第三章 微电子封装形式的分类

合集下载

电子行业微电子封装

电子行业微电子封装

电子行业微电子封装概述微电子封装是电子行业中非常重要和关键的一个技术领域。

它涉及到对微电子器件进行封装和封装材料的选择,以及封装工艺的开发和优化。

本文将介绍微电子封装的基本概念、封装材料的种类、常见的封装工艺等内容。

微电子封装的基本概念微电子封装是指将微电子器件封装成完整的电子产品的过程。

在微电子封装过程中,主要涉及到以下几个方面的内容:1.封装材料的选择:封装材料是保护和支持微电子器件的关键元素。

常见的封装材料包括有机胶料、金属材料和陶瓷材料等。

不同的封装材料具有不同的物理和化学性质,因此在选择和使用封装材料时需要根据具体的应用需求进行综合考虑。

2.封装工艺的开发和优化:封装工艺是将微电子器件与封装材料结合在一起的过程。

封装工艺的开发和优化需要考虑到多个方面的因素,包括器件的尺寸、功耗、散热要求、电磁兼容性等。

同时,封装工艺的开发和优化也需要考虑到生产成本、工艺可行性和产品可靠性等方面的因素。

3.封装技术的进步和趋势:随着微电子技术的不断发展,微电子封装技术也在不断进步和演变。

目前,一些热门的封装技术包括三维封装、薄型封装和无线封装等。

这些封装技术的出现,带来了封装密度的提高、功耗的降低和产品体积的缩小等优势。

封装材料的种类封装材料是保护和支持微电子器件的关键元素。

常见的封装材料包括有机胶料、金属材料和陶瓷材料等。

1.有机胶料:有机胶料是一类由有机化合物构成的材料,具有较好的粘接性和可塑性。

有机胶料通常用于封装微电子器件的外壳和连接器件之间的粘接。

常见的有机胶料有环氧树脂、聚酰亚胺和聚醚酰胺等。

2.金属材料:金属材料是广泛应用于微电子封装中的一类材料。

金属材料通常用于制造微电子器件的引脚、封装底座和散热器等部件。

常见的金属材料有铜、铝、镍和钛等。

3.陶瓷材料:陶瓷材料是一类无机非金属材料,具有较好的绝缘性能和热导率。

陶瓷材料通常用于制造微电子器件的封装外壳和散热部件。

常见的陶瓷材料有氧化铝、氮化硅和氮化铝等。

微电子封装的技术ppt

微电子封装的技术ppt

后段封装流程
划片
装片
将制造好的半导体芯片从晶圆上分离出来, 成为独立的个体。
将独立的半导体芯片按照一定的顺序和方式 装入封装壳内。
引线键合
打胶
通过金属引线将半导体芯片的电极与封装壳 的引脚相连,实现电路连接。
用环氧树脂等材料将半导体芯片和引线进行 固定和密封,以保护内部的电路。
封装测试流程
功能测试
信号完整性
高速信号传输过程中需要考虑信号完整性,包括 信号幅度、时间、相位等因素。
时序优化
高速信号传输需要优化时序关系,确保信号传输 的稳定性和可靠性。
高性能化趋势
多核处理器
采用多核处理器技术,提高计 算速度和性能。
GPU加速
采用GPU加速技术,提高图像处 理、人工智能等应用的性能。
存储器集成
将存储器与处理器集成在同一封装 内,提高数据处理速度和性能。
陶瓷材料
具有高导热、高绝缘、高强度和化学稳定性等特点,是微电子封装中应用最广泛 的材料之一,包括氧化铝、氮化硅和碳化硅等。
塑料材料
具有成本低、易加工和重量轻等特点,是微电子封装中应用最广泛的材料之一, 包括环氧树脂、聚酰亚胺和聚醚醚酮等。
最新封装设备
自动测试设备
用于检测芯片的性能和质量,包括ATE(Automatic Test Equipment)和ETE(Electronic Test Equipment)等。
其他领域
医疗设备
微电子封装技术可以实现医疗设备的信号传输和处理,提高医 疗设备的性能和稳定性。
航空航天
微电子封装技术可以实现航空航天设备的信号传输和处理,提高 航空航天的性能和稳定性。
智能家居
微电子封装技术可以实现智能家居设备的信号传输和处理,提高 智能家居的性能和稳定性。

微电子封装技术

微电子封装技术

微电子封装技术第一章绪论1、封装技术发展特点、趋势。

(P8)发展特点:①、微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向引出向面阵列排列发展;②、微电子封装向表面安装式封装(SMP)发展,以适合表面安装技术(SMT);③、从陶瓷封装向塑料封装发展;④、从注重发展IC芯片向先发展后道封装再发展芯片转移。

发展趋势:①、微电子封装具有的I/O引脚数将更多;②、应具有更高的电性能和热性能;③、将更轻、更薄、更小;④、将更便于安装、使用和返修;⑤、可靠性会更高;⑥、性价比会更高,而成本却更低,达到物美价廉。

2、封装的功能(P19)电源分配、信号分配、散热通道、机械支撑和环境保护。

3、封装技术的分级(P12)零级封装:芯片互连级。

一级封装:将一个或多个IC芯片用适宜的材料(金属、陶瓷、塑料或它们的组合)封装起来,同时在芯片的焊区与封装的外引脚间用如上三种芯片互连方法(WB、TAB、FCB)连接起来使之成为有实用功能的电子元器件或组件。

二级封转:组装。

将上一级各种微电子封装产品、各种类型的元器件及板上芯片(COB)一同安装到PWB或其它基板上。

三级封装:由二级组装的各个插板或插卡再共同插装在一个更大的母板上构成的,立体组装。

4、芯片粘接的方法(P12)只将IC芯片固定安装在基板上:Au-Si合金共熔法、Pb-Sn合金片焊接法、导电胶粘接法、有机树脂基粘接法。

芯片互连技术:主要三种是引线键合(WB)、载带自动焊(TAB)和倒装焊(FCB)。

早期有梁式引线结构焊接,另外还有埋置芯片互连技术。

第二章芯片互连技术(超级重点章节)1、芯片互连技术各自特点及应用引线键合:①、热压焊:通过加热加压力是焊区金属发生塑性形变,同时破坏压焊界面上的氧化层使压焊的金属丝和焊区金属接触面的原子间达到原子引力范围,从而使原子间产生引力达到键合。

两金属界面不平整,加热加压可使上下金属相互镶嵌;加热温度高,容易使焊丝和焊区形成氧化层,容易损坏芯片并形成异质金属间化合物影响期间可靠性和寿命;由于这种焊头焊接时金属丝因变形过大而受损,焊点键合拉力小(<0.05N/点),使用越来越少。

