大学物理力学练习

合集下载

大学物理力学试题及答案

大学物理力学试题及答案

大学物理力学试题及答案一、选择题(每题3分,共30分)1. 根据牛顿第二定律,下列说法正确的是:A. 力是改变物体运动状态的原因B. 力是维持物体运动状态的原因C. 力是物体运动的原因D. 力和运动状态无关答案:A2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为:A. atB. 2atC. at^2D. 2at^2答案:A3. 两个质量相同的物体,一个从高处自由下落,另一个以初速度v向上抛出,忽略空气阻力,它们落地时的速度大小:A. 相等B. 不相等C. 无法比较D. 取决于物体的形状答案:A4. 根据能量守恒定律,下列说法正确的是:A. 能量可以被创造B. 能量可以被消灭C. 能量既不能被创造也不能被消灭D. 能量守恒定律只适用于理想情况答案:C5. 一个物体在水平面上做匀速圆周运动,下列说法正确的是:A. 物体受到的合外力为零B. 物体受到的合外力指向圆心C. 物体受到的合外力与速度方向垂直D. 物体受到的合外力与速度方向相同答案:B6. 根据动量守恒定律,下列说法正确的是:A. 动量守恒定律只适用于物体间没有外力作用的情况B. 动量守恒定律只适用于物体间相互作用力为零的情况C. 动量守恒定律只适用于物体间相互作用力为内力的情况D. 动量守恒定律适用于所有情况答案:C7. 一个物体在水平面上做匀速直线运动,下列说法正确的是:A. 物体受到的合外力为零B. 物体受到的合外力不为零C. 物体受到的合外力与速度方向相反D. 物体受到的合外力与速度方向相同答案:A8. 根据牛顿第三定律,下列说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小不等,方向相反C. 作用力和反作用力大小相等,方向相同D. 作用力和反作用力大小不等,方向相同答案:A9. 一个物体从高处自由下落,忽略空气阻力,下列说法正确的是:A. 物体下落速度随时间增加而增加B. 物体下落速度随时间减少而增加C. 物体下落速度随时间增加而减少D. 物体下落速度与时间无关答案:A10. 一个物体在水平面上做匀减速直线运动,其加速度为a,经过时间t后,其速度为:A. atB. 2atC. at^2D. 0答案:D二、填空题(每题4分,共20分)1. 牛顿第二定律的数学表达式是________。

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

《大学物理学》力学部分习题及答案

《大学物理学》力学部分习题及答案

一、选择题(每题4分,共20分)1.一物体从某高度以0v 的速度水平抛出,已知落地时的速度为t v,那么它在水平方向上运动的距离是( C )(A )00t v v v g-;(B)02v g;(C)0v g;(D )002t v v v g-。

2.质点由静止开始以匀角加速度β沿半径为R 作圆周运动,经过多少时间刻此质点的总加速度a 与切向加速度t a 成45 角( B ) (A )Rβ;(B)(C)(D )R B 。

3.一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的?( A )(A )汽车的加速度不断减小 (B )汽车的加速度与它的速度成正比(C )汽车的加速度与它的速度成反比 (D )汽车的加速度是不变的4.如图所示,子弹射入放在水平光滑地面上静止的木块后穿出,以地面为参考系,下列说法正确的是 ( A )(A) 子弹减少的动量转变为木块的动量; (B) 子弹--木块系统的机械能守恒; (C) 子弹动能的减少等于木块的动能增量;(D) 子弹克服木块阻力所作的功等于这一过程中产生的热。

5.一花样滑冰者,开始时两臂伸开,转动惯量为0J ,自转时,其动能为200012E J ω=,然后他将手臂收回,转动惯量减少至原来的13,此时他的角速度变为ω,动能变为E ,则有关系:(D )(A )03ωω=,0E E =; (B )013ωω=,03E E =;(C)0ω=,0E E =; (D )03ωω=,03E E =。

二、填空题(每小题4分,共20分)6. 哈雷慧星绕太阳的轨道是以太阳为一个焦点的椭圆.它离太阳最近的距离是1018.7510m r =⨯ ,此时它的速率是41 5.4610m /s υ=⨯ .它离太阳最远时的速率是229.0810m /s υ=⨯ ,这时它离太阳的距离是2r =__1215.2610m υ=⨯_________.7.一个原来静止在光滑水平面上的物体,突然裂成三块,以相同 的速率沿三个方向在水平面上运动,各方向之间的夹角如图所示, 则三块物体的质量之比m 1:m 2:m 3= 1:1:1 。

大学物理练习题-力学

大学物理练习题-力学

《大学物理》练习题(力学)一.选择题1.下面4种说法,正确的是 ( ) A .物体的加速度越大,速度就越大B .作直线运动的物体,加速度越来越小,速度也越来越小C .切向加速度为正时,质点运动加快D .法向加速度越大,质点运动的法向速度变化越快2.一质点按规律542+-=t t x 沿x 轴运动,(x 和t 的单位分别m 和s ),前3秒内质点的位移和路程分别( )A .m 3,m 3B .m 3-,m 3-C .m 3-,m 3D .m 3-,m 53.一质点在xy 平面上运动,其运动方程为53+=t x ,72-+=t t y ,该质点的运动轨迹是 ( )A .直线B .双曲线C .抛物线D .三次曲线4.作直线运动质点的运动方程为t t x 403-=,从1t 到2t 时间间隔内,质点的平均速度为 ( )A .()40212122-++t t t tB .40321-tC .()403212--t tD .()40212--t t5.一质点沿直线运动,其速度与时间成反比,则其加速度( ) A .与速度成正比B .与速度成反比C .与速度平方成正比D .与速度平方成反比6.一质点沿直线运动,每秒钟内通过的路程都是m 1,则该质点( ) A .作匀速直线运动 B .平均速率为11-⋅s mC .任一时刻的加速度都等于零D .任何时间间隔内,位移大小都等于路程 7.下面的说法正确的是( ) A . 合力一定大于分力B . 物体速率不变,则物体所受合力为零C . 速度很大的物体,运动状态不易改变D . 物体质量越大,运动状态越不易改变8.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( ) A .小球受到重力、绳子拉力和向心力的作用 B .小球受到重力、绳子拉力和离心力的作用 C .绳子的拉力可能为零 D .小球可能处于受力平衡状态9.将质量分别为1m 和2m 的两个滑块A 和B 置于斜面上,A 和B 与斜面间的摩擦系数分别是1μ和2μ,今将A 和B 粘合在一起构成一个大滑块,并使它们的底面共面地置于该斜面上,则该大滑块与斜面间的摩擦系数为( ) A .()221μμ+ B .()2121μμμμ+C .21μμD .()()212211m m m m ++μμ10.将质量为1m 和2m 的两个滑块P 和Q 分别连接于一根水平轻弹簧两端后,置于水平桌面上,桌面与滑块间的摩擦系数均为μ。

长沙理工大学大学物理练习册力学答案

长沙理工大学大学物理练习册力学答案

以 A为研究对象
B
N
f1
f2
N1
A y

A
f 2
B
mg

f1
N Mg
x
N1
回上页 下一页
回首页
A
x y
f1 f1 mg cos
解方程
f 2 N sin f1cos 0 N1 Mg N cos f1sin 0
f 2 mg sin cos mg cos2 A对地面的摩擦力 f 2
回首页 回上页 下一页
力学 练习四
一、选择题
1. (A) 2. (D) 3. (C)
二、填空题 4. 0.003•s 0.6•N s 2•g
5. 6.
4.7•N s 与速度方向相反
(1 2)m gy0 1 mv0 2
回首页
回上页
下一页
三、计算题
7. 如图,用传送带 A输送煤粉,料斗口在 A上方高h 0.5m 处,煤粉自料斗口自由落在 A上。设料斗口连续卸煤的流 量为 qm 40kg / s, A以v 2.0m / s 的水平速度匀速向右移 动。求装煤的过程中,煤粉对 A的作用力的大小和方向。 (不计相对传送带静止的煤粉质重)
dv 4t dv 4tdt dt v t dv 4tdt 2t 2 v 0 0 dx dx vdt 2t 2 dt v dt


x
x0
dx 2t 2 dt
0
t
2 3 2 3 ( x t x0 t 10••SI ) 3 3
回首页
或根据动能定理
1 1 2 M r 0 ( ml ml 2 ) 2 2 3

