飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤

合集下载

飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置

飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置

飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置手把手教你写S12XS128程序--PWM模块介绍该教程以MC9S12XS128单片机为核心进行讲解,全面阐释该16位单片机资源。

本文为第一讲,开始介绍该MCU的PWM模块。

PWM 调制波有8个输出通道,每一个输出通道都可以独立的进行输出。

每一个输出通道都有一个精确的计数器(计算脉冲的个数),一个周期控制寄存器和两个可供选择的时钟源。

每一个P WM 输出通道都能调制出占空比从0—100% 变化的波形。

PWM 的主要特点有:1、它有8个独立的输出通道,并且通过编程可控制其输出波形的周期。

2、每一个输出通道都有一个精确的计数器。

3、每一个通道的P WM 输出使能都可以由编程来控制。

4、PWM 输出波形的翻转控制可以通过编程来实现。

5、周期和脉宽可以被双缓冲。

当通道关闭或PWM 计数器为0时,改变周期和脉宽才起作用。

6、8 字节或16 字节的通道协议。

7、有4个时钟源可供选择(A、SA、B、SB),他们提供了一个宽范围的时钟频率。

8、通过编程可以实现希望的时钟周期。

9、具有遇到紧急情况关闭程序的功能。

10、每一个通道都可以通过编程实现左对齐输出还是居中对齐输出。

1、PWM启动寄存器PWMEPWME 寄存器每一位如图1所示:复位默认值:0000 0000B图1 PWME 寄存器每一个PWM 的输出通道都有一个使能位P WMEx 。

它相当于一个开关,用来启动和关闭相应通道的PWM 波形输出。

当任意的P WMEx 位置1,则相关的P WM 输出通道就立刻可用。

用法:PWME7=1 --- 通道7 可对外输出波形PWME7=0 --- 通道7 不能对外输出波形注意:在通道使能后所输出的第一个波形可能是不规则的。

当输出通道工作在串联模式时(PWMCTL 寄存器中的CONxx置1),那么)使能相应的16位PWM 输出通道是由PWMEx 的高位控制的,例如:设置PWMCTL_CON01 = 1,通道0、1级联,形成一个16位PWM 通道,由通道 1 的使能位控制PWM 的输出。

飞思卡尔16位单片机9S12XS128使用和程序

飞思卡尔16位单片机9S12XS128使用和程序

飞思卡尔16位单片机9S12XS128使用收藏最近做一个关于飞思卡尔16位单片机9S12XS128MAA的项目,以前未做过单片机,故做此项目颇有些感触。

现记录下这个艰辛历程。

以前一直是做软件方面的工作,很少接触硬件,感觉搞硬件的人很高深,现在接触了点硬件发现,与其说使用java,C#等语言写程序是搭积木,不如说搞硬件芯片搭接的更像是在搭积木(因为芯片是实实在在拿在手里的东西,而代码不是滴。

还有搞芯片内部电路的不在此列,这个我暂时还不熟悉)。

目前我们在做的这个模块,就是使用现有的很多芯片,然后根据其引脚定义,搭接出我们需要的功能PCB板,然后为其写程序。

废话不多说,进入正题。

单片机简介:9S12XS128MAA单片机是16位的单片机80个引脚,CPU是CPU12X,内部RAM 8KB,EEPROM:2KB,FLASH:128KB,外部晶振16M,通过内部PLL可得40M总线时钟。

9S12XS128MAA单片机拥有:CAN:1个,SCI:2个,SPI:1个,TIM:8个,PIT:4个,A/D:8个,PWM:8个下面介绍下我们项目用到的几个模块给出初始化代码1、时钟模块初始化单片机利用外部16M晶振,通过锁相环电路产生40M的总线时钟(9S12XS128系列标准为40M),初始化代码如下:view plaincopy to clipboardprint?/******************系统时钟初始化****************/void Init_System_Clock(){asm { // 这里采用汇编代码来产生40M的总线LDAB #3STAB REFDVLDAB #4STAB SYNRBRCLR CRGFLG,#$08,*//本句话含义为等待频率稳定然后执行下一条汇编语句,选择此频率作为总线频率BSET CLKSEL,#$80}}/******************系统时钟初始化****************/void Init_System_Clock(){asm { // 这里采用汇编代码来产生40M的总线LDAB #3STAB REFDVLDAB #4STAB SYNRBRCLR CRGFLG,#$08,*//本句话含义为等待频率稳定然后执行下一条汇编语句,选择此频率作为总线频率BSET CLKSEL,#$80}}上面的代码是汇编写的,这个因为汇编代码量比较少,所以用它写了,具体含义注释已经给出,主函数中调用此函数即可完成时钟初始化,总线时钟为40M.2、SCI模块初始化单片机电路做好了当然少不了和PC之间的通信,通信通过单片机串口SCI链接到PC 端的COM口上去。

飞思卡尔MC9S12XS128单片机重点模块讲解

飞思卡尔MC9S12XS128单片机重点模块讲解

基于飞思卡尔 MC9S12XS128MCU 的模块讲解及测试
安徽工业大学 自动化系 刘昌元 delay(500); if(LED==0x80) LED=0x01; } } 综合以上的两段代码看在 52 单片机和 128 单片机上编程思路基本上没大的区别,唯一的区 别就是 128 单片机有数据方向寄存器来管理 I/O 口。 � 将部分端口做输入口使用,另外一部分端口做输出口使用时:例如我们将 PORTB 的端 口 B7 用来做输入口,B0-B5 口做输出指示,测试代码如下:

以端口 A 和端口 B 为例讲解,以上是我截取的技术手册上的,从上来看 A 口和 B 口各 有 8 个口,且 A0-A7;B0-B7 全部作为 GPIO (通用输入输出口 )使用。此处 A 口和 B 口 使用方法是一样的,我姑且就以端口 A 来讲解。 A 口和 B 口作为通用输入输出口使用时我们只需要掌握 4 个寄存器即可。 PORTA (A 口

