八年级上册数学全等三角形证明辅助线分析

合集下载

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

人教版八年级上册第十二章全等三角形经典题型辅助线作法

人教版八年级上册第十二章全等三角形经典题型辅助线作法

全等三角形常见辅助线作法【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.【例2】、如图,已知BC > AB ,AD=DC 。

BD 平分∠ABC 。

求证:∠A+∠C=180°.一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D . 求证:2BD CD =证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60°∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°DCBADCB EA【例4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDABE =DE∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

苏科版八年级数学上册1.2《全等三角形》中常见辅助线

苏科版八年级数学上册1.2《全等三角形》中常见辅助线

全等三角形⑴----常见辅助线一.已知中点D1.线段倍长(或作平行线)A模型:如图,已知OA=OC,再倍长DO,使OB=OD,则△AOB≌△COD(SAS) C⑴.如图,在△ABC中,D是BC边的中点. BB A①.求证:AB+AC>2AD;②.若AB=5,AC=7,AD的取值范围为.CD1⑵如图,CE是△ACD中线,点B在AD的延长线上,BD=AC,∠ACD=∠ADC,求证:CE= BC.2CA BDEE⑶.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.DAB CME⑷.如图,四边形BEFC中,D为BC中点,∠EDF=90 ,求证:BE+FC>EF.FB CD2.作垂线(知中点作垂线;证中点作垂线)C模型:如图,OA=OB,BC⊥CD,AD⊥CD,则△AOD ≌△BOC(AAS) A⑴.如图,△ABC 中,D 为 BC 的中点.BO①在图中作出 CM⊥AD,BN⊥AD,垂足分别为点 M,N; D②⑵求证:DM=DN; ③若 AD=3,求 AM+AN 的值.A DBC⑵.如图,CD 为△ABC 的角平分线,E,F 分别在 CD,BD 上,且 DA=DF,EF=AC.求证:EF ∥BC.C EBADFE⑶.如图,BC⊥CE,BC=CE,AC⊥CD,AC=CD,DE 交 AC 的延长线于点 M,M 是 DE 的中点. ①求证:AB⊥AC;②若 AB=8,求 CM 的长.BAC MD⑷.如图,已知 A(-2,1),C(0,2),且 C 为线段 AB 的中点,求点 B 的坐标.y BCAxO3.证中点【方法技巧】证线段的中点,常过线段的端点构造一组平行线,或过线段的两端点向过中点的线段作垂线,根据AAS或ASA构造全等三角形,证题关键往往是证明一组对应边相等.【作平行证中点】⑴.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC.求证:D是AC的中点.ADCBE⑵.如图,AB⊥AE,AB=AE,AC⊥AD,AC=AD,AH⊥DE于点H,延长AH交BC于点M.求证:M是BC的中点.ADHCB ME【作垂线证中点】⑶.如图,AB⊥AC,AB=AC,D是AB上一点,CE⊥CD,CE=CD,连接BE交AC于点F,求证:F是BE的中点.EAFDB C⑷如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC于点F,AE=BD.①求证:C是DE的中点;②求证:AB=2CF. ABFD E二、线段的和差处理1.等线段代换法C⑴如图,CD为△ABC的中线,M,N分别为直线CD上的点,且BM∥AN.①求证:AN=BM;②求证:CM+CN=2CDMA BDN⑵如图,△ABC中,∠BAC=90︒,AB=AC,AN是过点A的一条直线,且BM⊥AN于点M,CN⊥AN于点N.①求证:AM=CN;②求证:MN=BM-CN.AMCBN⑶如图,在△ABC中,AD⊥BC于D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.