大学物理力学考试题及答案

大学物理力学考试题及答案

大学物理力学考试题及答案一、选择题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²答案:B2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是:A. F = m * aB. F = m / aC. F = a * mD. F = a + m答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的加速度为:A. 9.8 m/s²B. 19.6 m/s²C. 0 m/s²D. 1 g答案:A4. 一个物体在水平面上以10 m/s的速度做匀速直线运动,它的动量大小为:A. 10 kg·m/sB. 20 kg·m/sC. 无法确定,因为物体的质量未知D. 5 kg·m/s答案:C5. 根据能量守恒定律,一个物体的动能和势能之和:A. 随时间增加而增加B. 随时间减少而减少C. 在没有外力作用下保持不变D. 总是大于物体的动能答案:C6. 一个弹簧的劲度系数为1000 N/m,如果挂上一个1kg的物体,弹簧伸长的长度是多少?A. 0.1 mB. 1 mC. 10 mD. 无法确定,因为缺少物体的加速度答案:A7. 两个物体之间的万有引力与它们的质量乘积成正比,与它们之间的距离的平方成反比。

这个定律是由哪位科学家提出的?A. 牛顿B. 爱因斯坦C. 伽利略D. 库仑答案:A8. 一个物体在斜面上下滑,斜面倾角为30°,物体与斜面之间的摩擦系数为0.1,那么物体受到的摩擦力大小为:A. mg sin(30°)B. mg cos(30°)C. μ(mg cos(30°))D. μ(mg sin(30°))答案:D9. 一个物体在水平面上以恒定的加速度加速运动,已知它的初速度为3 m/s,末速度为15 m/s,经过的时间为4秒,那么它的加速度是多少?A. 2.25 m/s²B. 4 m/s²C. 5 m/s²D. 10 m/s²答案:B10. 一个物体在竖直上抛运动中,达到最高点时,它的加速度为:A. 0 m/s²B. g (重力加速度)C. -g (重力加速度)D. 2g (重力加速度)答案:C二、填空题(每题4分,共20分)11. 牛顿第三定律指出,作用力和反作用力大小________,方向________,作用在________的物体上。

大学物理力学部分选择题及填空题及标准答案

大学物理力学部分选择题及填空题及标准答案

力学部分选择题及填空题练习1 位移、速度、加速度一、选择题:1.一运动质点在某瞬时位于矢径r(x ,y )的端点,其速度大小为:(A )dtr d dt dr (B) (C )22(D) ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx dt |r |d ( ) 2.某质点的运动方程为6533+-=t t x (SI ),则该质点作(A )匀加速直线运动,加速度沿X 轴正方向;(B )匀加速直线运动,加速度沿X 轴负方向;(C )变加速直线运动,加速度沿X 轴正方向;(D )变加速直线运动,加速度沿X 轴负方向。

( ) 3.一质点作一般的曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v |v |,v |v |== (B )v |v |,v |v |=≠(C )v |v |,v |v |≠≠ (D )v |v ||,v ||v |≠=( )二、填空题 1.一电子在某参照系中的初始位置为k .i .r 01030+=,初始速度为0v 20j =,则初始时刻其位置矢量与速度间夹角为 。

2.在表达式tr lim v t ∆∆=→∆ 0中,位置矢量是 ;位移矢量是 。

3.有一质点作直线运动,运动方程为)(25.432SI t t x -=,则第2秒内的平均速度为 ;第2秒末的瞬间速度为 ,第2秒内的路程为 。

练习2 自然坐标、圆周运动、相对运动班级 姓名 学号一、选择题1.质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小与平均速率大小分别为:(A )tR t R ,t R πππ2 0, (B) 2 2 (C )0 2 (D) 0 0,t R ,π ( ) 2.一飞机相对于空气的速率为200km/h ,风速为56km/h ,方向从西向东,地面雷达测得飞机速度大小为192km/h ,方向是(A )南偏西︒3.16 (B )北偏东︒3.16 (C )向正南或向正北;(D )西偏东︒3.16 (E )东偏南︒3.16 ( )3.在相对地面静止的坐标系内,A 、B 二船都以21-⋅s m 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向,今在A 船上设与静止坐标系方向相同的坐标系,(x, y )方向单位矢量用j ,i 表示,那么在A 船上的坐标系中B 船的速度为(SI )。

(完整版)大学物理(力学)试卷附答案

(完整版)大学物理(力学)试卷附答案

大 学 物 理(力学)试 卷一、选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ] 2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ] 6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ ]二、填空题(共25分)10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了________圈. 11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__________. 14.(本题3分)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ωmm m0v 俯视图与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )三、计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ;(2) 两轮各自所受的冲量矩.21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .) 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、选择题(共27分)C D C C C D B C A 二、填空题(共25分) 10.(本题3分)20 参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 ,θ1=21121t β 21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 (3分)250 rad (2分)12.(本题4分)0.15 m ·s -2(2分)1.26 m ·s -2(2分)参考解: a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 2 13.(本题3分)0.25 kg ·m 2(3分) 14.(本题3分)157N·m (3分) 15.(本题3分)3v 0/(2l )16.(本题4分)()2202347xl l +ω三、计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分各自的方向见图.那么,在该瞬时 ωr A B A 22==-v v v ϖϖϖθ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分 [注]此题可不要求叉积公式,能分别求出 A v ϖ、B v ϖ的大小,画出其方向即可. 18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分19.(本题10分)θ BC AωB v ϖC v ϖA v ϖB v ϖ-A v ϖB v v A ϖϖ- -C v ϖ A v ϖ解:受力分析如图所示. 2分 2mg -T 1=2ma 1分 T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r β2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分 J A ωA +J B ωB = (J A +J B )ω, 2分 又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t MAd = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s 2分方向与A ωϖ相同.21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121BR m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v 2分四、问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分 法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分)m 2m βT 2 2P ϖ1P ϖTa T 1a23.(本题5分)答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分 (2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分(3) 哑铃的动量不守恒,因为有外力作用. 1分 哑铃的动能不守恒,因外力对它做功. 1分 刚体题一 选择题 1.(本题3分,答案:C ;09B )一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.(本题3分,答案:D ;09A ) 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C)3 ω0. (D) 3 ω0.3.( 本题3分,答案:A ,08A )1.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. 二、填空题1(本题4分,08A, 09B )一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减少到10π rad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。