这一点和 51 单片机的 I/O 口有区别,在典型的 51 单片中 P0 口内部没有上拉电阻,但作为 I/O 口使用时需要外接排阻。其他 P1-P3 口则可以直接作为双向口使用,51 单片在上电复位 后端口被默认的置 1.在 51 单片中端口的某一位置 0 时端口作为输出口使用,置 1 时作为输 入口使用。例如如果我们想把 P1 作为输出口使用时我们可以在程序开始时写 P1=0x00; 如果 我们想把 P1 口作为输入口使用时我们可以写 P1=0xff; 这一点正好和飞思卡尔的 128 单片机 相反,另外 128 单片有专门的数据方向寄存器 DDRA 或者 DDRB 等来管理各个端口的输入 输出选择,51 单片没有。如果我们想把端口 A 作为输入口使用,我们只需写 DDRA=0x00; 即所有位都置 0,如果我们想把端口 A 作为输出口使用,我们只需要写 DDRA=0xff; 即所有 位都置 1 ,而如 果我们想要 把端口 A 的高四 位做输入口 ,低 4 位做输 出口时我们 就 写 DDRA=0x0f; 当我们需要将该端口的某一位做输出或者输入口使用时只需要将该端口对应的 方向位置 1 或者置 0 即可。例如我们想把 A3 口作输入口, A4 口作输出口使用时我们只需 要写: DDRA_DDRA3=0; DDRA_DDRA4=1; 即可。 � � 对于数据方向寄存器的使用只要记住:置 1——输出 置 0——输入 PORTA 数据寄存器也是由 8 位组成,任何时候都可以对它进行读写操作。

飞思卡尔MC9S08及MC9S12 单片机通过SCI口更新程序的一种方法

飞思卡尔MC9S08及MC9S12 单片机通过SCI口更新程序的一种方法

通过SCI口单片机通过飞思卡尔MC9S08及MC9S12 单片机更新程序的一种方法王佚(Freescale 8/16bit MCU FAE) 飞思卡尔的8/16 Bit 单片机内置FLASH可以通过单片机编程来进行擦除与编程,所以,理论上就可以通过SCI口接口实现软件的自我升级.在实际工作中,我们也遇到不少客户询问相关的实现方法,而我们也给了一些参考代码,但还是有不少工程师不能很好地理解,基于这些原因,我写了点东西来介绍一种比较简单的实现方法,供大家参考,如有不周,敬请批评与谅解.一,飞思卡尔MC9S08单片机内部存储器介绍MC9S08有很多系列单片机,一般程序空间均在64K以下,为了介绍方便,我们以MC9S08AW60一种为例进行介绍.上图为MC9S08AW60的数据空间分布图,对于大于64K空间的MC9S08单片机,其结构与MC9S12单片机类似,故先不做介绍.从图中我们不难看出,由于飞思卡尔单片机的数据存储器(RAM)与程序存储器(FLASH)是统一编址,所以,我们可以将程序引导到RAM里运行.二,飞思卡尔 8位单片机内部中断相量地址介绍飞思卡尔 8位单片机对中断处理是通过判断中断相量表的地址来判断程序的入口地址的.飞思卡尔 8位单片机的中断相量为16位,其放置在从0xFFFF地址向下按照中断号以此排放.三, 飞思卡尔MC9S08单片机FLASH操作简介飞思卡尔MC908及MC9S08系列单片机的FLASH都可以通过软件进行擦除与编程,不同的是MC908有相应的程序内置在单片机的ROM空间,而MC9S08没有,其需要用户自己编写.飞思卡尔的CodeWarrior for MC9(S)08软件在安装后,在\freescale\CodeWarrior for Microcontrollers V6.0\(CodeWarrior_Examples)\HCS08\Device Initialization C Examples\GB60_Modules\Sources\Flash_GB60目录下有响应的参考代码.MC9S08系列单片机的Flash有四种操作模式:Byte program, Byte program (burst), Page erase及Mass erase,其操作时间见下表.需要说明的是,在此操作其间,不可以使能任何中断.下图为操作流程图.需要说明的是,用来实现”Write a data value to an address in the FLASH array”的语句代码,表面上看是将一个数据写到一个Flash数据区去,但实际上是将所需要编程的Flash地址或是擦除的Flash的块地址及数据分别写入到单片机内类似地址积存器及数据寄存器里.CodeWarrior里自带的代码,是用机器码的方式来做的,其也给出了相应的代码,大家可以对应着看看,一般来说,只做Flash模拟EEPROM,该代码即可满足大家使用.在此,本文就不详细描述代码实现的方法.四,实现程序自我更新的两种常见方法及各自特点一般说来,我们有两种方法来,我们有两种常见方法实现程序自我更新.一种是将实现程序更新的部分的程序与应用程序融合在一起,系统在更新程序时甚至可以将整个程序包括更新程序一起更新掉,其优点是可以花费少的程序空间,缺点是数据及主程序空间分配比较麻烦,且在做更新程序时一旦掉电或是其它什么原因,可能无法进行程序的再次更新.另外一种是,将实现程序更新的程序写成是一个独立的程序,其缺点是要浪费部分程序空间,且中断相量无法更新所以要做程序的映射,类似引导(bootload)的概念.其优点是在编写应用程序时不用考虑数据空间地址分配的问题,同时不用担心下载过程出现任何异常情况.本文后面所涉及的内容,均以第二种方法为例,为描述方便,我们定义其为下载程序.五, 下载程序如何实现中断相量的映射由于我们无法预知究竟系统会用多少中断,所以对于应用程序的中断,都必须在更新程序中做映射,即,我们在单片机的某个程序空间建立一个程序跳转表,更新程序的中断相量表做一个固定的表,对应固定地址,我们只需在固定地址放相应的跳转指令,就可以实现中断相量的映射.例题如下:地址A: JMP 地址B. JMP地址B其实是个引导程序.中断相量<1>: 地址A.其中, “中断相量<1>”地址放的”地址A”由更新程序确定,而”地址A” 地址放的” JMP地址B”,JMP由计算机来添加,”地址B”则由应用程序确定.对于复位中断,其处理方法有点不同,其实现方法如下:中断相量<1>: Main.地址A:JMP 地址B.Main:If (a>b){goto地址B }中断相量表的定义参考方法如下:void (* const _vect[])() @0xFFCC = { /* Interrupt vector table */0xf998, /* Int.no. 25 Vrti (at FFCC) Unassigned */0xf99c, /* Int.no. 24 Viic1 (at FFCE) Unassigned */…_Startup /* Int.no. 0 Vreset (at FFFE) Reset vector */};六,单片机程序注意事项1,程序空间分配下载程序的空间应该从0xfff地址向下排放,具体大小需要根据实际的大小及单片机Flash的Block大小来同时决定.空间的安排,一定是Block的倍数.应用程序的空间是从程序的最低段开始排放,除了中断向量外,不可以有任何代码地址与下载程序重叠.在用CodeWarrior来写程序时,我们可以修改PRM文件来控制程序排放地址.下面是下载程序的PRM参考代码.NAMES ENDSEGMENTSROM = READ_ONLY 0xfA00 TO 0xFFAF;Z_RAM = READ_WRITE 0x0070 TO 0x00FF;RAM = READ_WRITE 0x0200 TO 0x086F;ROM2 = READ_ONLY 0xFFC0 TO 0xFFCB;ENDPLACEMENTDEFAULT_RAM INTO RAM;DEFAULT_ROM, ROM_VAR, STRINGS INTO ROM;_DATA_ZEROPAGE, MY_ZEROPAGE INTO Z_RAM;ENDSTACKSIZE 0x802,程序代码保护为了使下载程序在任何异常情况下不会被改写,其除了放置引导程序的空间外,均要做代码保护.其在C语言种的参考代码如下.const unsigned char NVPROT_INIT @0x0000FFBD = 0xFA;.3,计算机应用程序如何处理单片机应用程序的中断相量表计算机在应用程序处理该中断相量表时,应根据下载程序的映射关系,将两个字节的相量数据自动计算到对应引导地址,并变为JMP+地址(相量)的模式.下面是参考转变模式.单片机应用程序复位相量为0x8000,其变为跳转后的代码则为0xCC8000.如本文参考代码,其对应引导地址为0xf9fc,则计算机应用程序则应通知下载程序在0Xf9fc后写0XCC8000三个字节数据,运行完成后,反编译的代码如下:F9FC: JMP 0x80003,其它建议为保证应用程序的正确性,可以在下载程序里判断程序的校验码,可以用16位CRC码等.七,S19文件格式简介S-记录实际上是由五个部分组成的字符串的集合。

