材料科学基础总复习

合集下载

《材料科学基础》综合复习题

《材料科学基础》综合复习题

《材料科学基础》复习思考题第一章:材料的结构空间点阵、晶格、晶胞配位数致密度共价键离子键金属键组元合金、相、固溶体中间相间隙固溶体置换固溶体固溶强化第二相强化。

1、材料的键合方式有四类,分别是(),(),(),()2、三种常见的金属晶格分别为(),()和()。

3体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

4、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

5、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

6、合金的相结构分为两大类,分别是()和()。

7、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

8、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

9、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

三、作图表示出立方晶系(123)、(0)、(421)等晶面和[02]、[11]、[346]等晶向。

四、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。

五、体心立方晶格的晶格常数为a,试求出(100)、(110)、(111)晶面的面间距大小,并指出面间距最大的晶面。

六、已知面心立方晶格的晶格常数为a,试求出(100)、(110)、(111)晶面的面间距大小,并指出面间距最大的晶面。

七、试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。

《材料科学基础》总复习题

《材料科学基础》总复习题

《材料科学基础》复习题第1章原子结构与结合键一、选择题1、具有明显的方向性和饱和性。

A、金属键B、共价键C、离子键2、以下各种结合键中,结合键能最大的是。

A、离子键、共价键B、金属键C、分子键3、以下各种结合键中,结合键能最小的是。

A、离子键、共价键B、金属键C、分子键4、以下关于结合键的性质与材料性能的关系中,是不正确的。

A、具有同类型结合键的材料,结合键能越高,熔点也越高。

B、具有离子键和共价键的材料,塑性较差。

C、随着温度升高,金属中的正离子和原子本身振动的幅度加大,导电率和导热率都会增加。

二、填空题1、构成陶瓷化合物的两种元素的电负性差值越大,则化合物中离子键结合的比例。

2、通常把平衡距离下的原子间的相互作用能量定义为原子的。

3、材料的结合键决定其弹性模量的高低,氧化物陶瓷材料以键为主,结合键故其弹性模量;金属材料以键为主,结合键故其弹性模量;高分子材料的分子链上是键,分子链之间是键,故其弹性模量。

第2章晶体结构(原子的规则排列)一、名词解释1、点阵2、晶胞3、配位数4、同素异晶转变5、组元6、固溶体7、置换固溶体8、间隙固溶体9、金属间化合物10、间隙相二、选择题1、体心立方晶胞中四面体间隙的r B/r A和致密度分别为A 0.414,0.68B 0.225,0.68C 0.291,0.682、晶体中配位数和致密度之间的关系是。

A、配位数越大,致密度越大B、配位数越小,致密度越大C、两者之间无直接关系3、面心立方晶体结构的原子最密排晶向族为。

A <100> B、<111> C、<110>4、立方晶系中,与晶面(011)垂直的晶向是。

A [011]B [100]C [101]5、立方晶体中(110)和(211)面同属于晶带。

A [101] B[100] C [111]6、金属的典型晶体结构有面心立方、体心立方和密排六方三种,它们的晶胞中原子数分别为:A、4;2;6B、6;2;4 D、2;4;66、室温下,纯铁的晶体结构为晶格。

材料科学基础复习题(2017)

材料科学基础复习题(2017)

《材料科学基础》复习题一、名词解释1、配位数;2、有序固溶体;3、间隙固溶体;4、固溶强化;5、弥散强化;6、不全位错;7、扩展位错;8、螺型位错;9、全位错;10、细晶强化;11、孪晶;12、位错;13、晶界能;14、柏氏矢量;15、肖特基空位;16、弗兰克尔空位;17、上坡扩散;18、间隙扩散;19、柯肯达尔效应;20、加工硬化;21、再结晶退火;22、柯氏气团;23、时效;24、回复;25、成分过冷;26、过冷度;27、离异共晶;28、异质形核;29、结构起伏;30、枝晶偏析;31、空间点阵;32、晶体缺陷;33、非均匀形核;34、杠杆定理;35、准晶;36、晶胞;37、攀移;38、形核功;39、珠光体;40、柯氏气团与铃木气团;41、滑移;42、离异共晶;43、再结晶;44、比重偏析;45、二次再结晶;46、临界晶核;47、微观偏析;48、再结晶结构;49、短路扩散;50、致密度;51、空间群;52、晶胚;53、堆垛层错;54、脱溶;55、亚稳态;56、临界切分应力;57、滑移系;58、再结晶温度;59、伪共晶;60、屈服现象;61、形变织构;62、离异共晶;玻璃化温度Tg;63、相平衡;64、包晶转变;65、相变;66、本证扩散;67、自扩散系数;68、互扩散系数;69、二.填空1.代表晶体中原子、原子团或分子()的几何点的集合称为空间点阵。

2.在常温和低温下,金属的塑性变形主要是通过()的方式进行的。

此外,还有()等方式。

3.上坡扩散是指(),扩散的驱动力是()。

4.位错的三种基本类型有()()()。

5.刃型位错中柏氏矢量与位错线()。

6.螺型位错中柏氏矢量与位错线()。

7.刃型位错有()个滑移面,螺型位错有()个滑移面。

8.()是间隙式固溶体中间隙原子扩散的主要机制,()是FCC金属中扩散的主要机制。

9.一个面心立方晶胞中有()个原子,其致密度为(),配位数为()。

10.晶体的空间点阵分属于()大晶系,其中正方晶系点阵常熟的特点为()。

材料科学基础综合复习题

材料科学基础综合复习题

B、无扩散型相变 C、半扩散型相变 8、过冷奥氏体等温转变温度越低,所得组织的硬度() A、越高 B、越低 C、变化不大 9、过冷奥氏体连续冷却,当冷却速度≤Vc 时,冷速越快,冷却 后所得硬度 () A、越高 B、越低 C、有时高有时低 10、高分子链的几何形态可分为三种() A、结晶型部分结晶型无定型 B、线型支链型体型 C、线型无定型体型 选择题(3) 1、T10 钢中的含碳量是() A、0.1% B、1% C、10% 2、40CrNiMo 中,含碳量是()
选择题(1) 1、塑料的使用状态为() A、粘流态 B、玻璃态 C、高弹态 2、按用途分,40Cr 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 3、40Cr 钢中,合金元素 Cr 的主要作用是() A、提高淬透性,强化铁素体 B、提高淬透性和红硬性 C、提高硬度,耐磨性 4、按用途分,ZoCrMnTi 钢属于() A、渗碳钢 B、调质钢 C、弹簧钢 5、ZoCrMnTi 钢中,加入 Ti 的主要目的是() A、提高耐磨性 B、提高淬透性 C、细化晶粒 6、按用途分,60SiZMn 钢属于()
2、在过冷奥氏体三种转变产物中,硬度由高到低依次是() A、珠光体>贝氏体>马氏体 B、贝氏体> 马氏体>珠光体 C、马氏体>贝氏体>珠光体 3、片状珠光体的性能主要取决于片层间距,片层间距越小,() A、强度、硬度越低,塑性越好; B、强度、硬度越高,塑性越低; C、强度、硬度越高,塑性越好; 4、同种钢,片状珠光体与粒状珠光体比较,片状珠光体的()A、 强度、硬度高,塑性、韧性差;B、强度、硬度低,塑性、韧性 好; C、强度、硬度高,塑性、韧性好; 5、下贝氏体与上贝氏体比较,下贝氏体的() A、硬度高,强度高,韧性好; B、硬度高,强度高,韧性差; C、硬度低,强度低,韧性好; 6、马氏体具有高硬度、高强度的主要原因是() A、固溶强化相变强化时效强化 B、固溶强化细晶强化淬火应力大 C、细晶强化位错强化淬火应力大 7、按相变过程中,形核和长大特点分,马氏体转变属于() A、扩散型相变