大学物理练习题

大学物理练习题

大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。

求物体的加速度。

2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。

3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。

4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。

5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。

二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。

2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。

3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。

4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。

5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。

三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。

2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。

3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。

4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。

5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。

四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。

2. 一束光从水中射入空气,折射角为45°,求入射角。

3. 一平面镜反射一束光,入射角为60°,求反射角。

4. 一凸透镜焦距为10cm,物距为20cm,求像距。

5. 一凹透镜焦距为15cm,物距为30cm,求像距。

大学物理I力学及振动练习期末必备Word版

大学物理I力学及振动练习期末必备Word版

大学物理I 练习(力学与振动部分,打*题选做)A.力学部分一.选择题 1.有一劲度系数为k 的轻弹簧,原长为l 0 . 下端固定在桌面,当它上端放一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1缩短至l 2的过程中,弹性力所作的功为(A) ⎰-21d l l x kx . (B) ⎰21d l lx kx .(C)⎰---2010d l l l l x kx . (D) ⎰--210d ll l l x kx . [ ]2.质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m的物体相对于车以速度u 竖直上抛,则此时车的速度v 为:(A) -v 0. (B) v 0. (C) (M-m)v 0/M . (D) (M-m)v 0/m[ ] 3.两质量分别为m 1、m 2的小球,用一劲度系数为k 的轻弹簧相连,放在水平光滑桌面上,如图所示.今以等值反向的力分别作用于两小球,则两小球和弹簧这系统的 (A) 动量不守恒,机械能守恒. (B) 动量不守恒,机械能不守恒(C) 动量守恒,机械能守恒. (D) 动量守恒,机械能不守恒.[ ]4.质量为m 的质点以速度v沿一直线运动,当它对该直线上某一点的距离为d 时 , 则它对此直线上该点的角动量为__________.(A) d m ν (B) 0(C) ν m (D)d m ν [ ]5.如图所示,质量为m 的子弹以水平速度0v射入静止的木块并陷入木块内,设子弹入射过程中木块M 不反弹,则墙壁 对木块的冲量为:m m(A) 0-νM (B) 0(C) 0m -ν (D) 0m ν [ ]*6.在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) 2i+2j .(C) -2i -2j . (D) 2i -2j. [ ] 7.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ]8.竖直上抛一小球.若空气阻力的大小不变,则球上升到最高点所需用的时间,与从最高点下降到原位置所需用的时间相比(A) 前者长. (B) 前者短. (C) 两者相等. (D) 无法判断其长短. [ ] 9.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F对它所作的功为(A) 20R F . (B) 202R F .(C) 203R F . (D) 204R F .[ ]二.填空题 1.A 、B 二弹簧的劲度系数分别为k A 和k B ,其质量均忽略不计.今将二弹簧连接起来并竖直放置,如图所示.当系统静止时,二弹簧的弹性势能E PA 与E PB 之比为 .2.xy R Om BA kB k A如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为m A =3 kg ,m B =5kg .今用一水平力F =8 N 推物体A ,则A 推B 的力等于______________.如用同样大小的水平的力从右边推B ,则B 推A 的力等于___________________.*3.绕定轴转动的飞轮均匀地减速,t =0时角速度为0=10 rad / s ,t =5 s 时角速度为 = 0.60,则飞轮的角加速度=______________,t =0到 t =20 s时间内飞轮所转过的角度=___________________. 4.假如地球半径缩短 0.5%,而它的质量保持不变,则地球表面的重力加速度g增大的百分比是______________.*5.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________________.6.粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i43+=0A v ,粒子B 的速度j i72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为A v 38i j =-,则此时粒子B 的速度B v=______________.7.有一质量为m =5 kg 的物体,在0到10秒内,受到如图所示的变力F 的作用.物体由静止开始沿x 轴正向运动,力的方向始终为x 轴的正方向.则10秒内变力F 所做的功为____________.三.计算题 1.BA F Bm Aθ20 40 105t (s)F (N) O质量为m=1g ,速率为v=10m/s 的小球,以入射角πθ61= 与墙壁相碰,又以原速率沿反射角方向从墙壁弹回.设碰撞时间为t ∆=0.5s, 求墙壁受到的平均冲力mmvvθθ2.质量m =3 kg 的质点在力i t F12=(SI)的作用下,从静止出发沿x 轴正向作直线运动,求前2秒内该力所作的功.*3.某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为 F =8x +12x 2(SI )求:(1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为3 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.(3)此弹簧的弹力是保守力吗? 4.一质量为1 kg 的质点,在xy 平面上运动,受到外力j t i F 2244-= (SI)的作用,t =0时,它的初速度为j i430+=v (SI),求t = 1 s 时质点的速度.5.设想有两个自由质点,其质量分别为m 1和m 2,它们之间的相互作用符合万有引力定律.开始时,两质点间的距离为l ,它们都处于静止状态,试求当它们的距离变为13l 时,两质点的速度各为多少?B.振动部分一.选择题 1.弹簧振子在光滑水平面上作简谐振动时,设初位相为零, 则弹性力在1/4个周期内所作的功为(A) kA 2. (B)221kA . (C) (1/4)kA 2. (D) 0. [ ]2.图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]3. 已知一质点沿y轴作简谐振动.其振动方程为)4/cos(π+=t A y ω.与之对应的振动曲线是[ ] 4.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的三倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/9. (B) E 1/3. (C) 3E 1. (D) 9 E 1 . [ ]二.填空题 1.一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.8 m ,初速度为1.8 m/s ,则振幅A =_____________ ,初相 =________________ 2.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为 A =_____________;=________________; =_______________.3. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的______________.(设平衡位置处势能为零).当这物块在平衡位置时,弹簧的长度比原长长l ,这一振动系统的周期为______________________ 4.x (cm)t (s)105-101471013Ox t O A/ -Ax 1x 2A (D)-A -A o y toy tA(A) oy to y t(B)(C) A A一质点作简谐振动, 振动频率为f , 其动能的振动频率为_____________三.计算题 1.质量为0.5 kg 的质点,按方程)]6/(5sin[4π-=t x (SI)沿着x 轴振动.求: (1) t = 0时,作用于质点的力的大小; (2) 作用于质点的力的最大值和此时质点的位置. 2.一物体在光滑水平面上作简谐振动,振幅是18 cm ,在距平衡位置9 cm 处速度是36 cm/s ,求(1)周期T ;(2)当速度是18 cm/s 时的位移.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

大学物理---力学部分练习题及答案解析

大学物理---力学部分练习题及答案解析

大学物理---力学部分练习题及答案解析一、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ D ]2、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = 4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D)2 m . (E) 5 m.[ B ]3、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ B ]4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s为单位,则4秒末质点的速度和加速度为 ( B )(A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ;(C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;5. 下列哪一种说法是正确的 ( C )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) t r d d (B) tr d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ D ] 1 4.5432.52-112t v (m/s)7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f ( B )(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变11、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ C ] 12、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ A ]13、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ]14、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) mv . (B) 0.(C) 2mv . (D) –2mv . [ D ]15、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ C ]16、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化.[ A ]17.考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)物体作圆锥摆运动.(B)抛出的铁饼作斜抛运动(不计空气阻力).(C)物体在拉力作用下沿光滑斜面匀速上升.(D)物体在光滑斜面上自由滑下.[ C ]18.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[ B ]19、一光滑的圆弧形槽M置于光滑水平面上,一滑块m自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m和M组成的系统动量守恒.(B) 由m和M组成的系统机械能守恒.(C) 由m、M和地球组成的系统机械能守恒.(D) M对m的正压力恒不作功.[ C ]20.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ C ]21.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]22. 对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