微电子封装技术讲义06.07[1]

微电子封装技术讲义06.07[1]
如下图所示:
二、集成电路(IC)
集成电路: 半导体晶片经过平面工艺加工制造成
元件、器件和互连线、并集成在基片表面、 内部或之上的微小型化电路或系统。
通常所说的“芯片”是指封装好的集 成电路。 如果不能生产芯片, 就好像我 们盖房子的水平已经不错了,但是,盖房子 所用的砖瓦还不能生产一样,要命的是, 这个“砖瓦”还很贵。一般来说,“芯片” 成本最能影响电子产品整机的成本。
5、环境保护:半导体器件和电路的许多参数, 以及器件的稳定性、可靠性都直接与半导体表面的状 态密切相关。半导体器件和电路制造过程中的许多工 艺措施也是针对半导体表面问题的。半导体芯片制造 出来后,在没有将其封装之前,始终都处于周围环境 的威胁之中。在使用中,有的环境条件极为恶劣,必 须将芯片严加密封和包封。所以,微电子封装对芯片 的环境保护作用显得尤为重要。
用墨点标注的芯 片(随机和无功 能的芯片)
光刻对 准标记
用墨点标注的芯 片(边缘芯片和 无功能的芯片)
测试芯片
分离芯片 的划片线
边缘芯片 (100mm直径晶 圆片留6mm)
硅圆片的规格
直径小于150MM的圆片,要在晶锭的整个长度上沿 一定的晶向磨出平边,以指示晶向和掺杂类型:直径更 大的圆片,在边缘磨出缺口。
(2) 锯片法:厚晶片的出现使得锯片法的发展成 为划片工艺的首选方法。此工艺使用了两种技术, 并且每种技术开始都用钻石锯片从芯片划线上经过。 对于薄的晶片,锯片降低到晶片的表面划出一条深 入1/3晶片厚度的浅槽。芯片分离的方法仍沿用划片 法中所述的圆柱滚轴加压法。第二种划片的方法是 用锯片将晶片完全锯开成单个芯片。
三、 光刻
光刻:指用光技术在晶圆上刻蚀电路,IC生产 的主要工艺手段。
四、 前道工序

微电子封装技术

微电子封装技术

微电子封装技术1. 引言微电子封装技术是在微电子器件制造过程中不可或缺的环节。

封装技术的主要目的是保护芯片免受机械和环境的损害,并提供与外部环境的良好电学和热学连接。

本文将介绍微电子封装技术的发展历程、常见封装类型以及未来的发展趋势。

2. 微电子封装技术的发展历程微电子封装技术起源于二十世纪五十年代的集成电路行业。

当时,集成电路芯片的封装主要采用插入式封装(TO封装)。

随着集成度的提高和尺寸的缩小,TO封装逐渐无法满足发展需求。

在六十年代末,贴片式封装逐渐兴起,为微电子封装技术带来了发展的机遇。

到了二十一世纪初,球栅阵列(BGA)和无线芯片封装技术成为主流。

近年来,微电子封装技术的发展方向逐渐向着三维封装和追求更高性能、更小尺寸的目标发展。

3. 常见的微电子封装类型3.1 插入式封装插入式封装是最早使用的微电子封装技术之一。

它的主要特点是通过将芯片引线插入封装底座中进行连接。

插入式封装一开始使用的是TO封装,后来发展出了DIP(双列直插式封装)、SIP(单列直插式封装)等多种封装类型。

插入式封装的优点是可维修性高,缺点是不适合高密度封装和小尺寸芯片。

3.2 表面贴装封装表面贴装封装是二十世纪六十年代末期兴起的一种封装技术。

它的主要原理是将芯片连接到封装底座上,再将整个芯片-底座组件焊接到印刷电路板(PCB)上。

表面贴装封装可以实现高密度封装和小尺寸芯片,适用于各种类型的集成电路芯片。

常见的表面贴装封装类型有SOIC、QFN、BGA等。

3.3 三维封装三维封装是近年来兴起的一种封装技术。

它的主要原理是在垂直方向上堆叠多个芯片,通过微弧焊接技术进行连接。

三维封装可以实现更高的集成度和更小的尺寸,同时减少芯片间的延迟。

目前,三维封装技术仍在不断研究和改进中,对于未来微电子封装的发展具有重要意义。

4. 微电子封装技术的未来发展趋势随着科技的不断进步,微电子封装技术也在不断发展。

未来,微电子封装技术的发展趋势可以总结为以下几点:1.高集成度:随着芯片制造工艺的不断进步,集成度将继续提高,将有更多的晶体管集成在一个芯片上,这将对封装技术提出更高的要求。

微电子封装的概述和技术要求

微电子封装的概述和技术要求

微电子封装的概述和技术要求
近年来,各种各样的电子产品已经在工业、农业、国防和日常生活中得到了广泛的应用。

伴随着电子科学技术的蓬勃发展,使得微电子工业发展迅猛,这很大程度上是得益于微电子封装技术的高速发展。

当今全球正迎来以电子计算机为核心的电子信息技术时代,随着它的发展,越来越要求电子产品要具有高性能、多功能、高可靠、小型化、薄型化、便捷化以及将大众化普及所要求的低成等特点。

这样必然要求微电子封装要更好、更轻、更薄、封装密度更高,更好的电性能和热性能,更高的可靠性,更高的性能价格比。

一、微电子封装的概述
1、微电子封装的概念
微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。

在更广的意义上讲,是指将封装体与基板连接固定,装配成完整的系统或电子设备,并确定整个系统综合性能的工程。

2、微电子封装的目的
微电子封装的目的在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使电路具有稳定、正常的功能。

3、微电子封装的技术领域
微电子封装技术涵盖的技术面积广,属于复杂的系统工程。

它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科知识整合的科学,整合了产品的电气特性、热传导特性、可靠性、材料与工艺技术的应用以及成本价格等因素,以达到最佳化目的的工程技术。

