小学数学概念公式整理(六年级总复习)
小学六年级数学公式大全整理
学习整理收集于网络,仅供参考小学六年级数学公式大全整理小学六年级数学公式大全涵盖了多个方面,包括几何图形的周长、面积和体积计算,单位换算,以及基本的数量关系等。
以下是一些主要公式和概念的整理:一、几何图形相关公式1. 长方形周长:C = (a + b) × 2面积:S = a × b其中,a为长,b为宽。
2. 正方形周长:C = 4a面积:S = a^2其中,a为边长。
3. 三角形周长:三条边之和面积:S = (底×高) ÷ 2内角和:180度4. 平行四边形面积:S = 底×高5. 梯形面积:S = (上底 + 下底) ×高÷ 26. 圆直径:d = 2r半径:r = d ÷ 2周长(圆周):C = πd = 2πr面积:S = πr^27. 长方体底面积:长×宽表面积:(长×宽 + 长×高 + 宽×高) × 2体积:V = 长×宽×高8. 正方体棱长总和:12a表面积:6a^2体积:V = a^39. 圆柱体侧面积:底面周长×高 = 2πrh表面积:侧面积 + 2个底面面积 = 2πrh + 2πr^2体积:V = 底面积×高 = πr^2h10. 圆锥体体积:V = (1/3) ×底面积×高 = (1/3)πr^2h二、单位换算1、长度单位:1公里 = 1千米 = 1000米,1米 = 10分米 = 100厘米 = 1000毫米2、面积单位:1平方米 = 100平方分米 = 10000平方厘米 = 1000000平方毫米,1公顷 = 10000平方米3、体积单位:1立方米 = 1000立方分米 = 1000000立方厘米 = 1000000000立方毫米,1升 = 1立方分米 = 1000毫升4、重量单位:1吨 = 1000千克 = 1000000克 = 1000公斤 = 2000市斤5、时间单位:1世纪 = 100年,1年 = 12月,1日 = 24小时,1小时 = 60分钟 = 3600秒6、货币单位:1元 = 10角 = 100分三、数量关系速度、时间、路程:速度×时间 = 路程单价、数量、总价:单价×数量 = 总价工作效率、工作时间、工作总量:工作效率×工作时间 = 工作总量四、其他常用公式利息:利息 = 本金×利率×时间利润:利润 = 售价 - 成本利润率:利润率 = (利润÷成本) × 100%这些公式和概念是小学六年级数学学习中的重要内容,掌握它们对于解决实际问题具有重要意义。
六年级数学总复习知识点归纳
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时
1时=60分1分=60秒1时=3600秒
4、基本概念
数和数的运算
一概念
(一)整数
1整数的意义
自然数和0都是整数。
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
Hale Waihona Puke 如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
二、小学数学图形计算公式
1、正方形(C:周长S:面积a:边长)
周长=边长×4 4a
面积=边长×边长×a
2自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
3计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。
小学六年级上册数学定义+公式汇总
小学六年级上册数学定义+公式汇总1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/1。
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
小学数学六年级的所有公式
小学数学六年级的所有公式.小学数学公式:1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh1.认识圆柱和圆锥,掌握它们的基本特征。
【小学数学】人教版六年级数学上册概念与公式汇总
【小学数学】人教版六年级数学上册概念与公式汇总1.分数乘整数的意义与整数乘法的意义相同;就是求几个相同加数的和的简便运算。
2. (1)分数乘整数的运算法则:分子与整数相乘;分母不变。
(2)分数乘分数的运算法则:用分子相乘的积做分子;分母相乘的积做分母。
(分子乘分子;分母乘分母)3.积与因数的关系:一个数(0除外)乘大于1的数;积大于这个数。
当 b >1时;a×b >a.一个数(0除外)乘小于1的数;积小于这个数。
当 b <1时;a×b <a (b≠0).一个数(0除外)乘等于1的数;积等于这个数。
当 b =1时;a×b =a .4.分数乘法混合运算顺序与整数相同;先乘、除后加、减;有括号的先算括号里面的;再算括号外面的。
整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
5. (1)数对:由两个数组成;中间用逗号隔开;用括号括起来。
括号里面的数由左至右为列数和行数;即“先列后行”。
作用:确定一个点的位置。
经度和纬度就是这个原理。
图形左、右平移:列变;行不变 ;图形上、下平移:行变;列不变。
(2)位置与方向确定物体位置的条件:一是确定方向;二是确定距离。
6. 倒数的意义:乘积为1的两个数互为倒数。
1的倒数是它本身;因为1×1=1;0没有倒数;因为任何数乘0积都是0;且0不能作分母。
真分数的倒数是假分数;真分数的倒数大于1;也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
7.分数除法计算法则:除以一个数(0除外);等于乘上这个数的倒数。
8.比:两个数相除也叫两个数的比。
比式中;比号(∶)前面的数叫前项;比号后面的项叫做后项;比号相当于除号;比的前项除以后项的商叫做比值。