大学物理之力学部分习题与解答

大学物理之力学部分习题与解答

一.质点运动学一.选择题:1.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0.(D) -2 m .(E) -5m. [ ]2. 一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D )一般曲线运动. [ ]3.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]4. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动.(E) 匀速直线运动.[ ]-12O5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v. (B) 2v R.(C) R t 2d d vv +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 以下五种运动形式中,a保持不变的运动是(A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动. [ ]7. 一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为(A) t r d d (B) tr d d(C)tr d d (D)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ]8. 一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠ (D )v v v,v ≠=[ ]9. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ]10. 在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) -2i +2j .(C) -2i -2j . (D) 2i -2j. [ ]二.填空题:1.一质点作直线运动,其坐标x与时间t 的关系曲线如图所示.则该质点在第_________秒瞬时速度为零;在第_________秒至第_________秒间速度与加速度同方向. 2. 一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 _____________,在t 由0到4s 的时间间隔内质点走过的路程为________________.3.一质点沿x 方向运动,其加速度随时间变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v =______________.4. 质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x =-A sin ω t (SI) (A 为常数)(1) 任意时刻t,质点的加速度a =______________;(2) 质点速度为零的时刻t =______________.55. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M =______________.6. 一物体在某瞬时,以初速度0v从某点开始运动,在∆ t 时间内,经一长度为S 的曲线路径后,又回到出发点,此时速度为0-v,则在这段时间内:(1) 物体的平均速率是______________;(2) 物体的平均加速度是______________.7. 已知质点的运动学方程为j t t i t t r)314()2125(32++-+= (SI),当t = 2 s 时,加速度的大小为a =_________________ ;加速度a与x 轴正方向间夹角α = .8. 一质点在Oxy 平面内运动.运动学方程为=x 2 t 和=y 19-2 t 2 , (SI),则在第2秒内质点的平均速度大小=v ________________________,2秒末的瞬时速度大小=2v _______________________.9. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示θ = 2 + 4t 3 (SI).(1) 当t = 2 s 时,切向加速度a t =______________;(2) 当t a 的大小恰为总加速度a大小的一半时,θ =_______________.10. 设质点的运动学方程为j t R i t R rsin cos ωω+= (式中R 、ω 皆为常量) 则质点的v=___________________,d v /d t =_____________________.三.计算题:1.有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3(SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度;(3) 第2秒内的路程.2.一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.3.由楼窗口以水平初速度0v 射出一发子弹,取枪口为原点,沿0v方向为x 轴,竖直向下为y 轴,并取发射时刻t 为0,试求: (1) 子弹在任一时刻t 的位置坐标及轨迹方程;(2) 子弹在t 时刻的速度,切向加速度和法向加速度.4.一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.二.质点动力学一.选择题:1.一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A) g . (B)g Mm. (C) g M m M +. (D) g m M m M -+ . (E) g Mm M -. [ ]2.质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是(A)k mg . (B) kg2 . (C) gk . (D)gk . [ ]3.如图所示,假设物体沿着竖直面上固定圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心.(B) 它的速率均匀增加.(C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加. [ ]A R4.在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足 (A)Rgs μω≤. (B)R g s 23μω≤. (C) R gs μω3≤. (D) Rg s μω2≤. [ ]5.质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s . [ ]6.质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为(A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s .[ ]7.对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A) (1)、(2)是正确的. (B) (2)、(3)是正确的.(C) 只有(2)是正确的. (D) 只有(3)是正确的. [ ]8.质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm (B) 22R GMm(C) 2121R R R R GMm - (D) 2121R RR GMm -(E) 222121R R RR GMm - [ ]9.一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d .现用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量(A) 为d . (B) 为d 2. (C) 为2d . (D) 条件不足无法判定. [ ]10.质量为m 的质点在外力作用下,其运动方程为j t B i t A rωωsin cos +=式中A 、B 、ω都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为(A))(21222B A m +ω (B) )(222B A m +ω (C) )(21222B A m -ω (D) )(21222A B m -ω [ ]11.一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. (B) 25 m ·s -1.(C) 0.(D) -50 m ·s -1. [ ]12.一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为(A) 221v m . (B) )(222m M m +v .(C) 2222)(v Mm m M +. (D) 222v M m . [ ]13.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒. (B) 角动量守恒,动能不守恒. (C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. [ ]14.在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的(A) 动能和动量都守恒. (B) 动能和动量都不守恒.(C) 动能不守恒,动量守恒. (D) 动能守恒,动量不守恒.[ ]15.A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为 (A) 21. (B) 2/2.(C)2. (D) 2. [ ]二.填空题:1.一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-=(SI)子弹从枪口射出时的速率为 300 m/s .假设子弹离开枪口时合力刚好为零,则(1)子弹走完枪筒全长所用的时间t=_______________,(2)子弹在枪筒中所受力的冲量I =________________,(3)子弹的质量m =__________________.2.设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________________.3.质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为_______________;(2) 地面对小球的水平冲量的大小为____________________.4.一质量为5 kg 的物体,其所受的作用力F 随时间的变化关系如图所示.设物体从静止开始沿直线运动,则20秒末物体的速率v =________________.y 21y5.图示一圆锥摆,质量为m 的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中,(1) 小球动量增量的大小等于_________________. (2) 小球所受重力的冲量的大小等于________________.(3) 小球所受绳子拉力的冲量大小等于_______________. 6.假设作用在一质量为10 kg 的物体上的力,在4秒内均匀地从零增加到50 N ,使物体沿力的方向由静止开始作直线运动.则物体最后的速率v =_______________. 7.质量为1 kg 的球A 以5 m/s 的速率和另一静止的、质量也为1 kg 的球B 在光滑水平面上作弹性碰撞,碰撞后球B 以2.5 m/s 的速率,沿与A 原先运动的方向成60°的方向运动,则球A 的速率为______________________,方向为_____________________.8.已知地球质量为M ,半径为R .一质量为m 的火箭从地面上升到距地面高度为2R 处.在此过程中,地球引力对火箭作的功为_____________________.9.劲度系数为k 的弹簧,上端固定,下端悬挂重物.当弹簧伸长x 0,重物在O 处达到平衡,现取重物在O 处时各种势能均为零,则当弹簧长度为原长时,系统的重力势能为________________;系统的弹性势能为________________;系统的总势能为________________. (答案用k 和x 0表示)10.一个质量为m 的质点,沿x 轴作直线运动,受到的作用力为i t F Fcos 0ω= (SI)t = 0时刻,质点的位置坐标为0x ,初速度00=v.则质点的位置坐标和时间的关系式是x =______________________________.11.一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为3243t t t x +-= (SI).在0到4 s 的时间间隔内,(1) 力F 的冲量大小I =__________________.(2) 力F 对质点所作的功W =________________.12.如图所示,一光滑的滑道,质量为M 高度为h ,放在一光滑水平面上,滑道底部与水平面相切.质量为m 的小物块自滑道顶部由静止下滑,则 (1) 物块滑到地面时,滑道的速度为__________________________; (2) 物块下滑的整个过程中,滑道对物块所作的功为___________________.三.计算题:1.