MC9S12XS128单片机

MC9S12XS128单片机
1.MC9S12XS128单片机介绍
2.CodeWarrior IDE 12 应用
MC9S12XS128单片机
• MC9S12XS128(以下简称XS128)是Freescale公 司推出的S12XS系列单片机中的一款增强型16位 单片机,S12XS系列单片机是在S12XE系列基础 上去掉XGate协处理器的单片机,该系列单片机 采用 CPU12X V2内核,可运行在40MHz总线频 率上。不仅在汽车电子、工业控制、中高档机电 产品等应用领域具有广泛的用途,而且在FLASH 存储控制及加密方面呢也有很强的功能。
PWM模块 特点:
1. 它有 8 个独立的输出通道,并且通过编程可控 制其输出波形的周期。 2. 每一个输出通道都有一个精确的计数器。 3. 每一个通道的 PWM 输出使能都可以由编程来控 制。 4. PWM 输出波形的翻转控制可以通过编程来实现。 5. 周期和脉宽可以被双缓冲。当通道关闭或 PWM 计数器为 0 时,改变周期和脉宽才起作用。 6. 8 字节或 16 字节的通道协议。 7. 有4 个时钟源可供选择(A、SA、B、SB),他 们提供了一个宽范围的时钟频率。
ECT初始化程序:
以0通道为例:
void ECT_Init(void) { TIE = 0x00; //通道0~7的使能屏蔽 TIOS = 0x00; // 所有的端口设置成输入捕获模式 TSCR1 = 0x90; // 使能时钟模块,定时器标志位 快速清零,读取数据自动清零 TCTL4_EDG0B = 0; TCTL4_EDG0A = 1; //捕捉 上升沿,0通道 TIE_C0I = 1; // 使能0通道中断,中断服务程序中 读取捕获数 }
ECT模块(增强型定时器模块)
• ECT特点相当于高速的I/O口,由一个16为自由计 数器、8个16为的输入捕捉/输出比较通道、一个 16为脉冲累加器及一个16位的模数递减计算器 (MDC)组成。

飞思卡尔MC9S12XS128功能模块驱动

飞思卡尔MC9S12XS128功能模块驱动

用了一年多飞思卡尔MC9S12XS128这款处理器,现在总结下各个功能模块的驱动.//锁相环时钟的初始化总线频率为40MHz(总线时钟为锁相环时钟的一半)//晶振为11.0592MHzvoid PLL_init(void) //PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1) { //锁相环时钟= 2*11.0592*(39+1)/(10+1)=80MHz 总线时钟为40MHzREFDV=0x0A;SYNR=0x67; //0110_0111 低6位的值为19,高两位的值为推荐值while(CRGFLG_LOCK != 1);CLKSEL_PLLSEL = 1; //选定锁相环时钟//FCLKDIV=0x0F; //Flash Clock Divide Factor 16M/16=1M}//周期中断定时器的初始化-// //周期中断通道1用于脉冲累加器的定时采样,定时周期为: 10ms= (199+1)*(1999+1)/(40M) (没有使用)//周期中断通道0用于控制激光管的轮流发射,定时周期为: 2000us= (399+1)*(199+1)/(40M)//2011/4/4 15:24 定时时间改为1msvoid PIT_init(void){PITCFLMT_PITE = 0; // 禁止使用PIT模块 PITCFLMT :PIT 控制强制加载微计数器寄存器。