9比和除法、分数的联系与区别:除法被除数除号(÷)除数(不能为0)商不变性质除法是一种运算分数分子分数线(—)分母(不能为0)分数的基本性质分数是一个数比前项比号(∶)后项(不能为0)比的基本性质比表示两个数的关系10. 比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外);比值不变。
小学六年级数学毕业总复习公式大全 (1)
3.14
11π
34.54
21π
65.94
62π
113.04
162π
803.84
2π
6.28
12π
37.68
22π
69.08
72π
153.86
172π
907.46
3π
9.42
13π
40.82
23π
72.22
82π
200.96
182π
1017.36
4π
12.56
14π
43.96
24π
75.36
92π
溶质的重量÷浓度=溶液的重量
21、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%
=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
22、百分率问题:
部分量÷总量×100%=百分率
三、常用单位换算
1、长度单位:
1公里=1千米1千米=1000米
1毫升=1立方厘米
4、重量单位
1吨=1000千克
1千克= 1000克= 1公斤=2市斤
5、人民币单位
1元=10角1角=10分1元=100分
6、时间单位
1世纪=100年1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
(3)表面积=侧面积+底面积×2
S表= S侧+2S底=2πr+2πr2
(4)体积=底面积×高 V=Sh h= V÷S S= V÷h
人教版小学六年级数学概念、公式汇总(附应用题)
六年级数学概念、公式汇总1、我们学过的平面图形有(长方形、正方形、三角形、平行四边形、梯形和圆)。
2、其中(长方形、正方形、三角形、平行四边形、梯形)是(线段)围成的封闭图形;而圆是由(曲线)围成的封闭图形。
3、圆的(中心)叫(圆心),通常用字母(O)表示;通过(圆心)并且(两端都在圆上)的(线段)叫(直径),通常用字母(d)表示;连接圆心与圆上任意一点的线段叫(半径),通常用字母(r)表示。
4、在同一个圆里可以画(无数)条直径,(无数)条半径。
同一个圆中,半径都(相等),直径都(相等)。
5、圆心O确定了圆的(位置),圆的半径确定了圆的(大小)。
6、一个图形对折后两边完全重合,我们就说这个图形是(轴对称)图形,折痕就是它的(对称轴)。
7、圆是(轴对称)图形。
直径所在的直线是圆的(对称轴),圆有(无数)条(对称轴)。
8、在同一个圆里,(直径)的长度是(半径)长度的2倍,可以表示为(d=2r);半径长度是直径长度的(一半),可以表示为(r==d÷2)。
9、长方形有(2)条对称轴,正方形有(4)条对称轴,等腰三角形有(1)条对称轴,等边三角形有(3)条对称轴,等腰梯形有(1)条对称轴,圆有(无数)条对称轴,半圆有(1)条对称轴。
10、(直径)越大,周长(越大);反之,(直径)越小,周长(越小)。
11、用C表示圆的周长,圆周长=C=πd或圆周长=C=2πr。
12、圆的周长除以直径的商是一个(固定)的数,我们把它叫做(圆周率),用字母(π)表示,计算时通常取(3.14)。
13、知道了圆的(直径)或(半径)都可以计算圆的周长。
同样地知道了圆的周长也可以求出圆的(直径)和(半径)。
2π=6.283π=9.424π=12.565π=15.76π=18.847π=21.988π=25.129π=28.261²=12²=43²=94²=165²=256²=367²=498²=649²=8110²=10011²=12112²=14413²=16914²=19615²=22520²=40025²=62514、把一个圆平均分成若干份,拼成一个(长方)形,拼成的图形的(宽)相当于圆的(半径),(长方形的长)相当于圆的(周长的一半),拼成的图形的面积与圆的面积(相等)。
六年级数学公式与概念
小学六年级数学总复习的公式与概念第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
除以任何不是O 的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有x的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
六年级数学总复习知识点归纳
六年级数学总复习知识点归纳一、常用的数量关系式1、每份数乘以份数等于总数,总数除以每份数等于份数,总数除以份数等于每份数。
2、1倍数乘以倍数等于几倍数,几倍数除以1倍数等于倍数,几倍数除以倍数等于1倍数。
3、速度乘以时间等于路程,路程除以速度等于时间,路程除以时间等于速度。
4、单价乘以数量等于总价,总价除以单价等于数量,总价除以数量等于单价。
5、工作效率乘以工作时间等于工作总量,工作总量除以工作效率等于工作时间,工作总量除以工作时间等于工作效率。
6、加数加上加数等于和,和减去一个加数等于另一个加数。
7、被减数减去减数等于差,被减数减去差等于减数,差加上减数等于被减数。
8、因数乘以因数等于积,积除以一个因数等于另一个因数。
9、被除数除以除数等于商,被除数除以商等于除数,商乘以除数等于被除数。
二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长等于边长乘以4,C=4a,面积等于边长的平方,S=a×a。
2、正方体(V:体积 a:棱长)表面积等于棱长的平方乘以6,S表=a×a×6,体积等于棱长的立方,V=a×a×a。
3、长方形(C:周长 S:面积 a:边长)周长等于长和宽的和乘以2,C=2(a+b),面积等于长乘以宽,S=ab。
4、长方体(V:体积 s:面积 a:长 b:宽 h:高)表面积等于长乘以宽加上长乘以高加上宽乘以高的和乘以2,S=2(ab+ah+bh),体积等于长乘以宽乘以高,V=abh。
5、三角形(s:面积 a:底 h:高)面积等于底乘以高除以2,s=ah÷2,三角形的高等于面积乘以2除以底,三角形的底等于面积乘以2除以高。