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式; (2) 子弹进入沙土的最大深度.光滑2.如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量为m 的木块连接,水平力F向右拉木块.木块处于静止状态.若木块与桌面间的静摩擦系数为μ且F >μm g ,求弹簧的弹性势能E P 应满足的关系.3.如图所示陨石在距地面高h 处时速度为v 0.忽略空气阻力,求陨石落地的速度.设地球质量为M , 半径为R , 万有引力常量为G .4.一个弹簧下端挂质量为0.1 kg 的砝码时长度为0.07 m ,挂0.2 kg 的砝码时长度为0.09 m .现在把此弹簧平放在光滑桌面上,并要沿水平方向从长度l 1=0.10 m 缓慢拉长到l 2=0.14 m ,外力需作功多少?5.如图,水平地面上一辆静止的炮车发射炮弹.炮车质量为M ,炮身仰角为α ,炮弹质量为m ,炮弹刚出口时,相对于炮身的速度为u ,不计地面摩擦:(1) 求炮弹刚出口时,炮车的反冲速度大小;(2) 若炮筒长为l ,求发炮过程中炮车移动的距离.四.证明题:1.在光滑的水平桌面上,有一如图所示的固定半圆形屏障.质量为m 的滑块以初速度0v沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ.试证明当滑块从屏障另一端滑出时,摩擦力所作的功为)1e (21220-=π-μv m W三.刚体的转动一.选择题:1.一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小. (C) 变大. (D) 如何变化无法判断. [ ]2.两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]3.如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为 (A) 2ω 0. (B) ω 0. (C)21 ω 0. (D) 041ω. [ ]4.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ]5.图(a)为一绳长为l 、质量为m 的单摆.图(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则: (A)2121ωω=. (B) ω 1 = ω 2.(C) 2132ωω=. (D) 213/2ωω=. [ ]6.一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2.如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3. [ ]二.填空题:1. 绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图所示.现将杆由水平位置无初转速地释放. 则杆刚被释放时的角加速度β0=__________________,杆与水平方向夹角为60°时的角加速度β =______________. 2.可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(R r ≤),转台和人一起以ω1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度ω2=_________________________.(a)(b)m1O3.如图所示,一长为l ,质量为M 的均匀细棒悬挂于通过其上端的光滑水平固定轴上.现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以021v 的速度穿出棒.在此射击过程中细棒和子弹系统对轴的____________守恒.如果此后棒的最大偏转角恰为90°,则0v的大小v 0=_____________.三.计算题:1.光滑圆盘面上有一质量为m 的物体A ,拴在一根穿过圆盘中心O 处光滑小孔的细绳上,如图所示.开始时,该物体距圆盘中心O 的距离为r 0,并以角速度ω 0绕盘心O 作圆周运动.现向下拉绳,当质点A 的径向距离由r 0减少到021r 时,向下拉的速度为v ,求下拉过程中拉力所作的功.Ol210v2.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.3.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2 / 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10 cm .求:(1) 组合轮的角加速度β; (2) 当物体A 上升h =40 cm 时,组合轮的角速度ω.4.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).5.质量为M 、长为l 的均匀直棒,可绕垂直于棒的一端的水平固定轴O 无摩擦地转动.转动惯量231Ml J =.它原来静止在平衡位置上,如图,图面垂直于O 轴.现有一质量为m 的弹性小球在图面内飞来,正好在棒的下端与棒垂直相撞.相撞后使棒从平衡位置摆动到最大角度θ=60°处,(1) 设碰撞为弹性的,试计算小球刚碰前速度的大小v 0. (2) 相撞时,小球受到多大的冲量?v1 2 3 4 5 B B D C D 6 7 8 9 10 DDDCB二.填空题:1. 3 3 62. 8m 10m3. 23 m/s4. sin 2t A ωω()ωπ+1221n (n = 0,1,… ) 5.h 1v /(h 1-h 2)6.t S∆ t∆-02v 7. 4.12 m/s 2 104o 8. 6.32 m/s 8.25 m/s 9.4.8 m/s 2 3.15 rad10. -ωR sin ω t i +ωR cos ω t j三.计算题:1.解:(1) 5.0/-==∆∆t x v m/s 分(2) v = d x /d t = 9t - 6t 2 v (2) = - 6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m2.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 力学一.质点运动学一.选择题:()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v1分3.解:(1) 2021gt y t x == , v 轨迹方程是: 202/21v g x y = 2分(2) v x = v 0,v y = g t ,速度大小为:222022t g y x +=+=v v v v方向为:与x 轴夹角 θ = tg -1( gt /v 0)22202//d d t g t g t a t +==v v 与v 同向.()222002/122/t g g a g a tn +=-=v v 方向与t a 垂直.4.解: ct b t S +==d /d vc t a t ==d /d v ()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=二.质点动力学一.选择题:1 2 3 4 5 6 7 8 C A E A A B CC 9 10 11 12 13 14 15 CCCBACD二.填空题:1. 0.003 s 0.6 N·s 2 g2. 18 N ·s3. 0)21(gy m +0v m 214. 5 m/s5. 0 2πmg /ω 2πmg /ω6. 10 m · s -17. 4.33 m/s ; 与A 原先运动方向成 -30°8. )131(R R GMm - 或 RGMm 32- 9. 20kx 2021kx - 2021kx10.02)cos 1(x t m F +-ωω (SI) 11. 16 N ·s 176 J 12. MM m ghm )(22+ mgh M m m (+-三.计算题:1.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tm K d d vv =- ∴ ⎰⎰=-=-vv v vv v 0d d ,d d 0t t m K t m K ∴ mKt /0e-=v v(2) 求最大深度解法一:t xd d =v t x mKt d ed /0-=vt x m Kt txd e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二: x m t x x m t mK d d )d d )(d d (d d vv v v v ===- ∴ v d Kmdx -=v v d d 000max ⎰⎰-=K mx x∴ K m x /0max v =2.解: 设弹簧的伸长为x , 则当木块处于静止状态且静摩擦力向左时应有mg kx F μ≤-, mg F kx μ-≥ 而当静摩擦力向右时有 mg F kx μ≤-, mg F kx μ+≤ 上述条件要求x 值的范围为 kmgF x k mg F μμ+≤≤- 令221kx E P =(弹簧为原长时, 弹性势能取为零), 则有 kmg F E k mg F P 2)(2)(22μμ+≤≤-3.解:(1) 陨石落地过程中,万有引力的功)(d 2h R R GMmhrr GMmW Rh R +=-=⎰+ 根据动能定理222121)(v v m m h R R GMmh -=+ 得 2)(2v h R R h GMv ++=(也可用机械能守恒来解)4.解:设弹簧的原长为l 0,弹簧的劲度系数为k ,根据胡克定律 0.1g =k (0.07-l 0) , 0.2g =k (0.09-l 0) 解得: l 0=0.05 m ,k =49 N/m 拉力所作的功等于弹性势能的增量:W =E P 2-E P 1=201202)(21)(21l l k l l k ---=0.14 J5.解:(1) 以炮弹与炮车为系统,以地面为参考系,水平方向动量守恒.设炮车相对于地面的速率为V x ,则有0)cos (=++x x V u m MV α)/(cos m M mu V x +-=α即炮车向后退. (2) 以u (t )表示发炮过程中任一时刻炮弹相对于炮身的速度, 则该瞬时炮车的速度应为)/(cos )()(m M t mu t V x +-=α 积分求炮车后退距离⎰=∆tx t t V x 0d )(⎰+-=tt t u m M m 0d cos )()/(α)/(cos m M ml x +-=∆α即向后退了)/(cos m M ml +α的距离.四.证明题:1.证:滑块受力如图所示.滑块作圆周运动R m N /2v = ① t m N f r d /d v =-=μ ②由①、②可得θθθμd d d d d d d d 2v v v v v ⋅=⋅==-R t t R ∴ v v μθ-=d /d分离变量进行积分⎰⎰π-=0d d )/1(θμvv v可得 π0eμ-=v v由动能定理,摩擦力所作的功为)1e (212121π220202-=-=-μv v v m m m WvN Of r θ三.刚体的转动一.选择题:1 2 3 4 5 6 CBDCDD二.填空题:1. g / l g / (2l )2.()212mRJ mr J ++ω3. 角动量gl mM 334三.计算题:1.解:角动量守恒 r m r m v v '=00 ①v '为021r r =时小球的横向速度. 拉力作功 2022121v v m m W B -= ②v B 为小球对地的总速度, 而 222v v v +'=B当021r r =时 2202021)2/3(v m mr W +=ω2.解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得a =mg / (m +21M ) 1分∵ v 0=0, ∴ v =at =mgt/ (m+21M ) 2分3.解:(1) 各物体受力情况如图.T -mg =ma mg -T '=m a 'T ' (2r )-Tr =9mr 2β / 2 a =r βa '=(2r )β由上述方程组解得: β=2g / (19r )=10.3 rad ·s -2(2) 设θ为组合轮转过的角度,则 θ=h / rω2=2βθ 所以, ω = (2βh / r )1/2=9.08 rad ·s -14.解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ①这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有:00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得)/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.55.解:(1) 设小球与棒碰撞后,小球速度大小为v ,与0v方向相同,棒角速度为ω.在碰撞过程中,小球和棒组成的系统,所受外力对O 轴的合力矩为零,角动量守恒,即aa 'a 'v 0l =m v l +J ω ①因是弹性碰撞,碰撞前后动能相等,有2220212121ωJ m m +=v v ② 选棒和地球为系统,棒摆动中机械能守恒,则()θωcos 121212-⋅=l Mg J ③ 联立三个方程,可求得()θcos 13/311210-⎪⎭⎫⎝⎛+=gl m M v当θ=60°时, gl m M m 23630+=v(2)相撞时,小球受到的冲量0d v vm m t F I -==⎰,又由①有l J m /)(0ω=-v v可求得冲量的大小()2/33131d 0gl M Ml m t F I ==-==⎰ωv v冲量的方向与0v方向相反.。