在微电子产品功能与层次提升的追求中,开发新型封装技术的重要性不亚于电路的设计与工艺技术,世界各国的电子工业都在全力研究开发,以期得到在该领域的技术领先地位。

PPT微电子封装技术讲义

PPT微电子封装技术讲义
02
金属材料的可靠性较高,能够承 受较高的温度和压力,因此在高 集成度的芯片封装中广泛应用。
高分子材料
高分子材料在微电子封装中主要用于 绝缘、密封和塑形。常见的高分子材 料包括环氧树脂、聚酰亚胺、聚四氟 乙烯等,它们具有良好的绝缘性能和 化学稳定性。
高分子材料成本较低,加工方便,因 此在低端和大规模生产中应用较广。
板级封装
1
板级封装是指将多个芯片或模块安装在同一基板 上,并通过基板与其他器件连接的系统封装类型。
2
板级封装具有制造成本低、易于维修和更换等优 点,因此在消费电子产品中应用广泛。
3
常见的板级封装类型包括双列直插式封装 (DIP)、小外形封装(SOP)、薄型小外形封 装(TSOP)等。
系统级封装
系统级封装是指将多个芯片、模块和其他元器件集成在一个封装体内,形成一个完 整的系统的封装类型。
微电子封装技术的应用领域
通信
高速数字信号处理、 光通信、无线通信等。
计算机
CPU、GPU、内存条 等计算机硬件的封装 和互连。
消费电子
智能手机、平板电脑、 电视等消费电子产品 中的集成电路封装。
汽车电子
汽车控制单元、传感 器、执行器等部件的 封装和互连。
医疗电子
医疗设备中的传感器、 控制器、执行器等部 件的封装和互连。
详细描述
芯片贴装是将微小芯片放置在基板上的过程,通常使用粘合剂将芯片固定在基板 上,以确保芯片与基板之间的电气连接。这一步是封装工艺中的关键环节,因为 芯片的正确贴装直接影响到后续的引线键合和整体封装质量。
引线键合
总结词
引线键合是将芯片的电路与基板的电路连接起来的工艺过程。
详细描述
引线键合是通过物理或化学方法将芯片的电路与基板的电路连接起来的过程。这一步通常使用金属线或带状线, 通过焊接、超声波键合或热压键合等方式将芯片与基板连接起来,以实现电气信号的传输。引线键合的质量直接 影响着封装产品的性能和可靠性。

《微电子封装技术》课件

《微电子封装技术》课件

医疗领域
微电子封装技术为医疗设备提 供高可靠性、小型化的解决方 案,如医学影像设备、诊断仪 器等。
航空航天领域
在航空航天领域,微电子封装 技术用于制造高精度、高稳定
的导航、控制和监测系统。
先进封装技术介绍
3D封装
通过在垂直方向上堆叠 芯片,实现更小体积、 更高性能的封装方式。
晶圆级封装
将整个芯片或多个芯片 直接封装在晶圆上,具 有更高的集成度和更小
BGA封装技术案例
总结词
高集成度、高可靠性
详细描述
BGA(Ball Grid Array)封装技术是一种高集成度的封装形式,通过将芯片粘接在基板上,并在芯片 下方布设球状焊球实现电气连接。BGA封装技术具有高集成度、高可靠性和低成本的特点,广泛应用 于处理器、存储器和高速数字电路等领域。
更轻便的设备需求。
A
B
C
D
更高可靠性
随着设备使用时间的延长,封装技术需要 不断提高产品的可靠性和寿命,以满足长 期使用的需求。
更低成本
随着市场竞争的加剧,封装技术需要不断 降低成本,以提高产品的市场竞争力。
04
封装技术面临的挑战与解 决方案
技术挑战
集成度散热 、信号传输等问题。
关注法规与环保要求
及时了解和遵守各国法规与环保要求,确保 企业的可持续发展。
05
封装技术案例分析
QFN封装技术案例
总结词
小型化、薄型化、低成本
详细描述
QFN(Quad Flat Non-leaded)封装技术是一种常见的无引脚封装形式,具有小型化、薄型化和低成本的特点 。它通过将芯片直接粘接在基板上,实现芯片与基板间的电气连接。QFN封装技术广泛应用于消费电子、通信和 汽车电子等领域。

微电子封装的技术

微电子封装的技术

微电子封装的技术首先,从封装的水平来看,微电子封装技术可以分为芯片级封装(CSP)和模块级封装(MCP)两种。

芯片级封装是将单个芯片封装到粘土封装或球栅阵列(BGA)封装中,以实现零部件的完整性和可操作性。

模块级封装则是将多个芯片和其他器件集成到一个模块中,以实现更高的集成度和功能丰富性。

其次,从封装的类型来看,微电子封装技术包括无封装(bare die)、芯片封装(chip scale package,CSP)、双面封装(flip chip)、三维封装等。

无封装是将芯片直接焊接到基板上,这样可以减少封装的体积和重量;芯片封装则是将芯片封装到封装结构中,以实现电连接和机械保护;双面封装则是将芯片倒置焊接到基板上,以提高电连接密度和散热功效;三维封装则是将多个芯片层叠封装在一起,以实现更高的芯片密度和性能。

最后,从封装的材料来看,微电子封装技术涉及多种封装材料,如基板材料、封装介质、焊料和导电线材料等。

基板材料常用的有有机基板(如FR-4)、无机基板(如陶瓷)和半导体基板(如硅);封装介质常用的有塑料(如环氧树脂)、高分子(如聚酰亚胺)和陶瓷等;焊料常用的有锡铅合金、无铅合金和微合金等;导电线材料常用的有铜、金等。

在微电子封装技术的发展过程中,还涌现出一些新的封装技术。

例如,无线集成电路(RFIC)的封装技术,可以实现高频信号的传输和噪声的抑制,从而提高无线通信系统的性能;3D-IC封装技术,可以将时钟电路、处理器和内存等集成到同一个硅芯片上,实现更高效的数据处理和操作;新型材料的应用,如碳纳米管和石墨烯等材料的应用,可以改善芯片的电性能和热性能,提高封装的可靠性和散热效果。

综上所述,微电子封装技术是一门涉及多个方面的技术,包括封装的水平、封装的类型和封装的材料等。

随着微电子器件的不断发展和需求的增加,微电子封装技术也在不断创新和改进,以适应不断变化的技术需求。

第三章 微电子封装流程.

第三章 微电子封装流程.