6、平行四边形(s:面积 a:底 h:高)面积等于底乘以高,s=ah。
7、梯形(s:面积 a:上底 b:下底 h:高)面积等于上底加下底的和乘以高除以2,s=(a+b)×h÷2.8、圆形(S:面积 C:周长 d:直径 r:半径)周长等于直径乘以π或者半径乘以2π,C=πd=2πr,面积等于半径的平方乘以π,S=πr²。
小学六年级数学公式大全(人教版)
小学六年级数学公式大全(人教版)
一、根据图形的形状求面积:
1. 正方形面积公式:正方形的面积=边长的平方
2. 长方形面积公式:长方形面积=长×宽
3. 圆形面积公式:圆形面积=π×半径的平方
4. 三角形面积公式:三角形面积=(底×高)÷2
5. 梯形面积公式:梯形面积=(上底+下底)×高÷2
二、数列与等比数列:
1. 等差数列求和公式:Sn=(a1+an)×n÷2
2. 等比数列求和公式:Sn=a1×(1-q^n)÷(1-q)
3. 等比数列的前n项和公式:Sn=a1×(1-q^n)÷(1-q)
4. 等比数列中第n项公式:an=a1×q^(n-1)
三、指数函数:
1. 指数函数定义公式:y=a·b^x(a>0,b>0,b≠1)
2. 指数函数方程解法:设y=a·b^x,解得x=log_ba·y
3. 指数函数导数公式:y‘=(ln b)·b^x·a
四、几何概念类:
1. 矩形的对角线公式:对角线的长度=根号(边长的平方之和)
2. 全等三角形的充分必要条件:两边之和大于第三边;所有相邻的三
角形的两角之和等于180°;所有的边长相等
3. 直角三角形充要条件:两边之和大于第三边;有一个内角等于90°;腰长和底长之间若满足勾股定理则成立
4. 锐角三角形充要条件:两边之和大于第三边;所有内角都小于90°;腰长和底长之间若满足勾股定理则成立。
完整版)六年级数学总复习知识点归纳
完整版)六年级数学总复习知识点归纳一、常用的数量关系式常用的数量关系式包括每份数×份数=总数、总数÷每份数=份数、总数÷份数=每份数等;1倍数×倍数=几倍数、几倍数÷1倍数=倍数、几倍数÷倍数=1倍数等;速度×时间=路程、路程÷速度=时间、路程÷时间=速度等;单价×数量=总价、总价÷单价=数量、总价÷数量=单价等;工作效率×工作时间=工作总量、工作总量÷工作效率=工作时间、工作总量÷工作时间=工作效率等;加数+加数=和、和-一个加数=另一个加数;被减数-减数=差、被减数-差=减数、差+减数=被减数;因数×因数=积、积÷一个因数=另一个因数、被除数÷除数=商、被除数÷商=除数、商×除数=被除数等。
二、小学数学图形计算公式小学数学图形计算公式包括正方形、正方体、长方形、长方体、三角形、平行四边形、梯形、圆形、圆柱体、圆锥体等。
其中,正方形的周长为边长×4,面积为边长×边长;正方体的表面积为棱长×棱长×6,体积为棱长×棱长×棱长;长方形的周长为(长+宽)×2,面积为长×宽;长方体的表面积为(长×宽+长×高+宽×高)×2,体积为长×宽×高;三角形的面积为底×高÷2;平行四边形的面积为底×高;梯形的面积为(上底+下底)×高÷2;圆形的周长为直径×π,面积为半径×半径×π;圆柱体的侧面积为底面周长×高,表面积为侧面积+底面积×2,体积为底面积×高;圆锥体的体积为底面积×高÷3.三、常用单位换算长度单位换算包括米、千米、分米、厘米、毫米等;重量单位换算包括千克、克、毫克等;时间单位换算包括年、月、日、小时、分钟、秒等;容量单位换算包括升、毫升、立方米等。
六年级 数学 公式
六年级数学公式在六年级的数学中,学生们将学习到许多重要的公式。
以下是其中的一些公式:1. 圆的周长公式:C = 2πr,其中 C 是圆的周长,r 是半径,π 是一个常数,大约等于。
2. 圆的面积公式:A = πr²,其中 A 是圆的面积,r 是半径,π 是一个常数,大约等于。
3. 圆柱体的体积公式:V = πr²h,其中 V 是体积,r 是底面圆的半径,h 是高。
4. 圆锥体的体积公式:V = (1/3)πr²h,其中V 是体积,r 是底面圆的半径,h 是高。
5. 正方形的周长公式:P = 4a,其中 P 是周长,a 是边长。
6. 正方形的面积公式:A = a²,其中 A 是面积,a 是边长。
7. 长方形的周长公式:P = 2(l + w),其中 P 是周长,l 是长度,w 是宽度。
8. 长方形的面积公式:A = l × w,其中 A 是面积,l 是长度,w 是宽度。
9. 加法交换律:a + b = b + a10. 加法结合律:(a + b) + c = a + (b + c)11. 乘法交换律:a × b = b × a12. 乘法结合律:(a × b) × c = a× (b × c)13. 乘法分配律:(a + b) × c = a × c + b × c14. 倒数:如果a ≠ 0,那么 a 的倒数是 1/a。
两个数的乘积为1,则这两个数互为倒数。
15. 商的乘方:(a/b)² = a²/b²16. 幂的乘方:(a^m)^n = a^(m×n)17. 同底数幂的乘法:a^m × a^n = a^(m+n)18. 同底数幂的除法:a^m / a^n = a^(m-n) (a ≠ 0, m, n 都是正整数,且m > n)19. 完全平方公式:(a + b)² = a² + 2ab + b² 和 (a - b)² = a² - 2ab + b²20. 平方差公式:a² - b² = (a + b)(a - b)21. 二次公式:(x - p)² = x² - 2px + p² 和(x + p)² = x² + 2px + p²22. 比例的基本性质:交叉相乘积相等,即a:b = c:d → ad = bc。
小学六年级数学毕业总复习公式大全