大学物理力学练习题及答案

大学物理力学练习题及答案

大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。

如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。

可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。

A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。

A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。

A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。

大学物理力学习题

大学物理力学习题
R 滑块脱离球面时 N=0……(3)
由(1)式积分
v
0 vdv 0 mgRsin d
解得 v2 2Rg (1 cos ) 此式与(2)、(3)联解得 cos 2
滑落点在顶点以下的竖直距离 3 h R(1 cos ) 1 R
3
第二单元(1)——功、动能、势能
3.1.5. 如图所示,一人造地球卫星绕
1.2.1. 一运动质点沿半径为R的圆周做匀速率圆周运动, 每经时间t s转一圈,则在3t s时间间隔内其平均速度的 大小及平均速率分别为
( A). 2R ,2R (B).0,2R (C).0,0 (D). 2R ,0
tt
t
t
(E)以上答案都不正确.
解:
v
r
0,
v
0
t
v s 3 2R 2R
2k
2k
2k
(D).根据木块达到静止状态的不同情况,可以取以上三个答案
中的任何一个. 解:设弹簧伸长量为x,则当F>kx时,木块受到的静摩擦力向左.
x F f , 0 f mg, F mg x F
k
k
k
Ep
1 kx2, (F 2
mg)2
2k
Ep
F2 2k
当F<kx时,木块受到的静摩擦力向右.
f h Fh sin
sin
sin
mgs cos(900 )
Fs cos Fh cos sin
mgh
mgh
cot
)
3.2. 1. 对功的概念有下列几种表述法: (1).质点经过一闭合路径,保守力对质点做的功等于零; (2).作用力与反作用力大小相等,方向相反,所以两者所做功 的代数和必为零; (3).保守力做正功时,系统的相应的势能增加. 在这些表述中: (A).(2)(3)正确; (B).只有(2)正确; (C).只有(3)正确;(D).(1)(2)正确;(E).只有(1)正确.

大学物理力学题目训练含答案

大学物理力学题目训练含答案

大学物理力学题目训练含答案问题1一枪的质量为$m$,初速度为$v$,击中静止的物块的质量为$M$。

若已知作用力的时间为$t$,求物块的速度。

解答1根据动量守恒定律,炮与物块的总动量在作用时间内保持不变。

设物块的速度为$v'$,则有:$$m \cdot v + 0 = (M + m) \cdot v'$$解得:$$v' = \frac{m \cdot v}{M + m}$$问题2在一个轨道上有一个小球,质量为$m_1$,速度为$v_1$。

小球碰撞到静止的大球,质量为$m_2$,半径为$R$。

已知碰撞后小球的速度为$v_1'$,大球的速度为$v_2'$,求$v_1'$和$v_2'$之间的关系。

解答2根据动量守恒和动能守恒定律,碰撞前后的总动量和总动能相等。

设小球碰撞后的速度为$v_1'$,大球碰撞后的速度为$v_2'$,则有:总动量守恒:$m_1 \cdot v_1 + m_2 \cdot 0 = m_1 \cdot v_1' +m_2 \cdot v_2'$总动能守恒:$\frac{1}{2} m_1 \cdot v_1^2 + 0 = \frac{1}{2}m_1 \cdot v_1'^2 + \frac{1}{2} m_2 \cdot v_2'^2$解以上方程组,得到$v_1'$和$v_2'$之间的关系。