材料科学基础复习题及答案

材料科学基础复习题及答案

单项选择题:(每一道题1分)第1章原子结构与键合1.高分子材料中的C-H化学键属于。

(A)氢键(B)离子键(C)共价键2.属于物理键的是。

(A)共价键(B)范德华力(C)氢键3.化学键中通过共用电子对形成的是。

(A)共价键(B)离子键(C)金属键第2章固体结构4.面心立方晶体的致密度为 C 。

(A)100% (B)68% (C)74%5.体心立方晶体的致密度为 B 。

(A)100% (B)68% (C)74%6.密排六方晶体的致密度为 C 。

(A)100% (B)68% (C)74%7.以下不具有多晶型性的金属是。

(A)铜(B)锰(C)铁8.面心立方晶体的孪晶面是。

(A){112} (B){110} (C){111}9.fcc、bcc、hcp三种单晶材料中,形变时各向异性行为最显著的是。

(A)fcc (B)bcc (C)hcp10.在纯铜基体中添加微细氧化铝颗粒不属于一下哪种强化方式?(A)复合强化(B)弥散强化(C)固溶强化11.与过渡金属最容易形成间隙化合物的元素是。

(A)氮(B)碳(C)硼12.以下属于正常价化合物的是。

(A)Mg2Pb (B)Cu5Sn (C)Fe3C第3章晶体缺陷13.刃型位错的滑移方向与位错线之间的几何关系?(A)垂直(B)平行(C)交叉14.能进行攀移的位错必然是。

(A)刃型位错(B)螺型位错(C)混合位错15.在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为。

(A)肖特基缺陷(B)弗仑克尔缺陷(C)线缺陷16.原子迁移到间隙中形成空位-间隙对的点缺陷称为(A)肖脱基缺陷(B)Frank缺陷(C)堆垛层错17.以下材料中既存在晶界、又存在相界的是(A)孪晶铜(B)中碳钢(C)亚共晶铝硅合金18.大角度晶界具有____________个自由度。

(A)3 (B)4 (C)5第4章固体中原子及分子的运动19.菲克第一定律描述了稳态扩散的特征,即浓度不随变化。

(A)距离(B)时间(C)温度20.在置换型固溶体中,原子扩散的方式一般为。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料
导论
材料科学是研究材料的结构、性质和应用的科学,是现代工程技术领域的基础学科。

它对于工程师和科学家在材料选择、设计和开发方面至关重要。

本篇文档将以复习资料的形式,对材料科学的基础知识进行系统梳理和总结。

第一章材料的结构与组成
1.1 原子结构与元素周期表
- 原子的组成:质子、中子和电子
- 元素周期表的基本结构和主要特征
- 元素周期表的分类:金属、非金属和半金属
1.2 结晶与非晶结构
- 结晶的概念和特征
- 结晶的晶体结构:离子晶体、共价晶体和金属晶体
- 非晶态材料的特点和应用
1.3 晶体缺陷
- 点缺陷:空位、间隙、杂质点等
- 线缺陷:位错、脆性断裂和塑性变形
- 面缺陷:晶界、孪晶和堆垛层错
第二章材料的物理性质
2.1 密度与晶体的结构密度
- 密度的概念和计算方法
- 晶格常数与密度的关系
2.2 热膨胀与晶体的结构变化
- 热膨胀的定义和计算方法
- 晶体结构变化对热膨胀的影响
2.3 热导率与导热机制
- 热导率的定义和计算方法
- 材料的导热机制:电子传导、晶格振动传导和辐射传导。

材料科学基础复习

材料科学基础复习

第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性2、对称的概念物体中的相同部分作有规律的重复对称要素:对称面、对称中心、对称轴(对称轴的类型和特点)(L1、L2、L3、L4、L6、C 、P )4次倒转轴不能被其他的对称要素及其组合取代对称操作:借助对称要素,使晶体的相同部分完全重复的操作对称要素的组合必须满足晶体的整体对称要求,不是无限的。

3、对称型(点群):宏观晶体中只存在32种对称型对称型的概念(所具有的宏观对称要素以一定的顺序组合起来)4、晶体的分类 、晶族分类的依据5、晶面的取向关系 、晶面指数的含义和计算(举例)6、空间点阵的概念、 14种布拉维格子( P (R) 、I 、F 、C 格子)7、晶胞的概念 、晶胞参数(计算)8、微观对称要素的特征、空间群的概念(只存在230种空间群)在微观对称操作中都包含有平移动作9、球体紧密堆积原理 (六方密堆、立方密堆)10、鲍林规则(离子晶体)11、决定晶体结构的因素:化学组成、质点相对大小、极化性质12、同质多晶、类质同晶13、典型的晶体结构(晶体结构的描述方法)CaF2结构、金刚石结构、金红石结构、刚玉结构、 CaTiO3、尖晶石结构14、硅酸盐晶体结构、硅酸盐晶体结构分类的依据15、层状硅酸盐晶体的结构特点,(晶胞参数a 和b 值相近)16、石英、鳞石英、方石英的结构特点第二章、晶体结构缺陷1、缺陷的概念(凡是造成晶体点阵的周期性势场发生畸变的一切因素)2、热缺陷 (弗伦克尔缺陷、肖特基缺陷)及计算 热缺陷是一种本征缺陷、高于0K 就存在,影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)3、杂质缺陷、固溶体(晶态固体) 固溶体、化合物、混合物之间的比较4、非化学计量化合物结构缺陷 种类、形成条件、特点,缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较8、缺陷反应方程和固溶式产生的各种缺陷杂质基质−−→−i Cl K K Cl 2l C Cl Ca CaCl '++−→−⨯∙⨯∙'+'+−→−ClK K KCl 2l C 2V Ca CaCl9、固溶体的研究与计算写出缺陷反应方程固溶式、算出晶胞的体积和重量理论密度(间隙型、置换型)和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行第三章、非晶态固体1、熔体的概念:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg 、Tf 相对应的粘度和特点5、网络形成体、网络变化体、网络中间体计算(如Pb玻璃中Pb2+的作用)6、玻璃形成的热力学观点(结晶化、玻璃化、分相)7、玻璃形成的动力学条件3T图---临界冷却速率8、玻璃形成的结晶化学条件(键强、键型)9、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)10、玻璃的结构参数(注意给出的条件)Z可根据玻璃类型确定,先计算R,再计算X、Y11、硼的反常现象12、硅酸盐晶体与硅酸盐玻璃的区别硅酸盐晶体与硅酸盐玻璃在结构上的区别:(1)在硅酸盐晶体中,[SiO4]骨架按一定的对称规律有序排列;在硅酸盐玻璃中[SiO4]骨架的排列是无序的。

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料

材料科学基础期末总结复习资料材料科学基础期末总结复习资料1、名词解释(1)匀晶转变:由液相结晶出单相固溶体的过程称为匀晶转变。

(2)共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。

(3)包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。

即HJB---包晶转变线,LB+δH→rJ(4)枝晶偏析:合金以树枝状凝固时,枝晶干中心部位与枝晶间的溶质浓度明显不同的成分不均匀现象。

(5)晶界偏析:晶粒内杂质原子周围形成一个很强的弹性应变场,相应的化学势较高,而晶界处结构疏松,应变场弱,化学势低,所以晶粒内杂质会在晶界聚集,这种使得溶质在表面或界面上聚集的现象称为晶界偏析(6)亚共晶合金:溶质含量低于共晶成分,凝固时初生相为基体相的共晶系合金。

(7)伪共晶:非平衡凝固时,共晶合金可能获得亚(或过)共晶组织,非共晶合金也可能获得全部共晶组织,这种由非共晶合金所获得的全部共晶组织称为伪共晶组织。

(8)离异共晶:在共晶转变时,共晶中与初晶相同的那个相即附着在初晶相之上,而剩下的另一相则单独存在于初晶晶粒的晶界处,从而失去共晶组织的特征,这种被分离开来的共晶组织称为离异共晶。

(9)纤维组织:当变形量很大时,晶粒变得模糊不清,晶粒已难以分辨而呈现出一片如纤维状的条纹,这称为纤维组织。

(10)胞状亚结构:经一定量的塑性变形后,晶体中的位错线通过运动与交互作用,开始呈现纷乱的不均匀分布,并形成位错缠结,进一步增加变形度时,大量位错发生聚集,并由缠结的位错组成胞状亚结构。