1.四则运算-加法公式:a+b=b+a-减法公式:a-b≠b-a-乘法公式:a×b=b×a-除法公式:a÷b≠b÷a2.计算面积-矩形面积公式:面积=长×宽-正方形面积公式:面积=边长×边长-三角形面积公式:面积=(底边×高)÷2-梯形面积公式:面积=(上底+下底)×高÷2 3.计算周长-矩形周长公式:周长=2×(长+宽)-正方形周长公式:周长=4×边长-三角形周长公式:周长=边1+边2+边3-圆形周长公式:周长=2×π×半径4.平均数-平均数公式:平均数=总数÷个数5.数字运算规律-10的n次方:10^n表示10与自己相乘n次,如10^3=10×10×10=1000-分式累加:a+1/a的和=(a^2+1)/a-角度转换:360°=2π弧度6.分数运算- 分数加法公式:a/b + c/d = (ad + bc)/(bd)- 分数减法公式:a/b - c/d = (ad - bc)/(bd)- 分数乘法公式:a/b × c/d = ac/bd- 分数除法公式:a/b ÷ c/d = ad/bc7.小数运算-小数加法公式:小数+小数=小数-小数减法公式:小数-小数=小数-小数乘法公式:小数×小数=小数-小数除法公式:小数÷小数=小数8.等式与方程-等式:表示左右两边数量相等的关系,如7+3=10 -解方程:解方程是指找到方程中未知量的值9.三角形性质-三角形内角和公式:三角形内角和=180°-直角三角形勾股定理:a^2+b^2=c^210.百分数-百分数转小数:百分数÷100-小数转百分数:小数×10011.数据统计-平均数:总和÷个数-中位数:将所有数从小到大排列后,居中的数(如果有两个中间数就取平均值)-众数:出现次数最多的数12.时、分、秒的换算关系-1小时=60分钟=3600秒-1分钟=60秒。
人教版数学小升初六年级总复习公式大全
人教版数学小升初六年级总复习公式大全(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除人教版六年级小升初数学复习资料汇总第一部分:概念1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数,乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式答:含有未知数的等式叫方程式。
9,什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
小学一至六年级所有数学概念(公式)
小学一至六年级所有数学概念(公式)三角形的面积=底×高÷2。
公式 S= a×h÷2正方形的面积=边长×边长公式 S= a×a长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式一、算术方面1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
小学六年级常用数学公式大全
小学六年级常用数学公式大全【】如何让小学生学会用数学的思维方式去观察和分析生活,如何帮助他们更好地学好数学这门学科呢?查字典数学网小学频道精心准备了六年级常用数学公式大全,希望对大家有所帮助!第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)5=25+456、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有的算式并计算。
10、分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
人教版数学小升初六年级总复习公式大全
人教版六年级小升初数学复习资料汇总第一部分:概念1,加法交换律:两数相加交换加数的位置,和不变。
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数,乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式答:含有未知数的等式叫方程式。
9,什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。
17,假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学概念集每天理解记忆10条,组长检查,老师抽查基本概念三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh或V=Sh正方体的体积=棱长×棱长×棱长公式:V=aaa或V=Sh圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh或圆柱的体积等于侧面积的一半乘半径。
公式V=S侧×r÷2圆锥的体积=1/3底面积×高。
公式:V=1/3Sh每份数×份数=总数总数÷每份数=份数总数÷份数=每份数1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数单价×数量=总价总价÷数量=单价总价÷单价=数量速度×时间=路程路程÷时间=速度路程÷速度=时间工效×时间=工作总量工作总量÷时间=工效工作总量÷工效=时间加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数经过时间=结束时刻-开始时刻找规律:总数-每次框的个数+1=得到几个不同的和1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1立方米=1000立方分米1立方分米=1000立方厘米1吨=1000千克1千克= 1000克1升=1000毫升1毫升=1立方厘米1升=1立方分米理解应用概念1、加法交换律:两数相加交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
(a+b)+c=a+(b+c)3、一个数连续减去两个数,可以先把后两个数相加,再用这个数减去它们的和,结果不变。
a-b-c=a-(b+c)4、乘法交换律:两数相乘,交换因数的位置,积不变。
a×b=b×a5、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
(a×b)×c=a×(b×c)6、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
a×(b+c)=a×b+a×c7、一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