PITCE_PCE0 = 1; // 使能定时器通道0//PITCE_PCE1 = 1; //使能定时器通道1PITMUX = 0; //通道0,和通道1均选择8位微计数器0//修改时间只需要改下面四行PITMTLD0 = 199; //向8位微计数器中加载的值PITLD0 = 199; //向16位计数器中加载的值//PITMTLD1 = 39; //向8位微计数器中加载的值 8位,最大值不要超过255//PITLD1 = 1999; //向16位计数器中加载的值PITINTE |= 0x01; //使能定时器通道0的中断PITCFLMT_PITE = 1;//使能PIT模块}//脉冲累加器的初始化, PT7口外接光电编码器//最新修改: 2011/3/25 16:53void PT7_PulAcc_Init(void){DDRT &= 0x77;//设置PT7,PT3口为输入(硬件上PT7,PT3通过跳线联到了一块)PERT |= 0x80; //使能通道7的上拉电阻PPST &= 0x7f; //电阻设为上拉电阻TCTL4 &= 0x3f; //禁止PT3的输入捕捉功能PACTL = 0x50; //启动脉冲累加计数器,上升沿触发,禁止触发中断和溢出中断,主定时器禁止}//通道1用于控制舵机1 PWM 高电平有效,//通道3用于控制电机1 PWM 低电平有效,这与前两代车高电平有效有区别!!!!!//通道7用于给上排激光管提供PWM信号 PWM高电平有效!!!!!//通道6用于给下排激光管提供PWM信号 PWM高电平有效!!!!!// 2011-03-17 7:56 增加了A端口的使用新增通道6//2011-6-9 23:03 //增加了通道4,5的联合使用,用于控制下排方向舵机 void PWM_init(void){PWME = 0x00;//PWM禁止PWMPRCLK = 0x03; // ClockA=40M/8=5M, Clock B = 40M/1=40M PWMSCLB = 10; // Clock SB= 40/2*10= 2MHz(供电机)PWMSCLA = 5; // SA = Clock A/2*5 = 5M/10 = 500K = SA 用于控制舵机PWMPOL = 0xe2; //1110_0010通道7,通道6与通道1、通道5先输出高电平然后输出低电平,POLx=1先输出高电平后输出低电平; PPOLx=0先输出低电平)PWMCAE = 0x00; // 左对齐输出(CAEx=0为左对齐,反之为中心对齐)//PWMCLK = 0010_1010 (0 1 4 5位控制SA_1;或A_0; 2 3 6 7位控制SB_1 或B_0)//为PWM通道1选择时钟 SA(500KHz),//为PWM通道5选择时钟 SA(500KHz),//为通道3选择时钟 SB(10MHz)//为通道7选择时钟B(40MHz)//为通道6选择时钟B(40MHz)PWMCLK = 0x2A; //0010_1010PWMCTL = 0x70; //0111_0000 CON45=1,把通道4,5联合使用。

飞思卡尔MC9S12XS128各模块初始化程序--超详细注释

飞思卡尔MC9S12XS128各模块初始化程序--超详细注释

飞思卡尔MC9S12XS128各模块初始化程序--超详细注释//**************************************************************************// 武狂狼2014.5.1 整理// 新手入门的助手////***************************************************************************注释不详细/*********************************************************/函数名称:void ATD0_init(void)函数功能:ATD初始化入口参数:出口参数:/***********************************************************/void ATD0_init(void){ATD0DIEN=0x00; //使用模拟输入功能|=1;数字输入功能// ATD0CTL0=0x07; //Bit[3:0]WRAP[3:0] 反转通道选择位ATD0CTL1=0x40; // 12位精度,采样前不放电 Bit[7]ETRIGSEL(外部触发源选择位。

=0选择A/D通道AN[15:0] |=1选择 ERTIG3~0)和Bit[3:0]ETRIGCH[3:0]选择外部触发通道// Bit[6:5]SRES[1:0]A/D分辨率选择位。

Bit[4]SMP_DIS =0采样前不放电|=1采样前内部电容放电,这会增加2个A/D时钟周期的采样时间,有助于采样前进行开路检测ATD0CTL2=0x40; // 快速清零,禁止中断,禁止外部触发ATD0CTL3=0x90; // 右对齐,转换序列长度为2,非FIFOATD0CTL4=0x03; // 采样时间4个周期,PRS=31,F(ATDCLK)=F(BUS)/(2(PRS+1))// ATD0CTL5=0x30; //启动AD转换序列//:对每项数据采集时,用到哪个通道采样可在相应子函数内设置某一通道(见Sample_AD.c)while(!ATD0STAT2L_CCF0);/*********************************************************/函数名称:void PIT_init(void)函数功能:初始化PIT 设置精确定时时间(1s)入口参数:无出口参数:无说明:无/***********************************************************/void PIT_init(void){PITCFLMT=0x00; //禁止PIT模块Bit[7] PITE:PIT模块使能位,0禁用|1使能// Bit[6] PITSWAI:等待模式下PIT停止位,0等待模式下,PIT模块正常运行| 1等待模式下,PIT模块停止产生时钟信号,冻结PIT模块// Bit[5] PITFRZ: 冻结模式下PIT计数器冻结位。

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤w

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤w

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤/*****************************************************************************/ *本人用此法成功解救了4块板子【窃喜!】,此说明是本人边操作边截图拼成的,有些是在别的说明上直接截图【有些图本人不会截取,就利用现成的了,不过那也是本人用豆和财富值换来的】,表达不清之处还望见谅,大家将就着看吧!如能有些许帮助,我心甚慰!!!————武狂狼2014.4.23 /*****************************************************************************/编译软件:CW5.1版本,下载器:飞翔BDMV4.6 【1】,连接好单片机,准备下载程序,单击下载按钮出现以下界面或(图1.1)图 1.1——4中所有弹出窗口均单击“取消”或红色“关闭”按钮依次进入下一界面(图1.2)(图1.3)(图1.4)******************************************************************************* *******************************************************************************【2】单击出现如下图所示下拉列表,然后单击(图2.1)出现下图(图2.2)对话框,按下面说明操作(图2.2)弹出图2.3,单击按钮,依次出现如图2.4--5窗口,均单击(图2.3)(图2.4)******************************************************************************* *******************************************************************************【3】单击出现下拉列表,然后单击下拉列表中单击按钮出现如下界面,单击选择相对应的单片机型号(我选的红色方框里的HCS12X….),单击OK. PS:【此步骤是本人自己试出来的,若不进行此操作,图3.3中下拉列表中无要找选项】(图3.1)(图3.3)(图3.4)(图3.5)红色方框2中默认即为所要选的文件,此步只需单击确认按钮即可,如有不同读者酌情处置。

