向量集体备课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量
李振麟
【知识特点】
平面向量作为工具性知识,和三角函数、解析几何、立体几何等知识有着广泛的联系。其中平面向量的共线与垂直,平面向量的运算,平面向量的数量积及其应用,是重点内容,也是高考考查的重点。对于数系的扩充和复数的引入这部分内容,其独立性较强,一般是单独命题,其中复数的概念和复数的运算是重点知识,也是高考考查的重点。
【重点关注】
1、平面向量共线与垂直的充要条件、平面向量的线性运算、平面向量的数量积及其应用、复数的运算是高考的热点内容,需重点关注。
2、平面向量的基本运算与三角函数结合是高考中的重要题型,此类题可以是选择、填空,也可以为中档的解答题。向量与数列、不等式、圆锥曲线,函数等知识的综合问题。对学生能力的考查有较高的要求。
3、本章内容要注意数形结合思想的应用,向量具有“形与数”的两个特点,这就使得向量成了数形结合的桥梁。
【地位和作用】
向量带有基础知识的特点,是一种工具性和方法性知识。向量有一套优秀的运算系统,由于它提供的向量法、坐标法,使其成为研究高中数学的重要方法。同时,向量又有一套优良的运算系统,几何中有关长度、角度的计算,平行、垂直的判定与证明,很多场合下都可以化归为向量的运算来完成,教材中正弦定理、余弦定理的证明、定比分点坐标公式的导出,就是这方面典型的例子。这些体现了数学中化归和数形结合的思想。向量“形”、“数”兼备,是数形结合的桥梁。在运用向量知识时,充分运用几何图形直观的特点,而在解决几何问题时,又注意充分运用向量法与坐标法,处处渗透了数形结合的思想。
通过分析进两年高考中本章相关知识点的考查汇总,可以看出本章在高考命题中呈现出以下特点:
1、考查题型主要是以选择、填空为主,分值为10分左右,基本属容易题;
2、重点考查向量的共线与垂直,向量的夹角、模与数量积及复数的运算,注重在知识交汇处命题;
3、预计在本意在今后的高考中,将以向量的运算、向量的夹角、模、数量积、复数的
运算为命题热点,将更加注重向量与其他知识的交汇,以考查基础知识、基本技能为主。
4.1平面向量
【高考目标定位】
一、平面向量的概念及其线性运算
1、考纲点击
(1)了解向量的实际背景;
(2)理解平面向量的概念,理解两个向量相等的含义;
(3)理解向量的几何表示;
(4)掌握向量加法、减法的运算,并理解其几何意义;
(5)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;
(6)了解向量线性运算的性质及其几何意义。
2、热点提示
(1)重点考查平面向量的有关概念、线性运算及其几何表示;
(2)多以选择、填空的形式呈现,有时和其他知识相结合,在知识的交汇点处命题。
二、平面向量的基本定理及坐标表示
1、考纲点击
(1)了解平面向量的基本定理及其意义;
(2)掌握平面向量的正交分解及其坐标表示;
(3)会用坐标表示平面向量的加法、减法与数乘运算;
(4)理解用坐标表示的平面向量共线的条件。
2、热点提示
(1)向量的坐标运算及用坐标表示平面向量共线的条件是高考考查的热点,常以选择、填空题的形式出现,为中、低档题;
(2)向量的坐标运算常与三角,解析几何等知识结合,在知识交汇点处命题,以解答题的形式呈现,属中档题。
三、平面向量的数量积及平面向量应用举例
1、考纲点击
(1)理解平面向量数量积的含义及其物理意义;
(2)了解平面向量的数量积与向量投影的关系;
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算;
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;
(5)会用向量方法解决某些简单的平面几何问题;
(6)会用向量方法解决简单的力学问题与其他一些实际问题。
2、热点提示
(1)平面向量数量积的运算,模与夹角、平行与垂直问题的高考命题的热点,多以选择、填空题的形式出现,属中低档题,但灵活多变;
(2)可与三角函数、解析几何等知识综合命题,是高考的另一个热点。
【考纲知识梳理】
一、平面向量的概念及其线性运算
1、向量的有关概念及表示方法
(1)向量的有关概念
0与任一向量平行或共线
0的相反向量为0(2)向量的表示方法
①字母表示法,如:,a AB等;
②几何表示法:用一条有向线段表示向量。 2、向量的线性运算
向量运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的
运算
(1)交换律:
a b b a +=+。
(2)结合律:
()()a b c a b c ++=++
减法 求a 与b 的相反向量b -的和的运算叫做a 与b 的差
数乘
求实数λ与向量
a 的积的运算
(1).a a λλ= (2)当λ>0时,a λ与
a 的方向相同;当λ<0
时, a λ与a 的方向相反;当λ=0时, a λ=0
()();a a λμλμ=
();a a a λμλμ+=+
()a b a b λλλ+=+
注:式子2222
||||2(||||)a b a b a b ++-=+的几何意义为:平行四边形两条对角线的
平方和等于它们四条边的平方和。
3、向量(0)a a ≠与向量b 共线的充要条件为存在唯一一个实数λ,使.b a λ=
注:用向量法证明三点A 、B 、C 共线时,首先求出AB AC 、
,然后证明AB AC λ=,即AB AC 与共线即可。