a÷b÷c=a÷(b×c)8、除法的性质(商不变性质):在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
9、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
10、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
11、什么叫方程式?答:含有未知数的等式叫方程式。
12、等式的基本性质(1):等式两边同时加(或减)一个相同的数,等式仍然成立。
等式的基本性质(2):等式两边同时乘(或除以)一个相同的数(0除外),等式仍然成立。
13、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
14、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
15、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
16、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
17、真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
18、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
19、一个数除以分数,等于这个数乘以分数的倒数。
20、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
21、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
22、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:1823、比例的基本性质:在比例里,两外项之积等于两内项之积。
24、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1825、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k 一定)26、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)27、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
28、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
29、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
30、要学会把小数化成分数和把分数化成小数的化发。
31、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)32、互质数:公约数只有1的两个数,叫做互质数。
33、最小公因数:几个数公有的倍数,叫做这几个数的公因数,其中最小的一个叫做这几个数的最小公因数。
34、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公因数)35、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)36、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。
37、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
38、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
39、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
40、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)41、利率:利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
42、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。
43、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如3. 141414……44、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 14159265445、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。
如3. 141592654……46、什么叫代数? 代数就是用字母代替数。
47、什么叫代数式?用字母表示的式子叫做代数式。
如:3x =ab+c48、竖排叫做列,横排叫做行。
确定第几列一般从左往右数,确定第几行一般从前往后数。
第4列第3行用数对表示为(4,3)。
49、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
50、图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺简单的奥数公式和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那:株数=段数+1=全长÷株距-1 全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那就这样:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)一、整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。