问题3一个质点质量为$m$,受到力$F$作用,已知力的大小和方向,求质点的加速度。

解答3根据牛顿第二定律,质点受力和加速度满足以下关系:$F = m \cdot a$解以上方程,得到质点的加速度$a$。

以上是大学物理力学题目训练的几个例子,希望对你有帮助!。

大学物理力学基础训练及答案

大学物理力学基础训练及答案

⼤学物理⼒学基础训练及答案⼒学基础训练⼀选择题1·某质点作直线运动的运动学⽅程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正⽅向. (B) 匀加速直线运动,加速度沿x 轴负⽅向. (C) 变加速直线运动,加速度沿x 轴正⽅向.(D) 变加速直线运动,加速度沿x 轴负⽅向.[]2. ⼀质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则⼀秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定.[]3. 如图所⽰,湖中有⼀⼩船,有⼈⽤绳绕过岸上⼀定⾼度处的定滑轮拉湖中的船向岸边运动.设该⼈以匀速率0v 收绳,绳不伸长、湖⽔静⽌,则⼩船的运动是(A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动.(D) 匀速直线运动.[]4. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为⼤于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt ,(C) 02121v v +=kt , (D) 02121v v +-=kt []5.在相对地⾯静⽌的坐标系内,A 、B ⼆船都以2 m/s 速率匀速⾏驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静⽌坐标系⽅向相同的坐标系(x 、y⽅向单位⽮⽤i 、j 表⽰),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为 (A) 2i +2j . (B) -2i +2j.(C) -2i -2j . (D) 2i -2j.[]6. ⼀质点作匀速率圆周运动时,.(A) 它的动量不变,对圆⼼的⾓动量也不变. (B) 它的动量不变,对圆⼼的⾓动量不断改变. (C) 它的动量不断改变,对圆⼼的⾓动量不变. (D) 它的动量不断改变,对圆⼼的⾓动量也不断改变.[]7.均匀细棒OA 可绕通过其⼀端O ⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰.今使棒从⽔平位置由静⽌开始⾃由下落,在棒摆动到竖直位置的过程中,下述说法哪⼀种是正确的? (A) ⾓速度从⼩到⼤,⾓加速度从⼤到⼩.(B) ⾓速度从⼩到⼤,⾓加速度从⼩到⼤. (C) ⾓速度从⼤到⼩,⾓加速度从⼤到⼩.(D) ⾓速度从⼤到⼩,⾓加速度从⼩到⼤.[]8. 花样滑冰运动员绕通过⾃⾝的竖直轴转动,开始时两臂伸开,转动惯量为J 0,⾓速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的⾓速度变为(A) 31ω0. (B) ()3/1 ω0.(C) 3 ω0. (D) 3 ω0.[]9. 如图所⽰,⼀静⽌的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在⽔平⾯内转动,转动惯量为231ML .⼀质量为m 、速率为v 的⼦弹在⽔平⾯内沿与棒垂直的⽅向射出并穿出棒的⾃由端,设穿过棒后⼦弹的速率为v 21,则此时棒的⾓速度应为(A) ML m v . (B) ML m 23v.(C) ML m 35v . (D) ML m 47v.[].俯视图10. 如图所⽰,⼀⽔平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个⼩球.初始时,两⼩球相对杆中⼼O 对称放置,与O 的距离d =5 cm ,⼆者之间⽤细线拉紧.现在让细杆绕通过中⼼O 的竖直固定轴作匀⾓速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空⽓的摩擦,当两球都滑⾄杆端时,杆的⾓速度为 (A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω.[]⼆填空题11 ⼀质点沿x ⽅向运动,其加速度随时间变化关系为 a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v = .12. 质点p 在⼀直线上运动,其坐标x 与时间t 有如下关系: x =-A sin ω t (SI) (A 为常数)(1) 任意时刻t,质点的加速度a =____________;(2) 质点速度为零的时刻t =______________.13. ⼀质点从静⽌出发沿半径R =1 m 的圆周运动,其⾓加速度随时间t 的变化规律是β =12t 2-6t (SI),则质点的⾓速ω =______________________________;切向加速度 a t =________________________.14. 如图所⽰,x 轴沿⽔平⽅向,y 轴竖直向下,在t =0时刻将质量为m 的质点由a 处静⽌释放,让它⾃由下落,则在任意时刻t ,质点所受的对原点O 的⼒矩M=________________;在任意时刻t ,质点对原点O的⾓动量L=__________________.15.质点P 的质量为2 kg ,位置⽮量为 r,速度为v ,它受到⼒F的作⽤.这三个⽮量均在Oxy ⾯内,某时刻它们的⽅向如图所⽰,且r =3.0 m ,v =4.0 m/s ,F=2 N ,则此刻该质点对原点O 的⾓动量L=____________________;作⽤在质点上的⼒对原点的⼒矩M=________________. 16. 某质点在⼒F =(4+5x )i(SI)的作⽤下沿x 轴作直线运动,在从x =0移17.动到x =10 m 的过程中,⼒F所做的功为__________.17. 利⽤⽪带传动,⽤电动机拖动⼀个真空泵.电动机上装⼀半径为 0.1m 的轮⼦,真空泵上装⼀半径为0.29m 的轮⼦,如图所⽰.如果电动机的转速为1450 rev/min ,则真空泵上的轮⼦的边缘上⼀点的线速度为__________________,真空泵的转速为____________________.18.⼀长为l ,质量可以忽略的直杆,可绕通过其⼀端的⽔平光滑轴在竖直平⾯内作定轴转动,在杆的另⼀端固定着⼀质量为m 的⼩球,如图所⽰.现将杆由⽔平位置⽆初转速地释放.则杆刚被释放时的⾓加速度β0=____________,杆与⽔平⽅向夹⾓为60°时的⾓加速度β=________________.m19.⼀长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的⼩球,杆可绕通过其中⼼O 且与杆垂直的⽔平光滑固定轴在铅直平⾯内转动.开始杆与⽔平⽅向成某⼀⾓度θ,处于静⽌状态,如图所⽰.释放后,杆绕O 轴转动.则当杆转到⽔平位置时,该系统所受到的合外⼒矩的⼤⼩M =_____________________,此时该系统⾓加速度的⼤⼩β=______________________.20. ⼀飞轮以⾓速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另⼀静⽌飞轮突然和上述转动的飞轮啮合,绕同⼀转轴转动,该飞轮对轴的转动惯量为前者的⼆倍.啮合后整个系统的⾓速度ω=__________________.三计算题21. ⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.22. ⼀⼈从10 m 深的井中提⽔.起始时桶中装有10 kg 的⽔,桶的质量为1 kg ,由于⽔桶漏⽔,每升⾼1 m 要漏去0.2 kg 的⽔.求⽔桶匀速地从井中提到井⼝,⼈所作的功.23. 如图所⽰,⼀个质量为m 的物体与绕在定滑轮上的绳⼦相联,绳⼦质量可以忽略,它与定滑轮之间⽆滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静⽌开始下落的过程中,下落速度与时间的关系.24.⼀长为1 m 的均匀直棒可绕过其⼀端且与棒垂直的⽔平光滑固定轴转动.抬起另⼀端使棒向上与⽔平⾯成60°,然后⽆初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放⼿时棒的⾓加速度; (2) 棒转到⽔平位置时的⾓加速度.25. ⼀质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在⽔平桌⾯上,可绕通过其中⼼的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的⾓速度ω0 = 10.0 rad ·s -1.由于受到恒定的阻⼒矩的作⽤,t = 20 s 时,棒停⽌运动.求: (1) 棒的⾓加速度的⼤⼩; (2) 棒所受阻⼒矩的⼤⼩; (3) 从t = 0到t = 10 s 时间内棒转过的⾓度.26.如图所⽰,A 和B 两飞轮的轴杆在同⼀中⼼线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静⽌.C为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速⽽A 轮减速,直到两轮的转速相等为⽌.设轴光滑,求:(1) 两轮啮合后的转速n ; (2) 两轮各⾃所受的冲量矩.27. 质量为M =0.03 kg ,长为l =0.2 m 的均匀细棒,在⼀⽔平⾯内绕通过棒中⼼并与棒垂直的光滑固定轴⾃由转动.细棒上套有两个可沿棒滑动的⼩物体,每个质量都为m =0.02 kg .开始时,两⼩物体分别被固定在棒中⼼的两侧且距棒中⼼各为r =0.05 m ,此系统以n 1=15 rev/ min 的转速转动.若将⼩物体松开,设它们在滑动过程中受到的阻⼒正⽐于它们相对棒的速度,(已知棒对中⼼轴的转动惯量为Ml 2 / 12)求:(1) 当两⼩物体到达棒端时,系统的⾓速度是多少? (2) 当两⼩物体飞离棒端,棒的⾓速度是多少?四理论推导与证明题28. ⼀艘正在沿直线⾏驶的电艇,在发动机关闭后,其加速度⽅向与速度⽅向相反,⼤⼩与速度平⽅成正⽐,即2/d d v v K t -=,式中K 为常量.试证明电艇在关闭发动机后⼜⾏驶x 距离时的速度为 )e x p (0Kx -=v v 其中0v 是发动机关闭时的速度.⼒学基础训练答案⼀选择题1. (D)2. (D)3. (C)4. (C)5. (B)6. (C)7. (A)8. (D)9. (B) 10. (D) ⼆.填空题11. 23 m/s 12. t A ωωsin 2-()ωπ+1221n (n = 0,1,… ) 13. 4t 3-3t 2 (rad/s) 12t 2-6t (m/s 2) 14. mgb kmgbt k15. k 12 kg· m 2 · s-1k3 N · m16. 290 J17. v ≈15.2 m /sn 2=500 rev /min 18. g / lg / (2l ) 19. mgl 212g / (3l ) 20. 031ω三计算题21. 解: =a d v /d t 4=t , d v 4=t d t=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t tx tx x d 2d 02=x 2= t 3 /3+x 0 (SI)22. 解:选竖直向上为坐标y 轴的正⽅向,井中⽔⾯处为原点.由题意知,⼈匀速提⽔,所以⼈所⽤的拉⼒F 等于⽔桶的重量即: F =P =gy mg ky P 2.00-=-=107.8-1.96y (SI) ⼈的拉⼒所作的功为:W=??=Hy F W 0d d =?-10d )96.18.107(y y =980 J23. 解:根据⽜顿运动定律和转动定律列⽅程对物体: mg -T =ma ①对滑轮: TR = J β②运动学关系: a =R β③将①、②、③式联⽴得a =mg / (m +21M )∵ v 0=0,∴ v =at =mgt / (m +21M ) 24. 解:设棒的质量为m ,当棒与⽔平⾯成60°⾓并开始下落时,根据转动定律M = J β其中 4/30sin 21mgl mgl M ==于是 2r a d /s 35.743 ===l g J M β当棒转动到⽔平位置时, M =21mgl那么 2r a d /s 7.1423 ===lg J M β 25. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 (2) M r =ml 2β / 12=-0.25 N ·m(3) θ10=ω 0t +21β t 2=75 rad 26. 解:(1) 选择A 、B 两轮为系统,啮合过程中只有内⼒矩作⽤,故系统⾓动量守恒J A ωA +J B ωB = (J A +J B )ω,⼜ωB =0得ω≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速≈n 200 rev/min (2) A 轮受的冲量矩t M A d = J A (ω-ωA ) = -4.19×10 2N ·m ·s 负号表⽰与A ω⽅向相反. B 轮受的冲量矩t MBd = J B (ω - 0) = 4.19×102 N ·m ·s⽅向与A ω相同.27. 解:选棒、⼩物体为系统,系统开始时⾓速度为ω1 = 2πn 1=1.57 rad/s .(1) 设⼩物体滑到棒两端时系统的⾓速度为ω2.由于系统不受外⼒矩作⽤,所以⾓动量守恒.a故 2221222112212ωω+= +ml Ml mr Ml 2212222121122Ml mr Ml ml ωω??+ =+=0.628 rad/s(2) ⼩物体离开棒端的瞬间,棒的⾓速度仍为ω2.因为⼩物体离开棒的瞬间内并未对棒有冲⼒矩作⽤.四理论推论与证明题28. 证:2d d d d d d d d v xv v t x x v t v K -==?= ∴ d v /v =-K d x-=x x K 0d d 10v v vv , Kx -=0ln v v∴ v =v 0e -Kx。

大学物理-力学练习

大学物理-力学练习

质点力学1. 一质点沿直线运动,运动方程为3226)(t t t x -=。

试求:(1)第s 2内位移和平均速度; (2)s 1末及s 2末的瞬时速度,第s 2内的路程; (3)s 1末的瞬时加速度和第s 2内的平均加速度。

2.一个正在沿直线行驶的汽船,关闭发动机后,由于阻力作用,得到一个与速度反向、大小与船速平方成正比的加速度,即2/kV dt dV -=,k 为常数.关闭发动机的时刻作为计时起点,且关闭时船的速度大小为0V ,试求:(1)t 时刻的速度大小;(2)在时间t 内,船行驶的距离。