单片机程序下载不了可能原因

单片机程序下载不了可能原因

单片机程序下载不了可能原因
操作步骤没问题,单片机软件一直提示“正在检测目标单片机”,始终无法下载。

而单片机上电后一直运行之前的程序。

不读取新程序。

网上的方法我总结了一下
1:最高波特率不要设置太高, 设置成4800
2:端口的问题
3.晶振问题
4.串口只要连接3根线(RXD, TXD, GND),那个VCC不要连接然后单片机关闭电源下载软件中点击下载,软件提示“正在检测目标单片机”把单片机电源打开就会自动下载了
5.直接用mcu检测
1602没有显示的原因
为什么我的单片机开发板插上1602液晶显示,无论输入什么程序,都显示的是这样?
1. 看你图片显示这样,你调节下对比度的电位器试试,调节到下面显示的小方格眼睛看着
舒服就差不多
2.修改程序,要是程序和电路没问题的话是可以显示内容的。

3.要是再不能显示就需要查找电路问题,看看电路接法和程序的定义是否一致,接线有没
有问题,再检查程序,最好是烧写个简单的程序进去,哪怕就显示个数字1,能显示了就说明电路没问题了,再去修改真正需要的程序。

电子制作的调试大体都这样,包你没问题。

飞思卡尔MC9S12XS128技术手册翻译AD

飞思卡尔MC9S12XS128技术手册翻译AD

飞思卡尔MC9S12XS128技术手册(AD转换部分)英文资料:飞思卡尔MC9S12XS256RMV1官方技术手册1.1 XS12系列单片机的特点XS12系列单片机特点如下:·16位S12CPU—向上支持S12模糊指令集并去除了其中的MEM, WAV, WAVR, REV, REVW 五条指令;—模块映射地址机制(MMC);—背景调试模块(BDM);·CRG时钟和复位发生器—COP看门狗;—实时中断;·标准定时器模块—8个16位输入捕捉或输出比较通道;;—16位计数器,8位精密与分频功能;—1个16位脉冲累加器;·周期中断定时器PIT—4具有独立溢出定时的定时器;—溢出定时可选范围在1到2^24总线时钟;—溢出中断和外部触发器;·多达8个的8位或4个16位PWM通道—每个通道的周期和占空比有程序决定;—输出方式可以选择左对齐或中心对其;—可编程时钟选择逻辑,且可选频率范围很宽;·SPI通信模块—可选择8位或16位数据宽度;—全双工或半双工通信方式;—收发双向缓冲;—主机或从机模式;—可选择最高有效为先输出或者最低有效位先输出;·两个SCI串行通信接口—全双工或半双工模式·输入输出端口—多达91个通用I/O引脚,根据封装方式,有些引脚未被引出;—两个单输入引脚;·封装形式—112引脚薄型四边引线扁平封装(LQFP);—80引脚扁平封装(QFP);—64引脚LQFP封装;·工作条件—全功率模式下单电源供电范围3.15V到5V;—CPU总线频率最大为40MHz—工作温度范围–40 C到125 C第十章模拟—数字转换10.1 介绍ADC12B16C是一个16通道,12位,复用方式输入逐次逼近模拟—数字转换器。

ATD的精度由电器规格决定。

10.1.1 特点·可设置8位、10位、12位精度·在停止模式下,ATD转换使用内部时钟·转换序列结束后自动进入低耗电模式·可编程采样时间·转化结果可选择左对齐或右对齐·外部触发控制·转换序列结束后产生中断·模拟输入的16个通道为复用方式·可以选择VRH、VRL、 (VRL+VRH)/2特殊转换方式·转换序列长度1到16·可选择连续转换方式·多通道扫描·任何AD通道均可配置外部触发功能,并且可选择4种额外的触发输入。

飞思卡尔S12xs128单片机BDM调试器使用技巧

飞思卡尔S12xs128单片机BDM调试器使用技巧

S12(X)单片机BDM调试器使用技巧第五届全国大学生“飞思卡尔”杯智能气车竞赛限制采用最新的MC9S12XS128(以下简称XS128)单片机作为主控芯片,替代MC9S12DG128。

XS128是Freescale公司推出的S12系列单片机中的一款增强型16位单片机。

片内资源丰富,接口模块有SPI、SCI、IIC、A/D、PWM等常见模块,在汽车电子应用领域具有广泛用途。

XS128和以往大赛使用的S12DG128系列单片机一样,调试接口都是使用Freescale公司传统的BD M(Background Debug Module)接口。

1 MC9S12XS128单片机介绍(1)CPU:增强型16位HCS12 CPU,片内总线时钟最高40 MHz;(2)片内资源:8 KB RAM、128 KB程序闪存、2 KB数据闪存;(3)串行接口模块:SCI、SPI;(4)脉宽调制模块(PWM)可设置成4路8位或者2路16位,逻辑时钟选择频率宽;(5)1个16路12位精度A/D转换器;(6)控制器局域网模块(CAN);(7)增强型捕捉定时器。

MC9S12XS128单片机有112、80和64引脚3种封装形式。

80-pin封装的单片机没有引出用于扩展方式的端口,仅引出了一个8路A/D接口。

竞赛可使用112或80引脚封装器件。

2 BDM接口和使用BDM调试器内部有一个8位的MC9HC08JB16单片机,该单片机有USB接口,可与PC 机信息交互。

HC08单片机和S12单片机间仅使用一根 I/O线通信,这根相连的信号线名为BKGD。

HC08单片机将BKGD置为输出,以串行发送命令,发送完成后转为输入,以接收信息。

S12单片机收到命令后转为输出,根据调试器发来的命令回送信息,然后立即转入接收态。

BDM工具以此方式实现S12单片机的在线调试、内部闪存的烧写等功能。

关于BDM接口的实现,读者可以参考Freescale任何一款S12单片机的器件手册,其对BDM接口的命令字、交互模式等都有详细描述。

MC9S12XS128_中文手册

MC9S12XS128_中文手册

第一章端口整合模块端口A,B和K为通用I/O接口端口E整合了IRQ,XIRQ中断输入端口T整合了1个定时模块端口S整合了2个SCI模块和1个SPI模块端口M整合了1个MSCAN端口P整合了PWM模块,同时可用作外部中断源输入端口H和J为通用I/O接口,同时可用作外部中断源输入端口AD整合了1个16位通道ATD模块大部分I/O引脚可由相应的寄存器位来配置选择数据方向、驱动能力,使能上拉或下拉式装置。

