Axb=为n 元方程;7. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;8. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b+++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b aa a xb A x b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b bb β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性9. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx=同解;(101P 例14)10.()()Tr A A r A =;(101P 例15)向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示A XB ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 11. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA BP A B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx=同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B P A Q B ⇔=(P 、Q 可逆); 12. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;13. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;14. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;5、相似矩阵和二次型1. 正交矩阵TA A E⇔=或1TA A-=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TA A-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =; 1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;。

(完整版)线性代数公式大全

(完整版)线性代数公式大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

线性代数公式总结

线性代数公式总结

线性代数公式总结线性代数是数学中的一个分支,主要研究向量、向量空间、矩阵、线性方程组等概念和性质。

线性代数公式总结如下:1.向量加法和标量乘法:- 向量加法:如果u和v是n维向量,则它们的和为u + v = (u1 + v1, u2 + v2, ..., un + vn)- 标量乘法:如果k是一个实数,则k乘以向量v的结果为kv = (k*v1, k*v2, ..., k*vn)2.线性方程组:-n个未知数的线性方程组可以用矩阵和向量表示:Ax=b,其中A是一个m×n的矩阵,x是一个n维列向量,b是一个m维列向量。

- 如果Ax = b有唯一解,则A的行列式不为零。

行列式表示为det(A)。

-矩阵的逆:如果矩阵A的行列式不为零,则存在矩阵A的逆矩阵A^-1,使得AA^-1=A^-1A=I,其中I是单位矩阵。

3.向量空间和线性无关性:- 向量空间是指由向量的线性组合构成的集合,满足以下性质:对于任意的向量u和v以及任意的标量k和l,ku + lv仍然在向量空间内。

- 向量v1, v2, ..., vn是线性无关的,如果方程k1v1 + k2v2+ ... + knvn = 0只有零解。

- 如果一组向量v1, v2, ..., vn张成一个向量空间V,则称这组向量是V的基。

4.矩阵的运算:- 矩阵的加法:如果A和B是相同大小的矩阵,则它们的和为A + B = (aij + bij),其中aij和bij分别是矩阵A和B对应位置的元素。

- 矩阵的乘法:如果A是m×n的矩阵,B是n×p的矩阵,它们的乘积为C = AB,其中C是m×p的矩阵,其中C的元素cij可以表示为cij= Σ(k=1 to n) aikbk,其中aik是矩阵A的元素,bk是矩阵B的元素。

5.特征值和特征向量:-如果矩阵A乘以向量v得到一个与v方向相同的向量,那么v是A的特征向量,对应的乘积结果是特征值λ,即Av=λv。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全在线性代数中,有许多重要的公式和定理。

以下是其中的一些:1.矩阵乘法的结合律:对于矩阵A,B和C,满足维度要求,有:(AB)C=A(BC)。

2.矩阵乘法的分配律:对于矩阵A,B和C,满足维度要求,有:A(B+C)=AB+AC。

3.矩阵乘法的转置:对于矩阵A和B,满足维度要求,有:(AB)ᵀ=BᵀAᵀ。

4.矩阵乘法的逆元:对于可逆矩阵A和B,有:(AB)⁻¹=B⁻¹A⁻¹。

5.矩阵的转置的转置:对于矩阵A,有:(Aᵀ)ᵀ=A。

6.矩阵的逆的逆:对于可逆矩阵A,有:(A⁻¹)⁻¹=A。

7.矩阵的逆与转置的乘积:对于可逆矩阵A,有:(Aᵀ)⁻¹=(A⁻¹)ᵀ。

8.矩阵的行列式乘积:对于矩阵A和B,满足维度要求,有:det(AB) = det(A)det(B)。

9.矩阵的行列式的转置:对于矩阵A,有:det(Aᵀ) = det(A)。

10.全排列的行列式和:对于n阶方阵A,有:det(A) = Σ(±1)ᵖ(对每个全排列的正负之和乘上元素的乘积)。

11.矩阵的伴随矩阵乘积:对于n阶方阵A,有:A·Adj(A) = det(A)·I (I为单位矩阵)。

12.矩阵的迹与特征值之和:对于n阶方阵A,有:tr(A) = Σλi (每个特征值的和)。

13.矩阵的迹与特征值之乘:对于n阶方阵A,有:det(A) = Πλi (每个特征值的乘积)。

14.矩阵的对角化:对于n阶方阵A,如果存在可逆矩阵P和对角阵D,满足A=PDP⁻¹,则A可对角化。

15.若两个n阶矩阵A和B相似,即存在可逆矩阵P,满足P⁻¹AP=B,则A和B有相同的特征值。

16.若矩阵A的特征值唯一,则A是对角矩阵。

17.若矩阵A的特征向量唯一,则A是数量矩阵。

18.若矩阵A的特征值都为正,则A是正定矩阵。

19.若矩阵A的特征值都为非负,则A是半正定矩阵。

线性代数公式定理大全(精简版)