①求证:BD=CD; A②若AF=BC,求证:AC-CE=EF.E FB CD⑷.如图,△ABC中,AC=BC,∠ACB=90︒,D为BC延长线上一点,BF⊥AD于点F,交AC于点E. A①求证:BE=AD;②过C点作CM∥AB交AD于点M,连接EM,求证:BE=AM+EM. FEMB DC2.截长补短法(直接和间接)如图,△ABC 中,∠CAB=∠CBA=45 ,CA=CB,点 E 为 BC 的中点,CN ⊥AE 交 AB 于点 N. ①求证:∠1=∠2;②求证:AE=CN+EN. (用多种方法) 方法 1:直接截长BN E12CA方法 2:间接载长BN E12CA方法 3:直接补短BN E12C AAB方法 4:间接补短N E12C三、角平分线模型 A1.作垂线1 P模型:如图,∠1=∠2,PA⊥OA,PB⊥OB,则PA=PB. 2O B⑴如图,△ABC中,CD是角平分线,AC=3,BC=5,求S△ACD∶S△BCD的值.CBA D⑵.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180︒,求证:AE=AD+BE.CDBA E⑶.如图,△ABC中,AC>AB,F为BC的中点,FD⊥BC,交∠BAC的平分线于点D,DE⊥AC于点E.A C-A B①求证:BD=CD;②求证:AB+AC=2AE;③直接写出的值C EA是.EFB CD⑷如图,△ABC中,AB=AC,D为△ABC外一点,且∠1=∠2,AB⊥BD于点M.①求证:AD平分△BDC的B D-CD A外角;②求的值.D M B 1M2C D2.截长补短 A模型:如图,若∠AOP=∠BOP,OA=OB,则△OAP≌△OBP P ⑴.如图,四边形ABCD中,AC平分∠DAB,∠B+∠D=180 ,求证:CD=CB. O BCD12B B⑵.△ABC中,AB>AC,AD平分∠BAC,AE=AC,连DE.①求证:∠C>∠B;②若AB-AC=2,BC=3,求△BED的周长.AB CD⑶.如图,AD∥BC,E是CD上一点,且∠1=∠2,∠3=∠4,求证:AB=AD+BCCED12 43A B⑷.如图,BC>AB,AD=CD,∠1=∠2,探究∠BAD与∠C之间的数量关系.(多种方法)D DA A1 12 2B C CB3.角平分线+垂线:延长法 AC 模型:如图,若∠1=∠2,AC⊥OC,延长AC交OB于点B,则△OCA≌△OCB.⑴.如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,探究∠ACE,∠B,O B∠ECD之间的数量关系.AEB CD⑵.如图,在△ABC中,AB<BC,BP平分∠ABC,AP⊥BP于P点,连接PC,若△ABC的面积为4,求△BPC 的面积.APB C⑶.如图,在△AOB中,AO=OB,∠AOB=90 ,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E,求证:BD=2AE.AEDBO⑷.如图,四边形ABCD中,AD∥BC,AE,BE分别平分∠DAB,∠CBA.①求证:AE⊥BE;②求证:DE=CE;③若AE=4,BE=6,求四边形ABCD的面积.DAEBC四、半角与倍角模型⑴如图,已知 AB=AC,∠BAC=90°,∠MAN=45°,过点 C 作 NC⊥AC 交 AN 于点 N,过点 B 作 BM⊥AB 交 AM 于点 M ,连接 MN.①当∠MAN 在∠BAC 内部时,求证:BM+CN=MN.MBNCA②如图,在①的条件下,当 AM 和 AN 在 AB 同侧时,①的结论是否成立?请说明理由.NCMBA⑵如图,在△ABC 中,CA=CB,∠ACB=120°,E 为 AB 上一点,∠DCE=60°,∠DAE=120°,求证: DE-AD=BE.CABED⑶如图,在△ABC 中,CA=CB,∠ACB=120°,点 E 为 AB 上一点,∠DCE=∠DAE=60°,求证:AD+DE=BE.DCBAE1 ⑷.①如图 1,在四边形 ABCD 中,AB=AD,∠B+∠D=180°,E,F 分别是 BC,CD 上的点,且∠EAF= ∠2 DBAD,求证:EF=BE+DF;AFCBE②如图 2,在①条件下,若将△AEF 绕点 A 逆时针旋转,当点 E,F 分别 FD运动到 BC,CD 延长线上时,则 EF,BE,DF 之间的数量关系是.A。