3. 质量为m 的物体,最初静止于0x ,在力2xkf -= (k 为常数)作用下沿直线运动。

求物体在x 处的速度大小。

4. 一质量为m 的小球以速率0V 从地面开始竖直向上运动。

在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为K 。

求: (1)小球速率随时间的变化关系)(t V ; (2)小球上升到最大高度所花的时间T 。

5. 光滑的水平桌面上放置一固定的圆环带,半径为R 。

一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为k μ。

将物体经过环带内侧的A 点的时刻作为计时起点,且一直此时刻物体的速率为0V 。

求时刻t 物体的速率;以及从A 点开始所经过的路程。

6. 用棒打击质量kg 3.0,速率等于120-⋅s m 的水平飞来的球,球竖直向上飞到击球点上方m 10的高度。

求棒给予球的冲量多大?设球与棒的接触时间为s 02.0,求球受到的平均冲力?(忽略球所受到的空气阻力。

)7. 在实验室内观察到相距很远的一个质子(质量为p m )和一个氦核(质量为4p m )沿一直线相向运动,速率都是0V ,求两者能达到的最近距离。

8. 如图所示,有一个在竖直平面上摆动的单摆。

问:(1)摆球对悬挂点的角动量守恒吗?(2)求出t 时刻小球对悬挂点的角动量的方向,对于不同的时刻,角动量的方向会改变吗?(3)计算摆球在θ角时对悬挂点角动量的变化率。

大学物理力学习题

大学物理力学习题

第一篇 力学 第一章 运动的描述一、选择题:(注意:题目中可能有一个或几个正确答案)1.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻应是(A )s 4=t(B )s 2=t(C )s 8=t(D )s 5=t[ ]2.质点作半径为R 的变速圆周运动时的加速度大小应为(其中v 表示任意时刻质点的速率)(A )tvd d(B )21242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛R v t v(C )Rv t v 2d d +(D )Rv 2[ ]3.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间关系正确的有(A )v v v v == , (B )v v v v =≠ , (C )v v v v ≠≠ ,(D )v v v v ≠= ,[ ]4.某物体的运动规律为t kv tv2d d -=,式中k 为大于零的常数。

当t =0时,初速为0v ,则速度v 与t 的函数关系应是(A )0221v kt v +=(B )0221v kt v +-= (C )02121v kt v +=(D )02121v kt v +-= [ ]5.在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行使,A 船沿x 轴正向,B 船沿y 轴正向。

今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢量用ji、表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i22+(B )j i22+-(C )j i22--(D )j i22-[ ]6.一刚体绕z 轴以每分种60转作匀速转动。

设某时刻刚体上一点P 的位置矢量为k j i r543++=,其单位为“m 102-”,若以“12s m 10--⋅”为速度单位,则该时刻P点的速度为:(A )k j i v0.1576.1252.94++=(B )j i v8.181.25+-=(C )j i v8.181.25+=(D )k v4.31=[ ]二、填空题:1.一质点的运动方程为SI)(62t t x -=,则在t 由0至4 s 的时间间隔内,质点的位移大小为 ,在t 由0到4 s 的时间间隔内质点走过的路程为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大 学 物 理(力学)试 卷班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________一、 选择题(共27分) 1.(本题3分)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ C ] 开始就有加速度 2.(本题3分)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ D ] 3.(本题3分)关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ C ] 4.(本题3分)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ C ] 5.(本题3分)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ C ] 6.(本题3分)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0.(C) 3 ω0. (D) 3 ω0. [ D ] 7.(本题3分)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等. 在上述说法中,(A) 只有(2) 是正确的. (B) (1) 、(2) 是正确的. (C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ b ] 8.(本题3分)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 9.(本题3分)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫⎝⎛=R JmR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针. [ A ]二、 填空题(共25分) 10.(本题3分)半径为20 cm 的主动轮,通过皮带拖动半径为50 cm 的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s 内被动轮的角速度达到8πrad ·s -1,则主动轮在这段时间内转过了___20_____圈.11.(本题5分)绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =___-1/20___________,t =0到 t =100 s 时间内飞轮所转过的角度θ =___250π________________. 12.(本题4分)半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =_0.15_______,法向加速度a n =___0.4π____________. 13.(本题3分)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J =__0.25________. 14.(本题3分)一飞轮以600 rev /min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________. 15.(本题3分)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 16.(本题4分)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度ω0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ω与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml ) 三、 计算题(共38分) 17.(本题5分)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度ω作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 18.(本题5分)一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间. 19.(本题10分)一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力. 20.(本题8分)如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩. 21.(本题10分)空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为 0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R.)四、 回答问题(共10分) 22.(本题5分)绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何? 23.(本题5分)一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么? (2) 转台、人与哑铃组成的系统角动量守恒否?为什么? (3) 每个哑铃的动量与动能守恒否?为什么?大 学 物 理(力学) 试 卷 解 答一、 选择题(共27分) C D C C C D B C A二、 填空题(共25分) 10.(本题3分)20 3分参考解: r 1ω1=r 2ω2 , β1 = ω1 / t 1 , θ1=21121t β21211412ωθr r n π=π=4825411⨯π⨯⨯π=t =20 rev11.(本题5分)-0.05 rad ·s -2 3分250 rad 2分12.(本题4分)0.15 m ·s -2 2分1.26 m ·s -2 2分参考解:a t =R ·β =0.15 m/s 2 a n =R ω 2=R ·2βθ =1.26 m/s 213.(本题3分)0.25 kg ·m 2 3分 14.(本题3分)157N·m 3分15.(本题3分)3v 0/(2l ) 3分16.(本题4分)()2202347x l l +ω 4分三、 计算题(共38分) 17.(本题5分)解:由线速度r ϖϖϖ⨯=ωv 得A 、B 、C 三点的线速度ωr C B A ===v v v ϖϖϖ 1分 各自的方向见图.那么,在该瞬时θ=45° 2分同时 ωr A C A 22==-v v v ϖϖϖ方向同A v ϖ. 1分平动时刚体上各点的速度的数值、方向均相同,故0=-=-C A B A v v v v ϖϖϖϖ 1分 [注]此题可不要求叉积公式,能分别求出A v ϖ、B v ϖ的大小,画出其方向即可.18.(本题5分)解:根据转动定律: J d ω / d t = -k ω∴ t J kd d -=ωω 2分两边积分:⎰⎰-=tt Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分 19.(本题10分)解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分T r -T 2 r =β221mr 1分a =r β 2分解上述5个联立方程得: T =11mg / 8 2分20.(本题8分)解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒1分 J A ωA +J B ωB = (J A +J B )ω, 2分 又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min 1分(2) A 轮受的冲量矩⎰t M A d = J A (ω -ωA ) = -4.19×10 2 N ·m ·s 2分负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t M B d = J B (ω - 0) = 4.19×102 N ·m ·s 2分 方向与A ωϖ相同. 21.(本题10分)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.两个守恒及势能零点各1分,共3分小球到B 点时: J 0ω0=(J 0+mR 2)ω ① 1分()22220200212121B R m J mgR J v ++=+ωωω ② 2分 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得: ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 1分 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即:()R mg m C 2212=v , gR C 4=v2分四、 问答题(共10分) 22.(本题5分)答:设刚体上任一点到转轴的距离为r ,刚体转动的角速度为ω,角加速度为β,则由运动学关系有:切向加速度a t =r β 1分 法向加速度a n =r ω2 1分对匀变速转动的刚体来说β=d ω / d t =常量≠0,因此d ω=βd t ≠0,ω 随时间变化,即 ω=ω (t ). 1分所以,刚体上的任意一点,只要它不在转轴上(r ≠0),就一定具有切向加速度和法向加速度.前者大小不变,后者大小随时间改变. 2分(未指出r ≠0的条件可不扣分) 23.(本题5分) 答:(1) 转台、人、哑铃、地球系统的机械能不守恒. 1分 因人收回二臂时要作功,即非保守内力的功不为零,不满足守恒条件. 1分(2) 转台、人、哑铃系统的角动量守恒.因系统受的对竖直轴的外力矩为零. 1分 (3) 哑铃的动量不守恒,因为有外力作用. 1分 哑铃的动能不守恒,因外力对它做功. 1分。

相关文档
最新文档