线性代数公式定理大全(精简版)
1 2 3 4 5 6 7
零向量是任何向量的线性组合,零向量与任何同维实向量正交. 单个零向量线性相关;单个非零向量线性无关. 部分相关,整体必相关;整体无关,部分必无关. 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. 两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关. 向量组 1 , 2 , , n 中任一向量 i (1 ≤ i ≤ n) 都是此向量组的线性组合. 向量组 1 , 2 , , n 线性相关 向量组中至少有一个向量可由其余 n 1 个向量线性表示.
1
1
b a 1 an A2 1
AT A B T C D B
T
CT DT a2 an a1
1
a2
a11
1 a2
1 a1
伴随矩阵的性质: ( A ) A

n2
A
( AB) பைடு நூலகம் A


(kA) k

n 1
A

A A

n 1
( A1 ) ( A ) 1 (A ) (A )
T T
√ 矩阵方程的解法:设法化成(I)AX B 当 A 0 时,
初等行变换 (I)的解法:构造(A B) (E X )
(当B为一列时, 即为克莱姆法则)
(II)的解法:将等式两边转置化为AT X T BT , 用(I)的方法求出X T,再转置得X
√ Ax 和 Bx 同解( A, B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断1 , 2 , , s 是 Ax 0 的基础解系的条件: ① 1 , 2 , , s 线性无关; ② 1 , 2 , , s 是 Ax 0 的解; ③ s n r ( A) 每个解向量中自由变量的个数 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式; 2. 代数余子式的性质:①、ij A 和ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3. 代数余子式和余子式的关系:(1)(1)i ji jijijijijM A A M ++=-=- 4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n DD-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D=;将D 主副角线翻转后,所得行列式为4D ,则4DD=;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCBO B==、(1)m n CA OAA BB O B C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)n nkn kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式;7. 证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()TT TT A A A A A A ----=== ***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12sA AA A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;②、111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF O O⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B= ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr A r A =;③、若A B,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;ﻩ二项展开式:01111110()nnn n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()na b +展开后有1n +项; Ⅱ、0(1)(1)!1123!()!--+====-mn nn n n n n m n CC C m m n mⅢ、组合的性质:11112---+-===+==∑nmn mm m m r nr r nnn n nnn n r CCCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X AA A A X X λλλ- == ⇒ =;③、*1AA A -=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n个未知数) ③、()1212n n x xaa a x β⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a xa x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,mααα构成n m ⨯矩阵12(,,,)mA =ααα;m个n 维行向量所组成的向量组B :12,,,T T Tmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关0Ax ⇔=ﻩ有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关ﻩ ⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关,,αβγ⇔ﻩ共面;6. 线性相关与无关的两套定理:若12,,,sααα线性相关,则121,,,,ss αααα+必线性相关;若12,,,sααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示 AX B ⇔=有解; ﻩﻩ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P ,使12lA P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m nA B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n rrB b b b ⨯可由向量组12:,,,n ssA a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r sb b b a a a K =(B AK =)ﻩ其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)ﻩ注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,nPA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,sααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s sk k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n rξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1TAA -=(定义),性质:①、A的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩; ②、若A 为正交矩阵,则1TA A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)ra a a 11b a =;1222111[,][,]b a b a b b b =-ﻩ121121112211[,][,][,][,][,][,]r r r r rr r r r b a b a b a ba b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价A ⇔ﻩ经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同,⇔=TC AC B ﻩ其中可逆;ﻩﻩ ⇔Tx Ax 与Tx Bx 有相同的正、负惯性指数; ③、A 与B 相似1-⇔=P AP B ﻩ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则TC AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定: A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0; 0,0iia A ⇒>>;(必要条件)。

相关文档
最新文档