(11)加工硬化:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。

(12)结构起伏:液态结构的最重要特征是原子排列为长程无序、短程有序,并且短程有序原子集团不是固定不变的,它是一种此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏。

《材料科学基础》期末复习

《材料科学基础》期末复习

总复习
本章区别概念:
晶体与非晶体 • 空间点阵和晶体结构
相和组织
• 固溶体和中间相 间隙固溶体和置换固溶体 • 间隙固溶体和间隙化合物 间隙相和间隙化合物
• 电子化合物和正常价化合物
总复习
第三章 晶体缺陷
1、各类缺陷的认识(点、线、面缺陷定义和特征)。
2、点缺陷、Schottky空位、Frankel空位、间隙原子、置 换原子。点缺陷的特征、平衡浓度公式及应用。 3、线缺陷、位错、位错线、刃型位错、螺型位错、混合 型位错、柏氏矢量、位错运动、滑移、交滑移、双交滑移、 多滑移、攀移、交割、割价、扭折、塞积。 • 位错类型(刃型、螺型、混合型位错)的判断及其特征。 • 柏氏矢量的确定方法、特征及表示法。 • 位错线、柏氏矢量、位错运动与作用在位错上的力之间 的关系。
总复习
本章区别概念:
• 滑移、孪生 软位向,硬位向 • 几何硬化和几何软化 沉淀强化、弥散强化 • 纤维组织与带状组织 第一类残余应力 、第二类残余应力 、第三类残余应力 • 静态回复与动态回复 静态再结晶、动态再结晶 • 正常长大、异常长大 冷加工、热加工 • 重结晶、再结晶、二次再结晶
总复习
3、晶界与相界的类型、晶界的特性和作用(对材料性能的
影响)。
总复习
本章区别概念: • 刃型位错和螺型位错 交滑移和多滑移
• 滑移和攀移
割价、扭折
• 晶界、相界、孪晶界
小角度晶界、大角度晶界 • 共格相界、非共格相界、半共格相界
总复习
第四章 固体原子及分子的运动
1、固态金属扩散的条件及影响扩散的因素; 2、扩散定律(Fick第一、二定律)的方程、稳态扩散、非稳态扩散、 扩散通量。 扩散定律的内容和表达式、物理意义、适应条件。扩散定律的解及 应用,如:渗碳等; 3、迁移率、柯肯达尔效应、扩散激活能。 4、固相中原子扩散的各种机制(空位机制、间隙机制、换位机制、 晶界扩散机制。扩散的驱动力并用扩散理论分析实际问题。 5、扩散的分类、名称(区别,);扩散、自扩散、互(异)扩散、 上坡扩散、下坡扩散;原子扩散、反应扩散;空位扩散、间隙扩散、换 位扩散、晶界扩散、表面扩散、短路扩散。 6、扩散系数及表达式(阿累尼乌斯方程)、影响扩散的因素。