当用作通用IO口时,所有的端口都有数据寄存器和数据方向寄存器。

对于端口T,S,M,P,H,和J有基于每个针脚的上拉和下拉控制寄存器。

对于端口AD有基于每个针脚的上拉寄存器。

对于端口A、B、E和K,有一个基于端口的上拉控制寄存器。

对于端口T,S,M,P,H,J,和AD,有基于每个针脚的降额输出驱动控制寄存器。

对于端口A,B,E,和K,有一个基于端口的降额输出驱动控制寄存器。

对于端口S、M,有漏极开路(线或)控制寄存器。

对于端口P、H和J,有基于每个针脚的中断标志寄存器。

纯通用IO端口共计有41个,分别是:PA[7:0]PB[7:0]PE[6:5]PE[3:2]PK[7,5:0]PM[7:6]PH[7:0](带中断输入)PJ[7:6](带中断输入)PJ[1:0](带中断输入)第二章脉冲宽度调制模块XS128具有8位8通道的PWM,相邻的两个通道可以级联组成16位的通道。

PWME::PWMEPWM通道使能寄存器。

PWMEx=1将立即使能该通道PWM波形输出。

若两个通道级联组成一个16位通道,则低位通道(通道数大的)的使能寄存器成为该级联通道的使能寄存器,高位通道(通道数小的)的使能寄存器和高位的波形输出是无效的。

PWMPOLPWMPOL::PWM极性寄存器。

PPOLx=1,则该通道的周期初始输出为高电平,达到占空比后变为低电平;相反,若PPOLx=0,则初始输出为低电平,达到占空比后变为高电平。

PWMCLK::PWMCLKPWM时钟源选择寄存器。

飞思卡尔9S12XS128 单片机教程

飞思卡尔9S12XS128 单片机教程

9S12XS128 单片机开发工具包清华Freescale MCU/DSP 应用开发研究中心9S12XS128单片机开发工具包 (1)概述 (3)9S12XS128单片机 (3)9S12XS128开发工具包组件 (3)9S12XS128开发板及与PC 通信 (4)9S12XS128 开发板 (4)开发板的硬件连接 (5)PC机的设置 (6)监控程序及监控命令详解 (8)命令详解 (8)复位、中断向量表 (12)用户可以使用的RAM空间 (12)编译器CodeWarrior for HCS12 使用方法入门 (13)建立工程文件 (13)编写main.c 程序 (15)定义存储空间分配 (17)应用程序的编译 (18)向开发板下载程序 (20)运行应用程序 (21)概述这里描述的是一套9S12XS128 系列单片机开发系统套件。

以后的更新的版本见清华Freescale单片机应用开发研究中心的网站:。

开发系统主要由两个部分组成,分别是调试下载用的TBDML和开发用目标板。

其中TBDML的使用请参见文档“BDM for S12(TTBDM)用户手册V 34.pdf”。

目标板是有异步串行口的驱动的基本系统。

针对9S12XS128 芯片我们编写了9S12XS128目标板监控程序,可以方便地完成应用系统的开发。

用户可以在此基础上设计自己所需的目标母板,完成项目的初期开发。

应用软件完成后,用开发工具板擦除监控程序,下载最终的应用程序。

9S12XS128 单片机S12XS 16 位微控制器系列针对一系列成本敏感型汽车车身电子应用进行了优化。

S12X 产品满足了用户对设计灵活性和平台兼容性的需求,并在一系列汽车电子平台上实现了可升级性、硬件和软件可重用性、以及兼容性。

S12XS 系列可以经济而又兼容地扩展至带XGate 协处理器的S12XE 系列单片机,从而为用户削减了成本,并缩小了封装尺寸。

S12XS系列帮助设计者迅速抓住市场机遇,同时还能降低移植成本。

飞思卡尔9S12XS128 单片机教程

飞思卡尔9S12XS128 单片机教程

9S12XS128 单片机开发工具包清华Freescale MCU/DSP 应用开发研究中心9S12XS128单片机开发工具包 (1)概述 (3)9S12XS128单片机 (3)9S12XS128开发工具包组件 (3)9S12XS128开发板及与PC 通信 (4)9S12XS128 开发板 (4)开发板的硬件连接 (5)PC机的设置 (6)监控程序及监控命令详解 (8)命令详解 (8)复位、中断向量表 (12)用户可以使用的RAM空间 (12)编译器CodeWarrior for HCS12 使用方法入门 (13)建立工程文件 (13)编写main.c 程序 (15)定义存储空间分配 (17)应用程序的编译 (18)向开发板下载程序 (20)运行应用程序 (21)概述这里描述的是一套9S12XS128 系列单片机开发系统套件。