①滴涂成型法
用滴管把液体树脂滴涂到键合后的芯片上,经加热 后固化成型,又称软封装。
滴涂法工艺操作简单,成本低,不需要专用的封装设备 和模具,适用于多品种小批量生产,但封装的可靠性差, 封装外形尺寸不一致,不适合大批量生产,其工艺流程是
②浸渍涂敷法成型 把元、器件待封装部位浸渍到树脂溶液中,使树脂包 封在其表面,经加热固化成型。
芯片
金属化布线
粘接剂
芯片
黏结方法:
1.共晶黏结法。 2.玻璃胶黏结法。 3.高分子胶黏结法。 4.焊接黏结法 。
共晶黏结法。
原理:利用金-硅和金在3wt%金。363˚C时产生的共晶(Eutectic)反应特性进行IC晶
片的粘结固定。
实现步骤:1.将IC晶片置于已镀有金膜的基板晶片座上,加热到425˚C,然后
2. 基板的晶片座上植入预型片(Perform).厚度约25mm,面积约为晶片的三分之一 的金-2wt%硅合金薄片。用于弥补基板孔洞平整度不佳造成的不完全结合。用于 大面积晶片的结合。 3. 由于预型片成分并非金硅完全互溶的合金,硅团块仍会有氧化现象,所以还必须 有交互摩擦的动作,还必须在氮气环境下反应。 4.预型片不能过量使用,否则会造成材料溢流,降低可靠度 5.预型片也能用不易氧化的纯金片。不过结合温度较高。
优点:高分子胶中可填入银等金属以提高热传导性;胶材可以制成固体膜状再热压结合;成
本低又能配合自动化生产。 缺点:热稳定性较差 ,易导致有机成分泄漏而影响封装可靠度
焊接黏结法。
另一种利用合金反应进行晶片粘结的方法,也在热氮气环境中进行
常见的焊料:金-硅;金-锡;金-锗等硬性合金 与 铅-锡;铅-银-铟等软质合金
Cure
封模
Molding

微电子封装

微电子封装

晶圆:由普通硅砂熔炼提纯拉制成硅柱后切成的单晶硅薄片微电子封装技术特点:1:向高密度及高I/O引脚数发展,引脚由四边引出趋向面阵引出发展2:向表面组装示封装(SMP)发展,以适应表面贴装(SMT)技术及生产要求3:向高频率及大功率封装发展4:从陶瓷封装向塑料封装发展5:从单芯片封装(SCP)向多芯片封装(MCP)发展6:从只注重发展IC芯片到先发展封装技术再发展IC芯片技术技术微电子封装的定义:是指用某种材料座位外壳安防、固定和密封半导体继承电路芯片,并用导体做引脚将芯片上的接点引出外壳狭义的电子封装技术定义:是指利用膜技术及微细连接技术,将半导体元器件及其他构成要素在框架或基板上布置、固定及连接,引出接线端子,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。

(最基本的)广义的电子封装技术定义:是指将半导体和电子元器件所具有的电子的、物理的功能,转变为能适用于设备或系统的形式,并使之为人类社会服务的科学与技术。

(功能性的)微电子封装的功能:1:提供机械支撑及环境保护;2:提供电流通路;3:提供信号的输入和输出通路;4:提供热通路。

微电子封装的要点:1:电源分配;2:信号分配;3:机械支撑;4:散热通道;5:环境保护。

零级封装:是指半导体基片上的集成电路元件、器件、线路;更确切地应该叫未加封装的裸芯片。

一级封装:是指采用合适的材料(金属、陶瓷或塑料)将一个或多个集成电路芯片及它们的组合进行封装,同时在芯片的焊区与封装的外引脚间用引线键合(wire bonding,WB)、载带自动焊(tape automated bonding,TAB)、倒装片键合(flip chip bonding,FCB)三种互联技术连接,使其成为具有实际功能的电子元器件或组件。

二级封装技术:实际上是一种多芯片和多元件的组装,即各种以及封装后的集成电路芯片、微电子产品、以及何种类型元器件一同安装在印刷电路板或其他基板上。

什么是电子元件的封装类型如何选择适当的封装类型

什么是电子元件的封装类型如何选择适当的封装类型

什么是电子元件的封装类型如何选择适当的封装类型电子元件是现代电子技术中不可或缺的基本组成部分,封装类型的选择对于电子设备的性能和可靠性具有重要影响。

本文将介绍电子元件的封装类型和选择适当封装类型的方法。

一、电子元件的封装类型1. DIP封装(Dual in-line package)DIP封装是一种传统的电子元件封装类型,常见于集成电路、二极管等元件。

DIP封装的特点是引脚通过直线排列,两侧有一定间距,方便手动插入和焊接。

然而,DIP封装的引脚数量有限,不适用于高密度、大功率的应用场景。

2. SOP封装(Small-outline package)SOP封装是一种小型化的封装类型,广泛应用于各种集成电路。

SOP封装的特点是引脚数量较多,密集排列,适用于高密度电路板的布局设计。

此外,SOP封装还具有良好的热散性能和良好的焊接可靠性。

3. BGA封装(Ball grid array)BGA封装是一种先进的电子元件封装类型,常见于微处理器、芯片组等高性能产品。

BGA封装的特点是引脚以球形焊珠的形式存在于封装底部,通过焊珠与电路板焊接,具有较高的引脚密度和可靠性。

BGA封装还可以提供较好的散热性能,适用于高功率应用。

4. QFN封装(Quad flat no-lead)QFN封装是一种无引脚的封装类型,适用于高密度和小尺寸的电子元件。

QFN封装的特点是引脚位于封装底部,通过焊盘与电路板连接。

QFN封装具有较好的散热性能和较小的封装占地面积,常用于集成电路和射频模块等应用。

二、选择适当的封装类型选择适当的封装类型需要综合考虑以下几个方面:1. 环境要求根据电子元件所处的环境需求,选择具备相应性能的封装类型。

如在高温环境下工作的元件,应选择具有良好热散性能的封装类型,如BGA封装。

2. 功能需求根据电子元件的功能需求,选择适当的封装类型。

如高密度、小尺寸的元件可选择QFN封装,而大功率应用可选择具有良好散热性能的封装类型。

第三章 微电子封装形式的分类

第三章 微电子封装形式的分类

晶体管封装时期(1950—1960年)
1948年,发明晶体管 1957年,出现适于晶体管连接的TO(圆柱外壳封 装)型封装方式 1958年,发明平面晶体管制造技术 1958年,第一个集成电路(IC) 1958年,首次实现晶体管树脂塑封 1960年,杜邦公司开发出Ag-Pd系厚膜浆料 20世纪60年代,厚膜浆料达到实用化 20世纪70年代以后,厚膜混合IC获得长足发展。

高密度封装时期(20世纪90年代初—)