材料科学基础_综合复习题

材料科学基础_综合复习题

材料科学基础复习题一、选择题1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是.(A) 金属键(B) 离子键(C) 分子键(D) 共价键2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是.(A) 氢键(B) 离子键(C) 分子键(D) 共价键3. 工业用硅酸盐属于.(A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料4. 布拉菲点阵共有中.(A) 8 (B) 10 (C) 12 (D) 145. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为.(A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 46. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是.(A) 在简单立方点阵中, 低指数的晶面间距较大(B) 在简单立方点阵中, 高指数的晶面间距较大(C) 晶面间距越大, 该晶面上原子排列越紧密(D) 晶面间距越大, 该晶面上原子排列越稀疏7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为.(A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 128. 密堆积结构的致密度为.(A) 0.68 (B) 0.74 (C) 0.82 (D) 1.09. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为.(A) 4 (B) 6 (C) 8 (D) 1010. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是.(A) 原子结合键为共价键(B) 原子配位数为4(C) 单位晶胞包含8个原子(D) 属于面心立方点阵, 为密堆积结构11. 下述晶体缺陷中属于点缺陷的是.(A) 空位(B) 位错(C) 相界面(D) 间隙原子12. 下述晶体缺陷中属于线缺陷的是.(A) 空位(B) 位错(C) 晶界(D) 间隙原子13. 下述晶体缺陷中属于面缺陷的是.(A) 表面(B) 位错(C) 相界面(D) 空位14. 下述界面中界面能最小的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面15. 下述界面中界面能最大的是.(A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面16. 理想密排六方金属的c/a为.(A) 1.6 (B)(C) (D) 117. 在晶体中形成空位的同时又产生间隙原子, 这样的缺陷称为.(A) 肖脱基空位(B) 弗兰克尔空位(C) 线缺陷(D) 面缺陷18. 面心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}19. 体心立方晶体的挛晶面是.(A) {112} (B) {110} (C) {111} (D) {123}20. 铸铁与碳钢的区别在于有无.(A) 莱氏体(B) 珠光体(C) 铁素体(D) 渗碳体21. 在二元系合金相图中, 计算两相相对量的杠杆法则只能用于.(A) 单相区中(B) 两相区中(C) 三相平衡水平线上(D) 无限制22. Hume-Rothery提出有利于大量固熔的原子尺寸条件为两组元的原子半径差对熔剂原子半径的比不超过.(A) 10% (B) 14% (C) 15% (D) 20%23. 碳与钒结合形成金属化合物, 下述说法正确的是.(A) 该化合物属于简单间隙化合物(B) 该化合物属于复杂间隙化合物(C) 该化合物具有体心立方结构(D) 该化合物具有面心立方结构24. 以下关于渗碳体的描述中, 正确的是.(A) 渗碳体是钢中很重要的一种复杂间隙相(B) 渗碳体晶体结构非常复杂, 属于正交晶系(C) 渗碳体为铁与碳固熔形成的间隙固熔体(D) 渗碳体为铁与碳固熔形成的置换固熔体25. 下述关于Ni-Cu系二元合金的描述中, 正确的是.(A) 室温下组织为单相组织(B) 室温下组织为两相组织(C) 凝固时发生匀晶转变(D) 凝固时发生共晶转变26. 凝固后是否形成晶体, 主要由液态物质的决定.(A) 温度梯度(B) 粘度(C) 冷却速度(D) 压力27. 金属结晶形核时, 临界晶核半径r K与过冷度ΔT及表面自由能σ之间的关系为.(A) ΔT越大, r K越小(B) ΔT越大, r K越大(C) σ越大, r K越小(D) σ越大, r K越大28. 纯金属均匀形核, 形成临界晶核时体积自由能的减少只能补偿表面能的.(A) 13(B)23(C)34(D)4529. 原子扩散的驱动力是.(A) 组元的浓度梯度(B) 组元的化学势梯度(C) 温度梯度(D) 表面张力30. 菲克第一定律描述了稳态扩散的特征, 即浓度不随变化.(A) 距离(B) 时间(C) 温度(D) 压力31. 在置换固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制32. 在间隙固熔体中, 原子扩散的方式一般为.(A) 原子互换机制(B) 间隙机制(C) 空位机制(D) 填隙机制33. 在科肯道尔效应中, 惰性标记发生移动的主要原因是扩散偶中.(A) 两组元的原子尺寸不同(B) 仅存在一组元的扩散(C) 两组元的扩散速率不同(D) 两组元的温度不同34. 晶体的类型与结构是影响固体材料中原子扩散的重要因素, 基本规律是.(A) 与金属相比, 晶态化合物的扩散系数低(B) 与金属相比, 晶态化合物的扩散系数高(C) 非密堆结构的晶体比密堆结构的晶体具有更高的扩散系数(D) 密堆结构的晶体比非密堆结构的晶体具有更高的扩散系数35. D L, D B, D S分别表示晶内扩散、晶界扩散和表面扩散的扩散系数, 则在一般情况下, 三者的大小关系为.(A) D L > D B > D S(B) D S > D B > D L(C) D B > D L > D S(D) D S > D L > D B36. 合金凝固时极易得到树枝晶组织, 其主要原因是.(A) 固-液界面前沿液相中存在正温度梯度(B) 固-液界面前沿液相中存在负温度梯度(C) 固-液界面前沿液相中存在成分过冷区(D) 固-液界面前沿液相中存在难熔质点37. 下述关于交滑移的描述中, 正确的是.(A) 发生交滑移时会出现曲折或波纹状的滑移带(B) 体心立方金属最容易发生交滑移(C) 层错能低的金属易发生交滑移(D) 交滑移必须通过刃型位错实现38. 多晶体发生塑性变形时, 为了满足协调变形, 每个晶粒至少需要开动个独立的滑移系.(A) 3 (B) 4 (C) 5 (D) 639. 再结晶后的晶粒长大是通过方式进行的.(A) 大晶粒吞食小晶粒(B) 小晶粒蚕食大晶粒(C) 晶界向曲率中心移动(D) 晶界背向曲率中心移动40. w C低于0.014的碳钢发生马氏体转变时, 马氏体M与奥氏体A有K-S取向关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {111}M // {110}A, <111>M // <110>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A41. 含Ni约30% 的Fe-Ni合金发生马氏体相变时, 马氏体与奥氏体之间的位向关系为西山关系, 即.(A) {110}M // {111}A, <111>M // <110>A(B) {110}M // {111}A, <110>M // <112>A(C) {110}M // {111}A, <110>M // <111>A(D) {112}M // {111}A, <111>M // <110>A42. 以下关于马氏体相变的描述中, 正确的是.(A) 马氏体相变为无扩散性相变(B) 马氏体相变是通过形核-长大方式进行的(C) 马氏体相变速率极低(D) 马氏体相变速率极高43. 固态相变的阻力一般包括.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差44. 固态相变的驱动力是.(A) 新、旧相比体积差所增加的应变能(B) 新、旧相为维持共格/半共格关系所增加的应变能(C) 新、旧相界面增加的表面能(D) 新、旧相之间的体积自由能差45. 固态相变时空位处易于形核的主要原因是.(A) 空位促进熔质原子的扩散(B) 空位释放的能量可提供形核驱动力(C) 空位阻碍熔质原子的扩散(D) 空位群凝聚成位错, 促进形核46. 下述固态相变中属于扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变47. 下述固态相变中属于无扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变48. 下述固态相变中属于半扩散型相变的是.(A) 脱熔转变(B) 马氏体转变(C) 贝氏体转变(D) 共析转变49. 时效型合金发生脱熔转变期间容易产生过渡相, 其特征是.(A) 过渡相与母相之间形成共格或半共格界面(B) 过渡相与母相之间形成非共格界面(C) 过渡相一般呈盘片状(D) 过渡相一般呈球状50. 调幅分解的特点是.(A) 成分改变(B) 成分不变(C) 有核相变(D) 无核相变选择题参考答案1. ABD2. AC3. B4. D5. A6. AC7. D8. B9. C 10. ABC11. AD 12. B 13. AC 14. A 15. C16. B 17. B 18. C 19. A 20. A21. B 22. C 23. AD 24. AB 25. AC26. BC 27. AD 28. B 29. B 30. B31. C 32. B 33. C 34. AC 35. B36. C 37. ABC 38. C 39. AC 40. A41. B 42. ABD 43. ABC 44. D 45. ABD46. AD 47. B 48. C 49. AC 50. AD二、简答题1. 固态相变基本特点.答: 固态相变的特点是:(1) 相变阻力大. 