(完整版)几种证明全等三角形添加辅助线的方法

(完整版)几种证明全等三角形添加辅助线的方法

教学过程构造全等三角形几种方法在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。

现分类加以说明。

一、延长中线构造全等三角形例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。

证明:延长AD至E,使AD=DE,连接CE。

如图2。

∵AD是△ABC的中线,∴BD=CD。

又∵∠1=∠2,AD=DE,∴△ABD≌△ECD(SAS)。

AB=CE。

∵在△ACE中,CE+AC>AE,∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。

求证:AB+BD=AC。

证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。

如图4。

∵∠1=∠2,AD=AD,AB=AE,∴△ABD≌△AED(SAS)。

∴BD=ED,∠ABC=∠AED=2∠C。

而∠AED=∠C+∠EDC,∴∠C=∠EDC。

所以EC=ED=BD。

∵AC=AE+EC,∴AB+BD=AC。

三、作平行线构造全等三角形例3. 如图5,△ABC中,AB=AC。

E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。

求证:EF=FD。

证明:过E作EM∥AC交BC于M,如图6。

则∠EMB=∠ACB,∠MEF=∠CDF。

∵AB=AC,∴∠B=∠ACB。

∴∠B=∠EMB。

故EM=BE。

∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF,∴△EFM≌△DFC(AAS)。

EF=FD。

四、作垂线构造全等三角形例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。

M是AC边的中点。

AD ⊥BM交BC于D,交BM于E。

求证:∠AMB=∠DMC。

证明:作CF⊥AC交AD的延长线于F。

如图8。

∵∠BAC=90°,AD⊥BM,∴∠FAC=∠ABM=90°-∠BAE。

∵AB=AC,∠BAM=∠ACF=90°,∴△ABM≌△CAF(ASA)。

八年级数学几何图形第05讲 全等三角形的常见辅助线(学生版)

八年级数学几何图形第05讲 全等三角形的常见辅助线(学生版)

第05讲全等三角形的常见辅助线(原卷版)第一部分典例剖析+针对训练类型一倍长中线和类倍长中线1.(2021秋•齐河县期末)(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.针对训练11.(2016秋•宁都县期中)如图,在△ABC中,AB=5,AC=3,则BC边上的中线AD的取值范围是()A.2<AD<8B.0<AD<8C.1<AD<4D.3<AD<52.(2021秋•江州区期末)在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为()A.1<AB<9B.3<AB<13C.5<AB<13D.9<AB<133.(2021秋•微山县期中)【发现问题】小强在一次学习过程中遇到了下面的问题:如图1,AD是△ABC的中线,若AB=8,AC=6,求AD的取值范围.【探究方法】小强所在学习小组探究发现:延长AD至点E,使ED=AD,连接BE.可证出△ADC≌△EDB,利用全等三角形的性质可将已知的边长与AD转化到同一个△ABE中,进而求出AD的取值范围.方法小结:从上面思路可以看出,解决问题的关键是将中线AD延长一倍,构造出全等三角形,我们把这种方法叫做倍长中线法.【应用方法】(1)请你利用上面解答问题的方法思路,写出求AD的取值范围的过程;【拓展应用】(2)已知:如图2,AD是△ABC的中线,BA=BC,点E在BC的延长线上,EC=BC.写出AD与AE 之间的数量关系并证明.类型二过线段的两端点向中点处的线段作垂线构造全等三角形典例2如图,D为CE的中点,F为AD上一点,且EF=AC.求证:∠DFE=∠DAC.针对练习24.如图.∠C=90°,BE⊥AB且BE=AB,BD⊥BC且BD=BC,CB的延长线交DE于F (1)求证:点F是ED的中点;(2)求证:S△ABC=2S△BEF.类型三中点加平行线构造8字全等典例3如图所示,已知梯形ABCD,AD∥BC,E为CD的中点,若用S1、S2、S3分别表示△ADE、△EBC、△ABE的面积,则S1、S2、S3的关系是()A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.以上都不对针对训练35.(2021•行唐县模拟)如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,请你用直尺(无刻度)作出一条线段与BE相等;并证明之;类型四截长补短法构造全等典例4 已知:如图,AB∥CD,BE平分∠ABC,CE平分∠BCD.求证:BC=AB+CD.针对训练46.(2021秋•阳谷县期末)如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,CE的连线交AP于点D,求证:AD+BC=AB.。