以后的更新的版本见清华Freescale单片机应用开发研究中心的网站:。

开发系统主要由两个部分组成,分别是调试下载用的TBDML和开发用目标板。

其中TBDML的使用请参见文档“BDM for S12(TTBDM)用户手册V 34.pdf”。

目标板是有异步串行口的驱动的基本系统。

针对9S12XS128 芯片我们编写了9S12XS128目标板监控程序,可以方便地完成应用系统的开发。

用户可以在此基础上设计自己所需的目标母板,完成项目的初期开发。

应用软件完成后,用开发工具板擦除监控程序,下载最终的应用程序。

9S12XS128 单片机S12XS 16 位微控制器系列针对一系列成本敏感型汽车车身电子应用进行了优化。

S12X 产品满足了用户对设计灵活性和平台兼容性的需求,并在一系列汽车电子平台上实现了可升级性、硬件和软件可重用性、以及兼容性。

S12XS 系列可以经济而又兼容地扩展至带XGate 协处理器的S12XE 系列单片机,从而为用户削减了成本,并缩小了封装尺寸。

S12XS系列帮助设计者迅速抓住市场机遇,同时还能降低移植成本。

飞思卡尔单片机MC9s12xs128调试PS2

飞思卡尔单片机MC9s12xs128调试PS2

========================PS2.h=====================================#ifndef _PS2_H#define _PS2_H#define PS2_CLK PTJ_PTJ1#define PS2_RW PORTA_PA1typedef struct PS2_V alueType {char PS2_V alueData; /* 码表Num :77 /:E04A*:7C -:7B7: 6C 8:75 9:7D +:794: 6B 5:73 6:74 +:791: 69 2:72 3:7A Enter:E05A0: 70 .:71*//* 对应返回值Num :-5 /:-4 *:7C -:-27: 7 8:8 9:9 +:-14: 4 5:5 6:6 +:-11: 1 2:2 3:3 Enter:100: 0 .:-3 空格-6*/unsigned char PS2_V alueKind; //0 按下,1松手}PS2_V alueType;#endif _PS2_H======================================PS2.c============================ #include "PS2.h"#include "MC9S12XS128.h"//extern unsigned char PS2_Buffer[3];//extern unsigned char PS2_StopCodeFlag=0;//从PS/2中获取一个按键unsigned char PS2_GetData(void){unsigned char temp,i,res;for(i=0;i<11;i++) {while(PS2_CLK);if(i>0 && i<9) {res=res>>1;if(PS2_RW) {res=res|0x80;}}while (!PS2_CLK);}return res;}void Key_Interrupt(void) {//DDRJ=0X00;PIEJ_PIEJ1=1;PPSJ_PPSJ1=0;}void PS2_InsertBuffer(unsigned char *buffer,unsigned char bufferdata) {unsigned char *tempdata=buffer+1;(*buffer++)=(*tempdata++);(*buffer++)=(*buffer++);(*buffer)=bufferdata;}void PS2_GetChar(PS2_V alueType *PS2_V alue){unsigned char temp;temp=PS2_GetData();(*PS2_V alue).PS2_V alueKind=0;if(temp!=0xe0 && temp!=0xf0){switch (temp){/* 对应返回值Num :-6 /:-4 *:-5 -:-27: 7 8:8 9:9 +:-14: 4 5:5 6:6 +:-11: 1 2:2 3:3 Enter:100: 0 .:-3*/case 0x70 : (*PS2_V alue).PS2_V alueData=0; return;case 0x69 : (*PS2_V alue).PS2_V alueData=1; return;case 0x72 : (*PS2_V alue).PS2_V alueData=2; return;case 0x7A : (*PS2_V alue).PS2_V alueData=3; return;case 0x6B : (*PS2_V alue).PS2_V alueData=4; return;case 0x73 : (*PS2_V alue).PS2_V alueData=5; return;case 0x74 : (*PS2_V alue).PS2_V alueData=6; return;case 0x6C : (*PS2_V alue).PS2_V alueData=7; return;case 0x75 : (*PS2_V alue).PS2_V alueData=8; return;case 0x7D : (*PS2_V alue).PS2_V alueData=9; return;case 0x71 : (*PS2_V alue).PS2_V alueData=-3; return;case 0x79 : (*PS2_V alue).PS2_V alueData=-1; return;case 0x7B : (*PS2_V alue).PS2_V alueData=-2; return;case 0x7C : (*PS2_V alue).PS2_V alueData=-5; return;case 0x77 : (*PS2_V alue).PS2_V alueData=-6; return;case 0x66 : (*PS2_V alue).PS2_V alueData=-7; return;}}else if(temp==0xe0){temp=PS2_GetData();if(temp==0xf0){temp=PS2_GetData();(*PS2_V alue).PS2_V alueKind=1;if(temp==0x5A){(*PS2_V alue).PS2_V alueData=10; return;}else if(temp==0x4A){(*PS2_V alue).PS2_V alueData=-4; return;}}else{(*PS2_V alue).PS2_V alueKind=0;if(temp==0x5A){(*PS2_V alue).PS2_V alueData=10; return;}else if(temp==0x4A){(*PS2_V alue).PS2_V alueData=-4; return;}}}else if (temp==0xf0){(*PS2_V alue).PS2_V alueKind=1;temp=PS2_GetData();switch (temp){/* 对应返回值Num :-6 /:-4 *:-5 -:-27: 7 8:8 9:9 +:-14: 4 5:5 6:6 +:-11: 1 2:2 3:3 Enter:100: 0 .:-3 空格-7*/case 0x70 : (*PS2_V alue).PS2_V alueData=0; return;case 0x69 : (*PS2_V alue).PS2_V alueData=1; return;case 0x72 : (*PS2_V alue).PS2_V alueData=2; return;case 0x7A : (*PS2_V alue).PS2_V alueData=3; return;case 0x6B : (*PS2_V alue).PS2_V alueData=4; return;case 0x73 : (*PS2_V alue).PS2_V alueData=5; return;case 0x74 : (*PS2_V alue).PS2_V alueData=6; return;case 0x6C : (*PS2_V alue).PS2_V alueData=7; return;case 0x75 : (*PS2_V alue).PS2_V alueData=8; return;case 0x7D : (*PS2_V alue).PS2_V alueData=9; return;case 0x71 : (*PS2_V alue).PS2_V alueData=-3; return;case 0x79 : (*PS2_V alue).PS2_V alueData=-1; return;case 0x7B : (*PS2_V alue).PS2_V alueData=-2; return;case 0x7C : (*PS2_V alue).PS2_V alueData=-5; return;case 0x77 : (*PS2_V alue).PS2_V alueData=-6; return;case 0x66 : (*PS2_V alue).PS2_V alueData=-7; return;}}}。

MC9S12XS128单片机简介

MC9S12XS128单片机简介

MC9S12XS128 单片机简介1、HCS12X 系列单片机简介Freescale 公司的16 位单片机主要分为HC12 、HCS12、HCS12X 三个系列。

HC12核心是16 位高速CPU12 核,总线速度8MHZ;HCS12 系列单片机以速度更快的CPU12 内核为核心,简称S12 系列,典型的S12 总线速度可以达到25MHZ。

HCS12X 系列单片机是Freescale 公司于2005 年推出的HCS12 系列增强型产品,基于S12 CPU 内核,可以达到25MHz 的HCS12 的2-5 倍性能。

总线频率最高可达40 MHz。

S12X 系列单片机目前又有几个子系列:MC9S12XA 系列、MC9S12XB 系列、MC9S12XD 系列、MC9S12XE 系列、MC9S12XF系列、MC9S12XH 系列和MC9S12XS 系列。

MC9S12XS128 就是S12X 系列中的一个成员。

2、MC9S12XS128 性能概述MC9S12XS128 是16 位单片机,由16 位中央处理单元(CPU12X)、128KB 程序Flash(P-lash)、8KB RAM、8KB 数据Flash(D-lash)组成片内存储器。