固态相变时的阻力包括新、旧相之间的表面能以及新、旧相由于比体积差或新、旧相界面原子错配而额外增加的弹性应变能; 另外, 固相中原子扩散速率极低也是造成固态相变阻力大的一个重要原因.(2) 新相晶核与母相之间存在一定的晶体学位向关系. 固态相变时, 为了减少新、旧两相之间的界面能, 新相晶核与母相晶体之间往往存在一定的晶体学位向关系, 常以低指数、原子密度大且匹配较好的晶面和晶向互相平行; 并且, 新相往往在母相的某一特定晶面(惯习面)上形成.(3) 母相晶体缺陷对相变起促进作用. 由于母相晶体中存在的各种缺陷(如晶界、相界、位错、空位等)周围晶格有畸变, 自由能较高, 因此容易在这些区域优先形核.(4) 易于出现过渡相. 过渡相是为了克服相变阻力而形成的一种协调性中间转变产物. 通常首先在母相中形成成分与母相相近的过渡相, 然后在一定条件下由过渡相逐渐转变为稳定相.2. 位错促进固态相变形核的主要原因.答: 由于固态相变阻力大, 固相中的形核几乎总是非均匀的, 往往借助晶体中的结构缺陷(空位,位错,晶界等)形核.新相在位错处形核有三种情况: 一是新相在位错线上形核, 新相形成处, 位错消失, 释放的能量使形核功降低而促进形核; 二是位错不消失, 而且依附在新相界面上, 成为半共格界面中的位错部分, 补偿了失配, 因而降低了能量, 使生成晶核时所消耗的能量减少而促进形核; 三是当新相与母相成分不同时, 由于熔质原子在位错线附近偏聚(形成柯氏气团)有利于新相沉淀析出, 也对形核起促进作用.3. 非扩散型相变的基本特征.答: 无扩散型相变的基本特点是:(1) 存在由于均匀切变引起的形状改变, 使晶体发生形状改变.(2) 由于相变过程无扩散, 新相与母相的化学成分相同.(3) 新相与母相之间有一定的晶体学位向关系.(4) 相界面移动速度极快, 可接近声速.4. 说明Al-Cu等时效型合金脱熔过程出现过渡相的原因.答: 时效处理时脱熔的一般顺序为:偏聚区(或称G.P.区) →过渡相(亚稳相) →平衡相.脱熔时不直接析出平衡相的原因, 是由于平衡相一般与基体形成新的非共格界面, 界面能大, 而亚稳定的脱熔产物往往与基体完全或部分共格, 界面能小. 在相变初期, 界面能起决定性作用, 界面能小的相, 形核功小, 容易形成. 所以首先形成形核功最小的过渡结构, 再演变成平衡稳定相.5. 调幅分解的主要特征.答: (1) 调幅分解过程的成分变化是通过上坡扩散实现的. 首先出现微区的成分起伏, 随后通过熔质原子从低浓度区向高浓度区扩散, 使成分起伏不断增幅, 直至分解为成分不同的两平衡相为止.(2) 调幅分解不经历形核阶段, 新、旧相结构相同, 不存在明显的相界面. 由于无需形核, 所以分解速度很快.6. 脱熔相颗粒粗化机理.答: 参见教材P292-293的“8.4.3.2 颗粒粗化”一节. (需要画图!!)7. 零件热处理的作用.答: 零件热处理的作用如下:(1) 通过适当的热处理可以显著提高零件的力学性能, 延长机器零件的使用寿命.(2) 恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷, 细化晶粒, 消除偏析, 降低内应力, 使零件的组织和性能更加均匀.(3) 热处理也是机器零件加工工艺过程中的重要工序.(4) 此外, 通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能.8. 过共析钢淬火时加热温度的选择依据.答: 过共析钢的淬火加热温度限定在Ac1以上30~50℃是为了得到细小的奥氏体晶粒和保留少量渗碳体质点, 淬火后得到隐晶马氏体和其上均匀分布的粒状碳化物, 从而不但可以使钢具有更高的强度、硬度和耐磨性, 而且也具有较好的韧性. 如果过共析钢淬火加热温度超过Ac cm, 碳化物将全部熔入奥氏体中, 使奥氏体中的含碳量增加, 降低钢的M s和M f 点, 淬火后残留奥氏体量增多, 会降低钢的硬度和耐磨性; 淬火温度过高, 奥氏体晶粒粗化、含碳量又高, 淬火后易得到含有显微裂纹的粗片状马氏体, 使钢的脆性增大; 此外, 高温加热淬火应力大、氧化脱碳严重, 也增大钢件变形和开裂倾向.9. 马氏体相变的基本特征.答: (1) 无扩散性. 马氏体转变的过冷度很大, 转变温度低, 原子扩散无法进行, 因此是非扩散型相变.(2) 切变共格性. 马氏体转变是新相在母相特定的晶面(惯习面)上形成, 并以母相的切变来保持共格关系的相变过程.(3) 变温形成. 马氏体转变有其开始转变温度(M s点)与转变终了温度(M f点). 当过冷奥氏体冷到M s点, 便发生马氏体转变, 转变量随温度的下降而不断增加, 一旦冷却中断, 转变便很快停止.(4) 高速长大. 马氏体转变没有孕育期, 形成速度很快, 瞬间形核, 瞬间长大.(5) 不完全性. 一般来说, 奥氏体向马氏体的转变是不完全的, 即使冷却到M f点, 也不能获得100%的马氏体, 即总有一部分残余奥氏体.10. 细晶强化/固熔强化/弥散强化/加工硬化机理.答: (关于弥散强化机理)由塑性相与硬脆相组成的(两相)合金, 倘若硬脆的第二相呈弥散粒子均匀地分布在塑性相基体上, 则可显著提高合金的强度, 此即弥散强化. 这种强化的主要原因是由于弥散细小的第二相粒子与位错的交互作用(位错绕过或切过第二相粒子), 阻碍了位错的运动, 从而提高了合金的塑性变形抗力.(关于加工硬化机理)在塑性变形过程中, 随着金属内部组织的变化, 金属的力学性能也将产生明显的变化, 即随着变形程度的增加, 金属的强度、硬度增加, 而塑性、韧性下降, 这一现象即为加工硬化或形变强化.关于加工硬化的原因, 目前普遍认为与位错的交互作用有关. 随着塑性变形的进行, 位错密度不断增加, 因此位错在运动时的相互交割加剧, 产生固定割阶、位错缠结等障碍, 使位错运动的阻力增大, 引起变形抗力的增加, 从而提高了金属的强度.11. 孪生变形特点.答: 孪生变形是金属塑性变形的基本方式之一, 是指在切应力的作用下, 晶体的一部分沿一定的晶面(孪生面)和一定的晶向(孪生方向)相对于另一部分晶体作均匀地切变, 在切变区域内, 与孪生面平行的每层原子的切变量与它距孪生面的距离成正比, 并且不是原子间距的整数倍. 其特点为:(1) 孪生变形引起的切变不会改变晶体的点阵类型, 但可使变形部分的位向发生变化, 并且与未变形部分的晶体以挛晶界为分界面构成了镜面对称的位向关系.(2) 一般说来, 孪生的临界分切应力要比滑移的临界分切应力大得多, 只有在滑移很难进行的条件下, 晶体才进行孪生变形.(3) 孪生对塑性变形的贡献比滑移小得多, 例如镉单纯依靠孪生变形只能获得7.4% 的伸长率. 但是, 由于孪生变形后晶体位向发生变化, 可能使原来取向不利的滑移系转变为新的有利取向, 从而引发晶体的进一步滑移, 提高金属的塑性变形能力.(4) 孪生变形的速度极快, 常引起冲击波, 发出音响.12. 根据阿累尼乌斯(Arrhenius)公式: D = D0exp(-Q/RT), 分析影响扩散的主要因素.答: 上述公式中, Q为原子扩散激活能, T为温度, 它们是影响扩散的主要因素. 很显然, Q 越小, 或扩散温度T 越高, 则D越大, 扩散越易进行. 而扩散激活能Q取决于材料的键能. 高熔点纯金属的键能高于低熔点的, 因此前者的激活能较高, 其自扩散系数较小; 通常致密度大的晶体结构中, 原子扩散激活能较高, 扩散系数较小; 不同类型的固熔体, 熔质原子的扩散激活能不同, 间隙原子的扩散激活能都比置换原子的小, 所以扩散速度比较大; 晶体缺陷处, 原子排列混乱, 能量较高, 激活能往往较低, 因此扩散容易. 对于一定的晶体结构来说, 表面扩散最快, 晶界次之, 亚晶界又次之, 晶内最慢; 在位错、.空位等缺陷处的原子比完整晶格处的原子扩散容易得多.13. (扩散的微观机理)间隙/空位机制.答: (1) 间隙机制: 晶体中存在的间隙原子通过晶格间隙之间的跃迁实现的扩散; 间隙固熔体中间隙原子(C,H,N,O等)的扩散就是这种机制; 为了实现这种扩散, 扩散原子必须具有越过能垒的自由能.(2) 空位机制: 晶体中扩散原子离开自己的点阵位置去填充空位, 而原先的点阵位置形成了新的空位, 如此反复, 实现原子的扩散; 置换固熔体(或纯金属)中原子的扩散即为空位扩散; 在空位扩散中, 扩散原子除具有越过能垒的自由能外, 还必须具有空位形成能.14. 简述Cu-Ni 扩散偶惰性标记移动规律及其原因.答: Cu-Ni 扩散偶惰性标记会向Ni 棒一侧移动. 由于Ni 的熔点(1452℃)比Cu 的熔点(1083℃)高, 表明Ni 原子的结合能高于Cu 原子的, 因此, 扩散偶中Ni 原子进入Cu 晶体点阵要比Cu 原子进入Ni 晶体点阵容易, 即Ni 原子在Cu 棒中的扩散速度要快于Cu 原子在Ni 棒中的扩散速度, Ni 原子向Cu 棒一侧发生了物质的净输送, 其结果就是惰性标记往Ni 棒一侧移动.15. 成分过冷条件及其影响因素.16. 包晶反应速度慢的原因.17. 正常凝固合金圆棒宏观偏析规律.18. 纯金属晶体长大形态与温度梯度的关系.19. 纯金属晶体长大机制.20. 润湿角对异质形核功的影响规律.21. 均匀形核率与过冷度的关系及其原因.答: 均匀形核时, 形核率方程为exp()exp()A Q N C kT kT=-- 式中, A 为临界晶核的形核功; Q 为原子越过液-固界面的扩散激活能; T 为温度.上式表明, 过冷度对形核率的影响受形核功和原子扩散激活能控制: 一方面, 当过冷度较小时, N 与exp(-A / kT ) 成正比, 故随着过冷度的增大, exp(-A / kT ) 数值也增大, 形核率就越大; 另一方面, 当过冷度足够大时, 随着过冷度的增大, 原子扩散速度要减慢, 此时, N 主要受exp(-Q / kT ) 数值影响, 而Q 值随温度改变很小, 故随着过冷度的增大, 形核率反而减小.22. 金属结晶的热力学、动力学、结构和能量条件.23. 间隙固熔体两组元不能无限互熔的原因.24. 分析γ-Fe 熔碳量高于α-Fe 的原因.三、作图/计算题类型1. 晶面/晶向绘制(应掌握三轴系统的).2. 典型结构金属滑移系表示及绘制.3. 典型二元合金相图绘制(共晶型/包晶型).4. 合金平衡凝固冷却曲线绘制.5. 合金平衡结晶金相组织图绘制.6. 根据点阵类型, 参数及原子量计算晶体材料的密度.12、已知Cu的原子量为63.5,原子半径是0.1278 nm。