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。

八年级数学上册第十二章专题(五)构造全等三角形常用的辅助线作业课件新版新人教版

八年级数学上册第十二章专题(五)构造全等三角形常用的辅助线作业课件新版新人教版
-AC<AE<CE+AC,即 6-2<2AD<6+2,∴4<2AD<8,∴2<AD<4.
2.如图,AD是△ABC的中线,E是AC上的一点,BE交AD于点F,已 知AC=BF,∠DAC=35°,∠EBC=40°,求∠C的度数.
解:如图,延长 AD 到点 M,使得 DM=AD,连接 BM.∵AD 是△ABC
°,∠CFA=180°-(∠FAC+∠FCA)=180°-12 (∠BAC+∠ACB)=180°
-12 (180°-∠ABC)=180°-12 (180°-60°)=120°,∴∠DFE=∠CFA
= ∠MFN = 120 ° . 又 ∵∠MFN = ∠MFD + ∠DFN , ∠ DFE = ∠DFN +
类型二:利用角平分线截长补短构造全等 方法技巧:因角平分线已具备全等三个条件中的两个(角等、公共边等) 条件,故在角的两边截取相等的线段构造SAS全等三角形.
5.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线 段CD上.
(1)求∠AEB的度数; (2)求证:CE=DE.
解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE 平分∠CAB,BE 平分∠DBA,∴∠EAB=12 ∠CAB,∠EBA=12 ∠ABD.∴∠EAB+∠EBA =90°,∴∠AEB=90°.
在△DEB 和△FEB 中,∠EBD=EEBB=,∠FEB, ∴△DEB≌△FEB(ASA).∴ED ∠DBE=∠FBE,
=EF.∴ED=CE.
6.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.求 证:AB-AC>PB-PC.
证 明 : 在 AB 上 截 取 AN = AC , 连 接 PN , 图 略 . 易 证 △ APN≌△APC(SAS) , ∴ PN = PC , ∵ 在 △ BPN 中 , PB - PN < BN , ∴PB-PC<AB-AN.∴AB-AC>PB-PC.

人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)

人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)

人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)本文介绍了全等三角形中的常见辅助线,包括角分线上点向角两边作垂线和截取法构全等两种方法。

第一种方法是过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

举例来说,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,要求证∠BFP+∠BEP=180°。

另外,还有一些变式题,例如已知∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,要求解出PC和PD之间的数量关系。

第二种方法是利用对称性,在角的两边截取相等的线段,构造全等三角形。

例如,在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,要求证BC=AB+DC。

还有一些变式题,例如已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,要求判断BE,CD,BC的数量关系。

本文还提到了一些其他问题,例如在△ABC中,∠XXX是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,要求判断FE与FD之间的数量关系。

此外,还有一些类似的变式题,需要读者自行思考和解答。

需要注意的是,本文中有一些格式错误和明显有问题的段落需要删除,同时每段话也需要进行小幅度的改写,以使其更加准确、清晰和易于理解。

在△ABC中,通过截取AE=AC的方式,连接DE,得到△ADE≌△ADC。

因此,我们可以证明XXX。

对于图②,我们知道AD是△ABC的外角∠CAE的平分线,交BC的延长线于点D,且∠D=25°。

我们需要求解∠B的度数。

对于△XXX,我们可以通过以下方式求解∠B的度数:∠B+∠C+∠A=180°。

因为∠C=2∠B,所以∠A=180°-3∠B。

人教版八年级数学上册 12.2 复习小专题(二)构造全等三角形常见辅助线的添法 课件(共20张

人教版八年级数学上册 12.2  复习小专题(二)构造全等三角形常见辅助线的添法 课件(共20张
9
知识点二:利用“截补法”构造全等三角形
归纳总结
不管是截长法还是补短法,往往都需要连接 其他线段,构造全等三角形,利用全等三角形的性 质解决问题.
10
知识点三:利用“倍长中线法”构造全等三角形
典例分析
例3:如图,在△ABC中,AD是BC边上的中线,
求证:AD< (AB+AC)
A
通过添加辅助线,构造全等三角形,将
AD AB ,AC转化到同一个三角形中来求解. B D
C
E
11
知识点三:利用“倍长中线法”构造全等三角形
典例分析
A
例3:如图,在△ABC中,AD是BC边上的中线,
求证:AD< (AB+AC)
B
2
DC
证明:延长AD至点E,使得DE = AD,连接BE.
E
∵AD是BC边上的中线, ∴点D为BC的中点,∴BD=CD.
∴∠F=∠4.
6
知识点二:利用“截补法”构造全等三角形
大显身手
1.如图,AD为△ABC的角平分线,AB >AC,
A
求证:AB﹣AC> BD﹣DC.
E
B
DC
7
知识点二:利用“截补法”构造全等三角形
大显身手
2.如图,在△ABC中, B=2∠C,AD是BC边上的高.
求证:CD=AB+BD.
A

E
BD
C
B
从结论出发,把较长的线段AB截成与 AC,BD分别相等的两条线段,或延长较短的线段AC, 使延长后的线段的长等于线段AB的长,再利用三角 形全等即可证明.
4
知识点二:
解:如图,在线段AB上截取AF=AC连接EF C ∵AE,BE分别平分∠CAB和∠DBA