主要功能模块包括:内部存储器内部PLL 锁相环模块2 个异步串口通讯SCI1 个串行外设接口SPIMSCAN 模块1 个8 通道输入/输出比较定时器模块TIM周期中断定时器模块PIT16 通道A/D 转换模块ADC1 个8 通道脉冲宽度调制模块PWM输入/输出数字I/O 口3、输入/输出数字I/O 口MC9S12XS128 有3 种封装,分别为64 引脚、80 引脚、112 引脚封装。

其全名分别为MC9S12XS128MAE、MC9S12XS128MAA、MC9S12XS128MAL。

MC9S12XS 系列具有丰富的输入/输出端口资源,同时集成了多种功能模块,端口包括PORTA、PORTB、PORTE、PORTK、PORTT、PORTS、PORTM、PORTP、PORTH、PORTJ 和PORTAD 共11 个端口。

改进版:飞思卡尔MC9S12XS128(64pin)引脚功能说明

改进版:飞思卡尔MC9S12XS128(64pin)引脚功能说明
DIR0
21
PE4
ECLK
端口E:通用I/O,总线时钟输出
DIR1
22
VSSX2
电源
23
VDDX2
电源
24
外部复位
25
VDDR
电源
26
VSS3
电源
27
VSSPLL
电源
28
EXTAL
外部时钟输入
29
XTAL
振荡器输出
30
VDDPLL
电源
31
PE1
端口E:通用I/O,可屏蔽中断输入
Keyon(启动)给定
AN5
45
PAD06
AN06
端口A/D:通用I/O,ATD模拟信号输入
46
PAD07
AN07
端口A/D:通用I/O,ATD模拟信号输入
预留输入给定
47
VDDA
电源
48
VRH
电源
49
VRL
VSSA
电源
50
PS0
RXD0
端口S:通用I/O,SCI0的RXD
SCI0_RXD
51
PS1
TXD0
端口S:通用I/O,SCI0的TXD
DIR5
57
PM3
端口M:通用I/O,SPI0的从机选择
DIR6
58
PM2
MISO0
端口M:通用I/O,SPI0的MISO
DIR7
59
PM1
TXCAN0
TXD1
端口M:通用I/O,CAN0的TX,SCI1的TXD
N_TX
60
PM0
RXCAN0
RXD1
端口M:通用I/O,CAN0的RX,SCI1的RXD

MC9S12XS128单片机

MC9S12XS128单片机
6. 8 字节或 16 字节的通道协议。
7. 有4 个时钟源可供选择(A、SA、B、SB),他 们提供了一个宽范围的时钟频率。
PWM模块 特点:
8. 通过编程可以实现希望的时钟周期。 9. 具有遇到紧急情况关闭程序的功能。 10.每一个通道都可以通过编程实现左对齐输出还是
居中对齐输出。
PWM初始化步骤总结:
AD初始化总结步骤:
1. 内部触发,A/D转换精度; 寄存器为:ATD0CTL1
2.外部触发,AD中断允许; 寄存器为:ATD0CTห้องสมุดไป่ตู้2
3.数据对齐方式,采样序列长度 寄存器为:ATD0CTL3
4.采样时间选择位,AD时钟选择; 寄存器为:ATD0CTL4
5.采样通道选择,单/多次采样选择位 寄存器为:ATD0CTL5
PWM模块 特点:
1. 它有 8 个独立的输出通道,并且通过编程可控 制其输出波形的周期。
2. 每一个输出通道都有一个精确的计数器。
3. 每一个通道的 PWM 输出使能都可以由编程来控 制。
4. PWM 输出波形的翻转控制可以通过编程来实现 。
5. 周期和脉宽可以被双缓冲。当通道关闭或 PWM 计数器为 0 时,改变周期和脉宽才起作用。
void PWM_Init() {
PWME = 0X00; //禁止PWM输出 PWMCTL = 0Xf0; //通道0/1,2/3,4/5,6/7级联 PWMCLK = 0Xff; //PWM1,PWM3,PWM5时钟源为SA/SB,即级联后时钟源为SA/SB PWMPRCLK = 0X22; // 4分频 PWMPOL = 0Xff; //输出波形开始极性为1 output waveform which high first then low
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤
/*****************************************************************************/ *本人用此法成功解救了4块板子【窃喜!】,此说明是本人边操作边截图拼成的,有些是在别的说明上直接截图【有些图本人不会截取,就利用现成的了,不过那也是本人用豆和财富值换来的】,表达不清之处还望见谅,大家将就着看吧!如能有些许帮助,我心甚慰!!!
————武狂狼2014.4.23 /*****************************************************************************/
编译软件:CW5.1版本,下载器:飞翔BDMV4.6 【1】,连接好单片机,准备下载程序,单击下载按钮出现以下界面

(图1.1)
图 1.1——4中所有弹出窗口均单击“取消”或红色“关闭”按钮依次进入下一界面
(图1.2)
(图1.3)
(图1.4)
******************************************************************************* *******************************************************************************
【2】单击出现如下图所示下拉列表,然后单击
(图2.1)
出现下图(图2.2)对话框,按下面说明操作
(图2.2)
弹出图2.3,单击按钮,依次出现如图2.4--5窗口,均单击
(图2.3)
(图2.4)
******************************************************************************* *******************************************************************************
【3】单击出现下拉列表,然后单击下拉列表中单击按钮出现如下界面,单击选择相对应的单片机型号(我选的红色方框里的HCS12X….),单击OK. PS:【此步骤是本人自己试出来的,若不进行此操作,图3.3中下拉列表中无要找选项】
(图3.1)
(图3.3)
(图3.4)
(图3.5)
红色方框2中默认即为所要选的文件,此步只需单击确认按钮即可,如有不同读者酌情处置。

(图3.6)
(图3.7)
(图3.8)
单击OK后,弹出如图3.9所示窗口,待条码跑完后此窗口自动关闭
(图3.9)
图3.9窗口关闭后若出现图3.10窗口,恭喜你!解锁成功!单击“确定”按钮,再次下载,程序很顺利的就下载进去了!
(图3.10)
PS【用万用表测一下正负极是否短路;单片机通电是否发烫,若既未短路又不发烫,说明单片机坏的可能性不大,看清提示窗口,多试几次也许就会成功!】
附件;《给S112单片机加密与解锁-如何解除Flash的“保护模式“.pdf》《XS128单片机解锁.pdf》。

相关文档
最新文档