材料科学基础复习

材料科学基础复习

材料科学基础复习第一章材料科学与工程1. 金属是电的良好导体,强度高和较致密,可以形成复杂的形状,当经受高速冲击力时有抵抗脆性断裂的能力。

这些性能使金属在导电和结构应用上成为最重要的材料类别之一。

金属在强度和韧性(断裂抗力)两方面具有优异的综合性能。

2. 普通的陶瓷包括:沙.砖块和泥灰.窗玻璃和石墨3. 陶瓷通常由金属和非金属原子组成。

很多陶瓷是晶体,不是晶体的常见例子是窗玻璃(主要由SiO2 组成)。

陶瓷中中非金属元素通常是氧。

陶瓷倾向于以脆性形式断裂,而不是以弯曲来缓解外力。

陶瓷的优点:高温稳定性,抗化学腐蚀性,不吸收外来物质。

陶瓷中的离子键和共价键很强。

4. 聚合物大部分是共价键合,但链之间以比较弱的二次键互相键合,因此强度较低。

聚合物一般不能应用于高温条件,因为在中等温度下倾向于软化。

价格低廉,密度低,易于加工成复杂形状。

5. 复合材料是由两种或多种材料结合在一起而产生一种新的材料,这种材料的性能用传统方法是不能得到的。

例如:胶合板,混凝土和钢束轮胎。

6. 主要的半导体材料是共价键结合的元素硅和锗以及一系列共价键化合物,半导体是陶瓷的一小类。

第二章原子尺度的结构1. 阿累尼乌斯过程(热激活过程)遵循的公式:反应速率=Cexp(-Q/RT)C为常数,R为气体常数,T为热力学温度,Q为过程的激活能R总是具有相同的值,而C和激活能Q却随反应变化而变化2. 一次键通常比二次键强一个数量级以上一次键的 3 个主要类型:离子键,共价键,金属键二次键的 2 个类型:氢键(最强的二次键),范德瓦尔键3. 离子键:包含正电性和负电性两种元素的化合物最通常的键类型4. 配位数:每个原子周围最邻近的数目5. 确定半径比值与所得配位数的关系的限定条件:(1)正离子与负离子相接触(2)给定正离子周围的负离子数目在几何上尽可能高(3)同性的例子不能相互重叠表:每个配位数的临界(r/R )比值(P34)6. 离子材料的配位数(CN有几何构型决定,共价键材料的配位数由每个原子的价电层中的电子数决定,金属固体中原子的配位数主要是由几何条件决定7. 二次键与一次键的根本区别:二次键既不涉及电子的转移,也不涉及电子的公用8. 交联:通过未饱和双键而形成的一次键9.橡胶老化的原因:硫化橡胶的交联程度并不大,仍然存在大量的未饱和键,因此当大气中的硫或氧侵蚀使用中的硫化橡胶时就会变脆和开裂第三章晶体结构1. 晶体:以基本的积木块按一定间隔重复、规则排列方式结晶的材料2. 短程有序(SRO:在一个中心原子周围最近邻原子的局部排列长程有序(LRO :材料在比键长大得多的距离呈现有序3. 点阵:点的无限延伸的排列,其中每一点被相同类型的临点所包围4. 基元:处在一个点阵的物质群5. 线密度:沿一个方向单位长度上相同点真的数目面密度: 所关心的面的单位面积上的原子数。

胡赓祥第三版材料科学基础知识总结与复习答案

胡赓祥第三版材料科学基础知识总结与复习答案

胡赓祥第三版材料科学基础知识总结与复习答案1. 金属的结构和性质金属的结构由晶格和晶界组成。

晶格是由金属原子按照一定的排列规律形成的三维结构,晶界是相邻晶粒之间的边界。

金属的性质受晶格结构和晶界的影响。

2. 金属的热处理金属的热处理包括退火、正火、淬火和回火等。

退火可改善金属的塑性和韧性,正火可提高金属的硬度和强度,淬火可使金属具有高硬度和高强度,回火可降低金属的脆性。

3. 金属的腐蚀与防护金属在环境中容易发生腐蚀,腐蚀会导致金属的性能下降。

常见的金属腐蚀方式包括电化学腐蚀、化学腐蚀和物理腐蚀。

为了防止金属腐蚀,可以采取防护措施,如涂层保护、金属合金化等。

4. 金属的力学性能金属的力学性能包括强度、韧性、硬度和塑性等。

强度指金属抵抗外力的能力,韧性指金属在受力下发生塑性变形的能力,硬度指金属抵抗划伤的能力,塑性指金属在受力下发生永久形变的能力。

5. 金属的疲劳与断裂金属在长期受到交变载荷作用下容易发生疲劳破坏,疲劳破坏是由于金属内部微小缺陷的逐渐扩展导致的。

金属的断裂是指在受到过大载荷作用下金属突然破裂。

为了预防金属的疲劳与断裂,可以采取措施如降低应力集中、提高材料的强度等。

6. 陶瓷材料的结构和性能陶瓷材料是由非金属元素形成的晶体结构,其特点是硬度高、耐磨损、耐高温等。

陶瓷材料的性能受晶体结构和晶界的影响。

7. 高分子材料的结构和性能高分子材料是由大量重复单元组成的聚合物,其特点是轻质、柔软、绝缘等。

高分子材料的性能受分子结构和分子链的影响。

8. 复合材料的结构和性能复合材料由两种或两种以上不同材料组成,通过界面连接形成整体性能。

复合材料的性能受组分材料、界面结构和相互作用的影响。

9. 材料的选型与设计材料的选型与设计需要考虑材料的性能、用途要求、成本等因素。

根据具体要求选择合适的材料,进行设计和优化。

10. 材料的制备与加工材料的制备与加工包括原材料的提取、合成和加工成形等过程。

不同材料需要采用不同的制备和加工方法。

材料科学基础总复习

材料科学基础总复习

28、晶体宏观的塑性变形是通过 运动来实现的。
29、实际晶体中,位错的柏氏矢量不是 ,它应符合相应的 条件
和 条件。
30、小角度晶界其基本类型有 晶界和() 晶界两类。
31、在常温或低温下,位错的 运动非常困难,因为这种运动需要原
子的 才能发生,显然,升高温度可以 这种运动。
32、无论什么位错在外应力下滑移时,其运动方向总是与位错线 ,
以及 。
13、碳原子溶于α-Fe形成的固溶体,称为 ;碳原子溶于γ-Fe形成的
固溶体则称为 ;共晶转变的产物在室温下称为 ;共析转变的
产物在室温下称为 。
14、渗碳体有五种类型分别为: 、 、 、 和 。
15、材料科学是研究各种材料的 、制备加工工艺与 关系的科
学。
16、 、 与
是冷变形金属加热过程中经历的基本过程。
材料科学基础总复习
一、填空题
1、对于不含气相的凝聚系统(金属、非金属、聚合物系统),可视为
恒压条件,相律表述为 。
2、扩散的驱动力为 ,原子扩散的机制主要是 和 。
3、任何铁碳合金在室温下的平衡组织都是由 和 两个相组成
的。
4、塑性变形不仅使晶体的 、 和( ) 发生变化,而且由于
塑性变形的不均匀性,还使冷变形晶体中产生 。
1、菲克第一定律描述了稳态扩散的特征,即浓度不随 B 变化。 A、距离 B、时间 C、温度 D、压强 2、原子扩散的驱动力是 D 。 A、浓度梯度 B、压强梯度 C、温度梯度 D、化学势梯度 3、形成临界晶核时体积自由能的减少只能补偿表面能的 B 。 A、1/3 B、2/3 C、1/4 D、3/4 4、金属Al、Mg分别属于何种晶体结构 。 A、体心立方、面心立方 B、体心立方、密排六方 C、面心立方、体心立方 D、面心立方、密排六方 5、面心立方结构的配位数和致密度分别为 。 A、12、0.74 B、12、0.68 C、8、0.74 D、8、0.68 6、体心立方结构的配位数和致密度分别为 。 A、8、0.68 B、12、0.68 C、8、0.74 D、12、0.74 4、铸铁与碳钢的区别在于有无 A 。 A、莱氏体 B、珠光体 C、铁素体 D、渗碳体 5、在二元合金相图中,计算两相相对量的杠杆法则只能用于 B 。 A、单相区 B、两相区 C、三相平衡水平线 D、单相区或两相区 6、面心立方晶体的孪晶面为 C 。 A、(100) B、(110) C、(111) D、(112) 4、面心立方、体心立方和密排六方晶胞中的原子数分别为 。 A、8、12、6 B、12、8、6 C、6、12、8 D、12、6、8 5、金属晶体的点缺陷主要是指空位。 A、空位 B、间隙原子 C、置换原子 D、杂质原子 6、过饱和点缺陷点缺陷的产生方法不包括 。 A、淬火法 B、辐照法 C、塑性变形 D、弹性变形 7、在置换型固溶体中,原子扩散的方式一般为 D 。 A、原子互换机制 B、间隙机制 C、推填机制 D、空位机制 8、由热力学第二定律可知,相变的驱动力是 C 。

材料科学基础复习.