1997年,日本率先将CSP产品投放于市场。 CSP是实现高 密度、微小型化的封装,是21世纪初高密度封装技术发展的 主流。 1997年,不含溴、不含锑的绿色型PCB基材开始工业化, 并投放市场。 半导体IC的金属互连在整个IC芯片中所占的面积越来越大, 金属互连问题成为了此后IC发展的关键 1998年,Motorola,IBM,六层铜互连工艺新发明 1999-2000年,日本、美国、中国台湾,环氧/CLAY纳米 级复合材料在覆铜板中应用成果的专利申请,纳米技术在封 装基板上的应用
平行缝焊的焊接环形状
平行缝焊是一种可靠性较高的封盖方式,盖板和焊 接环等平行封焊材料对封装中气密性以及气密性成品 率有重要影响。 因此,高质量的平行缝焊盖板必须 具备以下特性:
(a)盖板的热膨胀系数要与底座焊接环相匹配、与瓷体相 近; (b)焊接熔点温度要尽可能低; (c)耐腐蚀性能优良; (d)尺寸误差小; (e)平整、光洁、毛刺小、玷污小。
陶瓷芯片封装ceramicchipscalepackage33按封装的外形尺寸结构分类所谓按外形主要是根据封装接线端子的排布方式对其进行分类可分引脚插入型表面贴装型载带自动焊名称外形材质引脚节距及并布置等缩写送带定位键合自动进行效率高细节距80100便于小型薄型化散热性能较差表31moslsi封装的种类和特征p表示塑料c表示陶瓷moslsi封装的种类和特征表中p表示塑料c表示陶瓷类型材质引脚节距及并布置等sip单列直插式254mm100mil单方向引脚dip双列直插式254mm100milzipz型引脚直插式封装单方向引脚254mm100mildip收缩双列直插式封装1778mm70milskdip窄型双列直插式封装254mm宽度方向引脚节距为dip的12pga针栅阵列插入式封装254mm100mil类型材质引脚节距及布置等sop小外形塑料127mm50mil2方向引脚msp微型四方127mm50mil1016mm40mil127mm50milqfp四边引线扁平封装塑封10mm08mm065mm极限为033mm4方向引脚fpg玻璃陶瓷扁平封装127mm50mil0762mm30mil方向引脚4方向引脚类型材质引脚节距及布置等lccc无引线陶瓷封装芯片载体127mm50mil1016mm40mil0762mm30milplcc塑封无引线127mm50milj形状弯曲4方向引脚soj小外形j引线塑料封装127mm50milj形状弯曲2方向引脚bga锡球中心距1008mm小型化适用于多引脚高频芯片csp超小型封装面积与芯片面积之比小于12锡球中心距100806505mmsip

常用电子元器件的封装形式

常用电子元器件的封装形式

常用电子元器件的封装形式1.DIP(直插式)封装:DIP封装是电子元器件的一种常见封装形式,其引脚以直插式连接到电路板上。

它的主要特点是易于手工焊接和更换,适用于大多数应用场景。

但是由于引脚间距相对较大,封装体积较大,无法满足小型化需求。

2.SOP(小外延封装)封装:SOP封装是一种较小的表面贴装封装,其引脚呈直线排列并焊接在电路板的表面上。

SOP封装具有容易自动化生产、体积小、引脚数量多等特点,适用于中等密度的电子元器件。

3.QFP(方形浸焊封装)封装:QFP封装是一种表面贴装封装,引脚排列呈方形形状,并通过焊点浸焊在电路板表面上。

QFP封装具有高密度、小尺寸、引脚数量多等特点,适用于高性能、小型化的电子设备。

4.BGA(球栅阵列)封装:BGA封装是一种高密度的表面贴装封装,引脚排列成网格状,并通过焊球连接到电路板的焊盘上。

BGA封装具有高密度、小尺寸、良好的散热性能等特点,适用于高性能计算机芯片、微处理器等。

5.SMD(表面贴装)封装:SMD封装是一种广泛应用于电子元器件的表面贴装封装。

其特点是体积小、重量轻、引脚密度高,适用于大规模自动化生产。

常见的SMD封装包括0805、1206、SOT-23等。

6.TO(金属外壳)封装:TO封装是一种金属外壳的电子元器件封装形式。

其主要特点是能够提供良好的散热性能和电磁屏蔽效果,适用于功率较大、需要散热的元器件。

7.COB(芯片上下接插封装)封装:COB封装是一种将芯片直接粘贴到电路板上,并通过金线进行引脚连接的封装形式。

COB封装具有体积小、重量轻、引脚数量多等特点,适用于小型化、高集成度的电子设备。

8.QFN(无引脚封装)封装:QFN封装是一种无引脚的表面贴装封装,引脚位于封装的底部。

QFN封装具有体积小、引脚密度高、良好的散热性能等特点,适用于小型、高性能的电子产品。

9.LCC(陶瓷外壳)封装:LCC封装是一种使用陶瓷材料制成的封装形式,具有较高的耐高温性和良好的散热性能。

微电子封装考纲-打死不改版2.0

微电子封装考纲-打死不改版2.0

第一章绪论1、微电子封装技术的发展特点是什么?发展趋势怎样?●特点:(1)微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向面阵排列发展。

(2)微电子封装向表面安装式封装发展,以适合表面安装技术。

(3)从陶瓷封装向塑料封装发展。

(4)从注重发展IC芯片向先发展后道封装再发展芯片转移。

●发展趋势:(1)微电子封装具有的I/O引脚数将更多。

(2)微电子封装应具有更高的电性能和热性能。

(3)微电子封装将更轻、更薄、更小。

(4)微电子封装将更便于安装、使用和返修。

(5)微电子封装的可靠性会更高。

(6)微电子封装的性能价格比会更高,而成本却更低,达到物美价廉。

2、微电子封装可以分为哪三个层次(级别)?并简单说明其内容。

(1)一级微电子封装技术:用封装外壳将芯片封装成单芯片组件(SCM)和多芯片组件(MCM)。

(2)二级微电子封装技术:一级封装和其他组件一同装到印刷电路板(PWB)或其他基板上。

(3)三级微电子封装技术:将二级封装插装到母板上。

3、微电子封装有哪些功能?(1)电源分配(2)信号分配(3)散热通道(4)机械支撑(5)环境保护4、芯片粘接方法分为哪几类?粘接的介质有何不同(成分)?(1)Au-Si合金共熔法(共晶型)成分:芯片背面淀积Au层,基板上也要有金属化层(一般为Au或Pd-Ag)。

(2)Pb-Sn合金片焊接法(点锡型)成分:芯片背面用Au层或Ni层均可,基板导体除Au、Pd-Ag外,也可用Cu(3)导电胶粘接法(点浆型)成分:导电胶(含银而具有良好导热、导电性能的环氧树脂。