材料科学基础复习.


第三章 典型金属晶体结构
基本参数
点阵常数
fcc
2 R a 4
bcc
3 R a 4
1/ 8 8 1 2
hcp
R 1 a 2
晶胞内原子数 1 / 8 8 1 / 2 6 4 配位数 致密度 最近原子间距
12 0.74 8
1 / 6 12 1 / 2 2 3 6
材料科学基础复习
2019/4/14
第一章 原子结构与键合
◆ 原子的电子结构 核外电子排布规律:能量最低原理、泡利( Pauli )不 相容原理、洪德( Hund )法则。 要求: 熟悉且能写出一般 元素的核外电子排布式。如C、O、N、Na、Mg、Al等。 ◆ 原子间的键合
物理键:范德华力、氢键
主要依靠原子间的偶极吸引力结合 化学键:金属键、离子键、共价键(极性和非极性)
2
2
2
2019/4/14
第四章 晶体缺陷
例:
b1 a[100]
a b 2 [101] 2
b1 a
a b2 2
1 0 0 a
1
2
2
2
2
0
2
1
2

2 a 2
a b 2 [101] 2
b1 a[100]
第四章 晶体缺陷

根据位错理论的提出背景,当位错受到力的作用时,会 发生运动。

扩散的热力学理论
第五章 固体材料中的扩散
诱发原因:
1)弹性应力场的作用:应力梯度抵消了浓度梯度。 2)电场、磁场的作用:电场、磁场对带电粒子的运动产生影响。
3)晶界内吸附作用:溶质原子向晶界偏聚。
4)调 幅 分 解:典型的化学位梯度与浓度梯度方向相反。

材料学 总复习资料

材料学 总复习资料

7. 由于晶界能量较高而且原子活动能力较大,所以新相易于在晶界处优
先形核。
()
8. 工程上把室温及低于室温下的加工称为冷加工。
()
9. 只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。
()
10. 螺型位错的伯氏矢量与位错线相无序排列到固相有序排列,使体系熵值减小,
14
()
17. 在多晶体的塑性变形过程中,其各晶粒的变形是独立的。 ( )
18. 菲克第一定律适用于稳态扩散过程。
()
19. 刃型位错的伯氏矢量与位错线平行。
()
20. 三元相图垂直截面的两相区内可用杠杆定律。
()
5
三、选择题 1. 下列对金属键描述正确的是_____:
A. 无方向性和饱和性 B. 有方向性和饱和性 C. 有方向性无饱和性 D. 无方向性有饱和性 2. 在常温和低温下,单晶体的塑性变形主要是通过_____方式进行。 A.滑移 B.孪生 C.扭折 3. 在晶体中形成空位的同时又产生间隙原子,这样的缺陷称为_____。 A.肖特基缺陷 B.弗仑克尔缺陷 C.线缺陷 4. 发生共晶反应时,因三相平衡,f=_____ A. 0 B.1 C.2 5. 影响固体扩散的最主要因素是_____。 A.温度 B.固溶体类型 C.晶体结构 6. 在二元相图中,已结晶的固相与剩余液相反应形成另一固相的恒温转变 称为_____。 A.匀晶转变 B.共晶转变 C.包晶转变
8
16. 下列缺陷形式不属于点缺陷的是_____。 A.空位 B.间隙原子 C.杂质原子 D. 位错 17. 在晶体中不会出现下列哪种旋转轴_____。 A.2次轴 B.3次轴 C.4次轴 D.5次轴 18. 晶体由许多晶粒组成,属于同一固相但位向不同的晶粒之间的界面称 为_____。 A.表面 B.晶界 C.亚晶界

材料科学基础复习提纲

材料科学基础复习提纲

材料科学基础复习提纲一、介绍材料科学基础A. 定义材料科学基础B. 材料科学的重要性C. 材料科学的发展历程二、材料分类与结构A. 材料的分类1. 金属材料2. 陶瓷材料3. 高分子材料4. 复合材料B. 材料的结构1. 晶体结构2. 非晶体结构3. 结晶缺陷三、材料的力学性能A. 弹性力学1. 应变与应力的关系2. 弹性模量B. 塑性力学1. 屈服强度与延展性的关系2. 硬度与韧性的关系C. 断裂力学1. 断裂模式2. 断裂韧性四、材料的热学性能A. 热膨胀性B. 热导性C. 热传导五、材料的电学性能A. 导电材料与绝缘材料B. 电导率与电阻C. 介电材料六、材料的磁学性能A. 磁性材料与非磁性材料B. 磁导率与磁饱和强度C. 磁性材料的应用七、材料的光学性能A. 透明材料与非透明材料B. 折射率与反射率C. 光学材料的应用八、材料的化学性能A. 腐蚀性B. 氧化性C. 降解性九、材料的加工与制备A. 熔融法B. 溶剂法C. 沉淀法十、材料的表面处理与性能改性A. 表面处理技术1. 打磨与抛光2. 镀层与涂料B. 性能改性技术1. 合金化2. 掺杂十一、材料选择与设计A. 功能需求与材料选择B. 材料设计原则C. 材料性能测试与评估结论以上是材料科学基础复习提纲的大致内容,通过对材料科学的分类、结构以及不同性能的介绍,有助于加深对材料科学基础知识的理解与掌握。

在学习和研究材料科学时,还需要了解材料的加工与制备过程、表面处理与性能改性技术,同时掌握材料选择与设计的方法和原则。

材料科学基础的复习与掌握是深入学习材料科学和进行材料研究的重要一步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《材料科学基础》上半学期内容重点第一章固体材料的结构基础知识键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念;晶体的特性(5个);晶体的结构特征(空间格子构造)、晶体的分类;晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子;第二章晶体结构与缺陷晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体;典型金属晶体结构;离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例);晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例);第三章材料的相结构及相图相的定义相结构合金的概念:固溶体置换固溶体(1)晶体结构无限互溶的必要条件—晶体结构相同比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明)(2)原子尺寸:原子半径差及晶格畸变;(3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体(一)间隙固溶体定义(二)形成间隙固溶体的原子尺寸因素(三)间隙固溶体的点阵畸变性中间相中间相的定义中间相的基本类型:正常价化合物:正常价化合物、正常价化合物表示方法电子化合物:电子化合物、电子化合物种类原子尺寸因素有关的化合物:间隙相、间隙化合物二元系相图:杠杆规则的作用和应用;匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点;三元相图:三元相图成分表示方法;了解三元相图中的直线法则、杠杆定律、重心定律的定义;第四章材料的相变相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类);按结构分类:重构型相变和位移型相变的异同点;马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变;按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变第5章 金属材料的显微结构特征一、纯金属的凝固及结晶1、结晶的热力学条件结晶后系统自由能下降。

结晶的热力学条件是系统的过冷度ΔT >0。

结晶驱动力与过冷却度的关系m m V T T L G ∆-=∆ 2、形核(1)液相结构长程无序短程有序:液体内某时刻有许多微小体积内的质点有序排列,每一微小体积维持有序排列的时间非常短暂,不断在不同位置有新的有序排列微小体积产生,但又瞬间消失,称为结构起伏。

(2)晶胚熔点以下的微小体积的有序排列称为晶胚(3)表面能晶胚与液相结构不同,已经具有明确的表面晶胚的表面能增加了系统的能量晶胚的表面能是结晶的阻力当晶胚尺寸较小时,表面能的增加量要大于自由能下降值,因此晶胚还会消失,是不稳定的小晶体(晶胚的不稳定性)(5)形核尺寸r <r*的晶胚,随晶胚尺寸增加系统能量增加,晶胚是不能长大。

当晶胚尺寸r ≥ r*,如果晶胚长大,系统总自由能下降,因此晶胚可以长大。

以尺寸r*为界,晶胚性质发生改变,称r*为临界半径。

将半径大于r*可以长大成为晶体核心的晶胚称为晶核半径等于r*的晶核称为临界晶核(6)临界半径与过冷却的关系:T L T r m m ∆••=σ2* 形核功(ΔG*):临界晶核最大能量增加值。