)(4)有机树脂基粘接法(点胶型)成分:有机树脂基5、简述共晶型芯片固晶机(粘片机)主要组成部分及其功能。

主要组成部分及功能:(1)机械系统:原料供给、取晶固晶(包括:焊头机构、送料机构、晶圆供送机构、点胶/蘸胶机构等)(2)电控系统:运动控制、温度控制、开关动作(包括:运控部分、温控部分、检测部分等)(3)机器视觉系统:位置检测(用于定位控制)、缺陷检测(包括:图像获取、光源控制、图像识别等)6、和共晶型相比,点浆型芯片固晶机(粘片机)在各组成部分及其功能的主要不同在哪里?点浆工序,进烤箱7、名词解释:取晶、固晶、焊线、塑封、冲筋、点胶取晶:以化学腐蚀的方法将晶粒从封装中取出,以利下一步拍照评估,层次去除或其他分析的进行。

第3章微电子的封装技术

第3章微电子的封装技术

第3章微电子的封装技术
微电子的封装技术是集成电路行业中重要的技术之一,它是将微电子器件封装在一定的结构或材料形式中,使微电子器件具有完整的功能和稳定的性能的技术。

封装技术有助于提高微电子器件的可靠性和功能,并且可以实现对器件的封装封装,封装和测试,以及开发更先进的封装技术,有助于改善元器件的可靠性和功能。

封装技术包括单层封装技术、多层封装技术、全封装技术、焊接封装技术等。

单层封装技术是根据微电子器件的物理结构和电气特性,在其表面涂布一层化学稳定的涂层,使其功能更加稳定可靠的技术。

多层封装技术是根据微电子器件的结构和电气特性,在其表面使用多层封装技术,使其功能更加稳定可靠。

全封装技术是将微电子器件封装于一种全封装材料中,以保护微电子器件免受污染和外界环境的攻击,从而保证其功能的技术。

焊接封装技术是将微电子器件封装在一定的结构中,以保护微电子器件免受环境中的外界物质影响,以及改善器件的可靠性和可靠性的技术。

微电子三级封装的概念

微电子三级封装的概念

1 前言电路产业已成为国民经济发展的关键,而、制造和是发展的三大产业之柱。

这已是各级领导和业界的共识。

微电子封装不但直接影响着本身的电性能、机械性能、光性能和热性能,影响其可靠性和成本,还在很大程度上决定着电子整机系统的小型化、多功能化、可靠性和成本,微电子封装越来越受到人们的普遍重视,在国际和国内正处于蓬勃发展阶段。

本文试图综述自二十世纪九十年代以来迅速发展的新型微电子封装技术,包括焊球阵列封装(BGA)、芯片尺寸封装(CSP)、圆片级封装(WLP)、三维封装(3D)和系统封装(SIP)等项技术。

介绍它们的发展状况和技术特点。

同时,叙述了微电子三级封装的概念。

并对发展我国新型微电子封装技术提出了一些思索和建议。

本文试图综述自二十世纪九十年代以来迅速发展的新型微电子封装技术,包括焊球阵列封装(BGA)、芯片尺寸封装(CSP)、圆片级封装(WLP)、三维封装(3D)和系统封装(SIP)等项技术。

介绍它们的发展状况和技术特点。

同时,叙述了微电子三级封装的概念。

并对发展我国新型微电子封装技术提出了一些思索和建议。

2 微电子三级封装微电子封装,首先我们要叙述一下三级封装的概念。

一般说来,微电子封装分为三级。

所谓一级封装就是在半导体圆片裂片以后,将一个或多个集成用适宜的封装形式封装起来,并使芯片的焊区与封装的外引脚用引线键合(WB)、载带自动键合(TAB)和倒装芯片键合(FCB)连接起来,使之成为有实用功能的或组件。

一级封装包括单芯片组件(SCM)和多芯片组件(MCM)两大类。

三级封装就是将二级封装的产品通过选层、互连插座或柔性与母板连结起来,形成三维立体封装,构成完整的整机系统,这一级封装应包括、迭层组装和柔性电路板等相关材料、设计和组装技术。

这一级也称系统级封装。

所谓微电子封装是个整体的概念,包括了从一极封装到三极封装的全部技术内容。

我们应该把现有的认识纳入国际微电子封装的轨道,这样既有利于我国微电子封装界与国外的技术交流,也有利于我国微电子封装自身的发展。

《微电子封装技术》课件

《微电子封装技术》课件

航空航天设备封装案例
航空航天设备封装案例:航空航天领域对设备的可靠性和稳定性要求极高,而微电子封装技术能够满 足这些要求。例如,在飞机发动机控制系统中、卫星导航系统中等,微电子封装技术发挥着重要作用 。它能够提高设备的可靠性和稳定性,降低成本,并促进小型化、集成化的发展趋势。
具体而言,在飞机发动机控制系统中,微电子封装技术能够实现高精度和高可靠性的控制,从而提高 发动机的性能和安全性。在卫星导航系统中,微电子封装技术能够提高定位精度和信号质量,从而提 高导航的准确性和可靠性。
医疗电子设备封装案例
医疗电子设备封装案例:医疗电子设备对精度和可靠性要求极高,而微电子封装技术能够满足这些要求。例如,在医疗影像 设备、心脏起搏器、血糖监测仪等中,微电子封装技术发挥着重要作用。它能够提高设备的性能和可靠性,降低成本,并促 进小型化、集成化的发展趋势。
具体而言,在医疗影像设备中,微电子封装技术能够提高图像质量和设备性能,从而提高诊断的准确性和可靠性。在心脏起 搏器中,微电子封装技术能够实现高精度和高可靠性的起搏控制,从而提高患者的生命安全和生活质量。在血糖监测仪中, 微电子封装技术能够实现快速、准确的血糖监测,从而帮助患者及时了解自身血糖状况并进行有效控制。
封装测试பைடு நூலகம்
01
封装测试是确保微电子封装产品性能和质量的 重要环节。
03
随着技术的不断发展,新型测试方法也在不断涌现 ,如X射线检测、超声检测等。
02
测试内容包括气密性检测、外观检测、电性能 测试等,以确保产品符合设计要求和性能标准