体积自由能下降只抵消了表面能的2/3,尚有1/3表面能没有抵消就开始结晶了能量起伏:系统内各点能量实际不是均匀的,在液相能量高于平均能量的位置形核,局部可以获得比平均能量位置更大的驱动力(更多的体积自由能下降值)(7)形核率定义:单位时间在单位体积液体内形成的晶核数(N )影响因素:形核功:阻力越大,形核时的形核功(ΔG*)也越大,形核率将减少 扩散激活能:形核过程需要质点运动到晶胚表面,并在表面运动排列,质点运动过程作功越多,形核越困难,形核率也越低。

质点位移大于晶格常数的运动称为扩散,扩散的难易程度用扩散需要的能量大小表示,称为扩散激活能(Q )。

扩散激活能越大,形核率越来小。

温度:温度越低,过冷度越大,形核功越小,形核率因此增加;温度降低,扩散困难(扩散激活能增加),形核率因此减少。

导致形核率急剧增加的温度和过冷度称为有效形核温度和有效形核过冷度。

(8)结晶形核的分类均匀形核(自发形核):液相同时在许多位置随机形核,晶核在液相均匀分布。

均匀形核要比较大的过冷度。

非均匀形核(非自发形核):晶核在液相中已经存在的一些其它固体表面(型壁,外来其它晶体颗粒)上生成。

非均匀形核减少了表面能形核阻力。

非均匀形核的形核功:()θθθf G G G het *hom 3*hom *4cos cos 32∆=⎪⎪⎭⎫ ⎝⎛+-∆=∆ 当θ=180°时:完全不湿润情况,基底无作用(相当与均匀形核); 当θ=0°时:完全湿润情况,(基底本身已经是一个晶核,无需再形核)一般情况:*het G ∆<*hom G ∆,形核功小,形核时过冷度也相应减小。

(9)非均匀形核与均匀形核的过冷度及形核率比较:非均匀形核的过冷度比均匀形核率小很多。

如纯铁均匀形核的过冷度高达295℃,而非均匀形核的过冷度低于20℃ 。

金属结晶一般均为非均匀形核。

形核率--过冷度曲线比较:非均匀形核率在 已经达到最达形核率,由低形核率到高形核率过度略平缓,到最大形核率结晶没有结束, (基底消耗)3、晶体长大晶体长大的条件(1)动态过冷:晶体长大也需要一定的过冷度,长大所需的界面过冷度称为动态过冷度,用?T k 表示。

动态过冷度不大,约~2℃。

长大过程的过冷却度与形核时的过冷却度不同:形核过冷度用来克服形核功,长大过程过冷度用来克服原子扩散激活能。

(2)足够的温度:过冷度太大要发生玻璃态转变。

晶体长大速度:界面在单位时间向液相前推移的垂直距离称为长大线速度。

晶体长大速度与界面结构有关系:(1)光滑界面:所谓光滑界面是指固相表面为基本完整的原子密排面,固液两相截然分开,从微观上看界面是光滑的,但是从宏观来看,界面由若干不同指数晶面小平面组成(小平面界面)。

(截面呈现呈锯齿状的折线)(2)粗糙界面:粗糙界面在微观上高低不平、粗糙,存在几个原子厚度的过渡层,但是宏观上看,界面反而是平直的。

晶体长大机制:(1)粗糙界面的连续长大(垂直生长):不断有液态原子就位晶体位置(不再游离),结果是界面向垂直界面的方向长大(垂直长大)。

长大过程需要动态过冷度ΔTk。

对于大多数金属长大,需要动态过冷度很小。

金属的生长速率与过冷度成正比,比如10度过冷却时,每秒长大100mm。

(2)光滑界面的横向长大:光滑界面的台阶结构、光滑界面的侧向长大过程、二维形核长大机制、螺旋长大(依靠晶体缺陷长大机制)纯晶体凝固时的生长形态:(1)影响生长形态的主要因素①界面结构②界面前沿附近的液相内的温度梯度:正的温度梯度:结晶潜热要靠固体散热,生长速度取决于固体热传导速度,不会产生局部凸前的界面负的温度梯度:结晶潜热作用大正的温度梯度情况下的生长形态:光滑界面结构的晶体:整体界面为有角度差的光滑晶面折面,整体界面与等温面平行。

粗糙界面结构的晶体:与等温面平行的平面状态推进。

负的温度梯度情况下的生长形态:负梯度对晶体生产的影响:固液两端均可散热,如果界面局部生长凸入前沿,长大更快,结果是形成树枝状结晶(树枝生长)。

沿生产方向晶体部分称为晶枝或者晶轴:一次晶轴、二次晶轴、三次晶轴;晶枝有固定晶体取向。

粗糙界面结构的晶体:金属为典型的树枝状结晶。

光滑界面结构的晶体:树枝状结晶不明显,依然为小平面特征。

4、结晶动力学:研究转变(结晶)体积分数与形核率和长大率之间的关系,具有同样的动力学方程:Johnson—Mehl 和Avrami唯象方程。

动力学曲线具有典型的S型。

第6章无机非金属材料的显微结构特征1. 陶瓷材料的显微结构包括三个主要内容:晶相、玻璃相和气孔,其中晶相又有多种,它们之间的比例和各自的特性都要影响材料整体的物理化学性能;例如晶相中的键合问题,玻璃相中的化学组成问题、气孔的形态问题等。

2. 离子的堆积方法3. 典型无机化合物的晶体结构:氯化钠晶体、氯化铯晶体、闪锌矿晶体、纤锌矿晶体、萤石晶体结构特别应该了解在这些晶体结构中的正负离子的堆积方法、配位数、孔隙特征(四面体空隙和八面体空隙)等问题;第7章重点1.高分子链的近程结构、高分子链的远程结构;2.高分子的凝聚态结构:晶态结构、非晶态结构、取向态结构的基本概念、特征、结构对性能的影响;3.重点要求掌握高分子链的组成、构型、高分子链的柔顺性等概念,高分子链柔顺性的影响因素,高分子晶态结构的特点(晶态和非晶态结构模型)。

第八章扩散1.基本概念2.扩散通量、扩散系数、扩散激活能、空位扩散机制、间隙扩散机制、柯肯达尔效应、扩散驱动力3.菲克第一、第二定律的物理意义,扩散方程的求解。

4.扩散系数的物理意义。

5.影响扩散的因素(理解具体的影响)6.扩散第二定律的应用(渗碳)第九章金属及合金的塑性变形回复与再结晶1.金属材料的塑性变形:冷、热加工的分界线:从金属学的观点来区分,是金属的再结晶温度。

冷加工或冷变形特点:冷变形中无再结晶出现,因而有加工硬化现象热加工或热变形特点:热变形时加工硬化和再结晶现象同时出现,但加工硬化被再结晶消除,变形后具有再结晶组织,因而无加工硬化现象。

金属材料的塑性变形主要是滑移变形,滑移是沿着晶格中原子密度最大的滑移面和滑移方向进行的。

滑移系的概念。

单晶体的塑性变形:晶内变形(单晶体),晶内变形:主要是滑移变形(一般情况)。

多晶体的塑性变形:晶间变形(多晶体),晶间变形:滑移和转动均有(变形量特大情况)2.高分子材料的变形特点:高聚物的弹性变形、高聚物的黏弹性变形;线型高聚物的变形特点,体型高聚物的变形特点。

陶瓷材料的变形特点:(1)陶瓷材料的弹性变形(2)陶瓷材料的塑性变形及蠕变(3)陶瓷材料的强度、硬度和断裂3.塑性变形时的组织变化:(1)晶粒沿变形最大方向伸长(2)晶格与晶粒均发生扭曲(3)晶粒间产生碎晶。

4.加工硬化现象加工硬化:金属经塑性变形后,晶粒变长,晶格歪斜,由于亚结构的形成而呈现碎晶,并产生残余内应力,使得金属继续变形困难的现象。

冷变形纤维组织:纤维组织的性能呈现各向异性,材料内部产生残余应力。

变形织构:晶体中某一晶面的取向基本相同的现象,也称“择优取向”。

相关文档
最新文档