04
封装测试的发展趋势是高精度、高效率、自动化, 以提高测试准确性和降低成本。

柔性封装技术
03

微电子行业的封装技术资料

微电子行业的封装技术资料

微电子行业的封装技术资料封装技术是微电子行业中的关键环节,它涉及到将微电子器件封装成集成电路,保护其免受外界环境的影响,并提供良好的导电、传热和机械保护等功能。

本文将对微电子封装技术进行详细介绍。

一、封装技术的背景与现状随着微电子器件不断发展,其封装方式也在不断演变。

最初的微电子封装是使用插件式封装,而现在主要采用集成电路封装。

这种封装方式可在小型、轻薄、可靠、高性能的芯片上提供功能强大的封装。

二、封装技术的分类与特点封装技术可根据封装材料和封装方式进行分类。

常见的封装材料包括塑料封装、金属封装和陶瓷封装等。

封装方式有无引脚封装和多引脚封装等。

不同的封装材料和封装方式在导热性能、散热效果、电气性能等方面有所不同。

三、封装技术中的关键环节封装技术中的关键环节包括电路设计、晶圆制备、封装材料选择、封装工艺等。

电路设计要求合理布局,兼顾信号传输和供电等需要;晶圆制备需要严格的工艺流程,确保芯片的质量;封装材料的选择要考虑导热性能、尺寸匹配等因素;封装工艺则涉及到焊接、封装注意事项描写、封装尺寸控制等多个步骤,要保证每个步骤都能准确无误地完成。

四、封装技术的发展趋势随着技术的发展,封装技术也在不断创新。

目前,微电子行业封装技术的发展趋势主要表现在以下几个方面:1. 三维封装技术的应用将进一步提高芯片的集成度和性能。

2. 基于微纳尺度材料和技术的封装将提供更好的导热性和电气性能。

3. 模块化封装技术将使芯片的维修更加方便。

4. 绿色环保封装技术将成为未来发展的重要趋势。

五、封装技术的挑战与前景尽管封装技术在微电子行业中发挥着至关重要的作用,但仍面临一些挑战。

如封装材料的热膨胀系数不匹配、封装工艺的复杂性、芯片密度过高导致的散热问题等。

未来,随着科技的不断进步,这些挑战将得到有效解决,封装技术将进一步提升,为微电子行业带来更多的发展机遇。

总结:微电子行业的封装技术是一项复杂而关键的技术,它直接影响着微电子器件的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5. 传统金属封装材料
金属材料的选择与金属封装的质量和可靠性有 直接的关系,常用的传统金属封装材料有: Al 、 Cu 、 Mo 、 W 、 钢 以 及 CuW 、 Ni-Fe 、 CuMo 和 CuW 合金等。它们都有很好的导热能力,并且具 有比硅材料高的热膨胀系数。
6. 新型金属封装材料
近年来新开发出很多种金属基复合材料,它们 都是以Mg、Al、Cu、Ti等金属或金属间化合物为 基体,以颗粒、晶须、短纤维或连续纤维为增强 体的一种复合材料。 与传统的金属封装材料相比,主要有以下优点:
(2)激光封焊
在多层布线的设定位置上,银焊料作为封焊金属基 体的焊接环,将金属外壳扣在焊接环上,使二者处于 紧密接触状态;在激光束能量的作用下,焊接环和金 属外壳同时熔化,冷却后完成的气密性封接方法。 该方法属于气密性封接技术,与上述的平行缝焊 封接技术相比,可以用于大型的MCM以及外形复杂的 MCM,并且能保证高可靠性。

元器件插装时期(1960—1975年)





1961年,氧化铝流延片10叠层共烧技术,金属化通孔 工艺法的多层板制造工艺技术 1962年,薄膜晶体管 1963年,扁平封装问世 1969年,陶瓷扁平封装 60年代,环氧玻璃布基覆铜箔层压板,环氧树脂多层基 板。热塑性薄膜底基材料 60年代初,平面矩阵球形焊料端子、芯片用模注树脂封 装 60年代后半期,氧化铝多层基板 70年代中期,< 1000℃以下的玻璃陶瓷基板
2. 金属封装的工艺流程
典型的金属封装工艺流程
工艺注意问题:
(1)在装配前,需进行烘焙,目的将金属中的气泡或 者湿气驱赶出来,减小与腐蚀相关的实效; (2)在装配过程中,温度不能始终维持高温,而是要 按照一定的降温曲线配合各个阶段的工艺,减小后工 艺步骤对先前工艺的影响; (3)封装盖板和壳体的封接面上不可以出现任何空隙 或没有精确对准,会引起器件的密封问题; (4)为减少水汽等有害气体成分,封盖工艺一般在氮 气等干燥保护气氛下进行。
由于金属封装具有良好的散热能力和电磁屏蔽能 力,因而常被用作高可靠要求和定制的专用气密封 装。 目前,主要应用于模件、电路和器件中,包括:
(1)光电器件封装:带光窗型、带透镜型、带光纤型 (2)微波模块和混合电路封装:双列直插型、扁平型 (3)特殊器件封装:矩阵类、多层多腔型、无磁材料型 (4)分立器件封装: (5)专用集成电路封装:
晶体管封装时期(1950—1960年)
1948年,发明晶体管 1957年,出现适于晶体管连接的TO(圆柱外壳封 装)型封装方式 1958年,发明平面晶体管制造技术 1958年,第一个集成电路(IC) 1958年,首次实现晶体管树脂塑封 1960年,杜邦公司开发出Ag-Pd系厚膜浆料 20世纪60年代,厚膜浆料达到实用化 20世纪70年代以后,厚膜混合IC获得长足发展。
封盖工艺:
封盖工艺是金属封装中比较特殊的一道工艺,目前 常见的封盖工艺有:平行缝焊、激光封焊和低温焊料 焊接等。 (1)平行缝焊 平行缝焊封接法是指用两个端部倾角45°角的圆 柱形电极,以一定压力同时压在金属盖板和金属焊接 环上进行电气熔焊的气密性封接方法。该方法不宜采 用形状复杂的外形。
平行缝焊法
表面贴装(SMT)时期(1975年一)


1980年开始,针栅阵列封装PGA问世 1991年,塑料BGA,BGA进入真正的实用化阶段。 国外专家,一般将以QFP、TSOP为代表的周边引线型封 装的出现看作为 SMT的“第一次革命”,而把20世纪90 年 代 中 期 真 正 大 力 普 及 起 来 的 以 BGA 、 F B G A 、 μ BGA(CSP) 为代表的平面栅阵布置引线型封装看作为 SMT的“第二次革命” 1984年,日本NEC公司,引线框架式连接的HIC 1985年,富士通,42层超多层PCB。62层玻璃陶瓷低温共 烧多层基板(LTCC) 1986年,接触型IC卡问世
激光封焊技术
(3)低温焊料焊接
低温焊料焊接是指通过钎焊将金属外壳固定在多层 布线板上,将IC芯片与外气隔绝。 为了利用钎焊实现气密性封接的目的,要求钎焊与 被钎焊材料之间具有良好的浸润性。通常采用 Sn63/Pb37(锡铂)共晶焊料。
3. 金属封装特点
金属封装精度高,尺寸严格;金属零件以冲、 挤为主,便于大量生产;价格低廉,性能优良; 芯片放置容易,应用灵活,可靠性高,可以得到 大体积的空腔。 金属封装形式多样、加工灵活,可以和某些部 件 ( 如混合集成的 A/D 或 D/A 转换器 ) 融为一体,既 适合低I/O数的单芯片和多芯片的封装(如振荡器、 放大器、混频器、鉴频鉴相器、 DC/DC 变换器、 滤波器、继电器等产品 ) ,也适合 MEMS 、射频、 微波、光电、声表面波和大功率器件的封装。
平行缝焊的焊接环形状
平行缝焊是一种可靠性较高的封盖方式,盖板和焊 接环等平行封焊材料对封装中气密性以及气密性成品 率有重要影响。 因此,高质量的平行缝焊盖板必须 具备以下特性:
(a)盖板的热膨胀系数要与底座焊接环相匹配、与瓷体相 近; (b)焊接熔点温度要尽可能低; (c)耐腐蚀性能优良; (d)尺寸误差小; (e)平整、光洁、毛刺小、玷污小。
随着电子封装向高性能、低成本、低密度和集成化
方向发展,对金属封装材料的要求越来越高,金属基
复合材料将发挥着越来越重要的作用,因此,金属基
复合材料的研究和使用将是今后的重点和热点之一。
3.2.2 塑料封装(P) 1. 塑料封装的概念和特点
塑料封装是指采用环氧树脂、塑料、硅树脂等 有机树脂材料覆盖在半导体器件或电路芯片上, 经过加热固化完成封装,使其与外界隔绝。一般 认为它是非气密性封装。 目前,塑料封装产品约占 IC 封装市场的 95%, 并且可靠性不断提高,在3GHz以下的工程中大量 使用。 塑料封装的主要特点:工艺简单、成本低廉、 便于自动化大生产。
3.1概论 3.2按封装材料、封装器件、封装结构分类 3.2.1金属封装(M) 3.2.2塑料封装(P) 3.2.3陶瓷封装 (C) 3.3按封装的外形、尺寸、结构分类
3.1概论
裸芯片与布线板实现互连之后,需要通过封装技术 将其密封在塑料、玻璃、金属或陶瓷外壳中,以确保 芯片能在各种恶劣条件下正常工作。 如果不经过封装,由于受空气中湿气和氧气的影响 ,芯片或电路元件表面及布线板表面的导体图形和电 极等,会随时受到氧化和腐蚀。因此,封装技术是十 分重要的技术环节。 当第一只半导体晶体管出现时,同时也就开始了封 装技术发展。
表面贴装(SMT)时期(1975年一)


70年代中期,适应SMT要求,PWB开发实质进展 柔性.刚性基板 厚膜化学镀技术、通孔电镀技术 18微米铜箔技术 盲孔及层间互连孔金属化技术 1975年,塑料封装的 QFP 1978年, “J”型引线式的表面贴装的 PLCC(塑料无引线 芯片载体) 1980年,富士通,莫来石型基板。比氮化铝基板有更低的 介电常数特性 1982年,实用化的SiC型陶瓷基板,玻璃陶瓷基板
4. 金属封装材料要求
为实现对芯片支撑、电气连接、热耗散、机械 和环境的保护,金属封装材料应满足以下要求:
(1)与芯片或陶瓷基板的热膨胀系数匹配,减小或避免热应 力的产生; (2)非常好的导热性,提供热耗散; (3)非常好的导电性,减少传输延迟; (4)良好的EMI/RFI(电磁干扰/射频干扰)屏蔽能力; (5)较低的密度,足够的强度和硬度,良好的加工或成型性 能; (6)可镀覆性、可焊性和耐腐蚀性,易实现与芯片、盖板、 印刷板的可靠结合、密封和环境的保护; (7)较低的成本。
元器件插装时期(1960—1975年)

70年代,连续自动化卷轮(盘)式操作的新工艺 聚酰亚胺薄膜带作载体的 带载式 IC封装工艺 塑料封装的双列直插式封装(DIP) 扁平形态塑料封装引线型DIP PWB(特别是多层板)用材料和生产技术的研发, 特别是积层粘结方法,半固化法(粘结片)的改良, 覆膜电镀等方面 SMT技术应用于TV高频头、VTR等 混合 IC热印头
(1)可以通过改变增强体种类、体积分数、排列方式或改变 基体合金,来改变材料的热物理性能,满足封装热耗散的 要求,甚至简化封装的设计; (2)材料制造灵活,成本不断降低,特别是可直接成型,避 免了昂贵的加工费用和加工造成的材料损耗; (3)特别研制的低密度、高性能金属基复合材料非常适用于 航空航天。
典型的塑料封装工艺流程
3. 塑料封装的工艺流程
塑料封装若无特别的说明,都是指转移成型封 装。具体的工艺流程包括: 硅片减薄、切片、芯片贴装、引线键合、转移成 型、后固化、去飞边毛刺、上焊锡、切筋打弯、 打码等多道工序。 有时也将工序分成前后道两部分,塑料包封前 的工艺步骤称为装配或前道工序;塑料包封后的 工艺步骤称为后道工序。
器件和封装发展进展
电子管安装,1900—1950年


ቤተ መጻሕፍቲ ባይዱ

1900年,发明真空三极管,世界开始迈进电子时代 1918年,各种无线电设备开始普遍采用电子管 1920年,采用酚醛层压板作为连线基板 1936年,提出“印制电路”的概念 1942年,发明最早实用化的双面 PCB 1947年,美国国家标准局以PWB应用于电子管电路为 前提,就材料、布线方法、搭载部件等提出包括26项的 提案,涉及到涂布法、喷涂法、化学沉积法、模压法、 粉末烧结法等6种工艺,其中不少已包含当今PWB技术 的雏形
2. 塑料封装材料
标 准 的 塑 料 封 装 材 料 主 要 有 : 70% 的 填 充 料 (主要是二氧化硅)、 18%环氧树脂、固化剂、耦 合剂、脱模剂、阻燃剂和着色剂等。 上述各种配料成分应用与哪些因素有关: (1)取决于应用中的热膨胀系数、介电常数、密封 性、吸湿性、强韧性等参数的要求 (2)提高强度、降低价格等因素。

高密度封装时期(20世纪90年代初—)
相关文档
最新文档