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

八年级数学(上)几何证明中的辅助线添加方法

八年级数学(上)几何证明中的辅助线添加方法

1文档来源为:从网络收集整理.word 版本可编辑.八年级数学(上)几何证明中的辅助线添加方法数学组 田茂松八年级数学的几何题,有部分题需要做出辅助线才能完成。

有的时候,做不出恰当的辅助线,或者做不出辅助线,就没有办法完成该题的解答。

为了能够更好的让学生在做几何题时得心应手,现在将八年级数学中几何题的辅助线添加方法总结如下。

常见辅助线的作法有以下几种:1.遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4.过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5.截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目。

6.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

常见辅助线的作法举例:例1 如图1,//AB CD ,//AD BC . 求证:AD BC =.分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。

证明:连接AC (或BD )∵//AB CD , //AD BC (已知) ∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在ABC ∆与CDA ∆中∴ABC ∆≌CDA ∆(ASA ) ∴AD BC =(全等三角形对应边相等) 例2 如图2,在Rt ABC ∆中,AB AC =,90BAC ∠=︒,12∠=∠,CE BD ⊥的延长于E .求证:2BD CE =. 分析:要证2BD CE =,想到要构造线段2CE ,同时CE 与ABC ∠的平分线垂直,想到要将其延长。

初二数学第一单元全等三角形证明基本思路

初二数学第一单元全等三角形证明基本思路

证明三角形全等的常见思路全等三角形是初中几何的重要内容之一,全等三角形的学习是几何入门最关键的一步,这部分内容学习的好坏直接影响着今后的学习.而一些初学的同学,虽然学习了几种判定三角形全等的公理和推论,但往往仍不知如何根据已知条件证明两个三角形全等.通过对以下几种证明三角形全的分析,体会常见思路。

知识点睛全等三角形的性质:对应角相等,对应边相等,(对应线段相等)对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.一、已知一边与其一邻角对应相等1.证已知角的另一边对应相等,再用SAS证全等.例1 已知:如图1,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE.证明∵BE=CF(已知),∴BE+ EF=CF+EF,即 BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE(SAS).∴ AF=DE(全等三角形对应边相等).2.证已知边的另一邻角对应相等,再用ASA证全等.例2 已知:如图2,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.证明∵ FC∥AB(已知),∴∠ADE=∠CFE(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(ASA).∴ AE=CE(全等三角形对应边相等)3.证已知边的对角对应相等,再用AAS证全等.例3 (同例2).证明∵ FC∥AB(已知),∴∠A=∠ECF(两直线平行,内错角相等).在△ADE和△CFE中,∴△ADE≌△CFE(AAS).二、已知两边对应相等1.证两已知边的夹角对应相等,再用SAS证等.例4 已知:如图3,AD=AE,点D、E在BC上,BD=CE,∠1=∠2.求证:△ABD≌△ACE证明∵∠1=∠2(已知),∠ADB=180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB = ∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS).2.证第三边对应相等,再用SSS证全等.例5 已知:如图4,点A、C、B、D在同一直线上,AC=BD,AM=CN, BM=DN.求证: AM∥CN,BM∥DN.证明∵ AC=BD(已知)∴AC+BC=BD+BC,即 AB=CD.在△ABM和△CDN中,∴△ABM≌△CDN(SSS)∴∠A=∠NCD,∠ABM=∠D(全等三角应角相等),∴ AM∥CN,BM∥DN(同位角相等,两直线平行).三、已知两角对应相等1.证两已知角的夹边对应相等,再用ASA证全等.例6 已知:如图5,点B、F、C、E在同一条直线上,FB=CE,∠B=∠E,∠ACB=∠DFE.求证: AB=DE, AC=DF.证明∵ FB=CE(已知)∴ FB+FC=CE+FC,即 BC=EF,∴ AB=DE,AC=DF(全等三角形对应边相等)2.证一已知角的对边对应相等,再用AAS证全等.例7 已知:如图6,AB、CD交于点O,E、F为AB上两点,OA=OB,OE=OF,∠A=∠B,∠ACE=∠BDF. 求证:△ACE ≌△BDF.证明∵OA=OB,OE=OF已知),∴OA-OE=OB-OF,即 AE=BF,在△ACE和△BDF中,∴△ACE≌△BDF(AAS).四、已知一边与其对角对应相等,则可证另一角对应相等,再利用AAS证全等例8 已知:如图7,在△ABC中,B、D、E、C在一条直线上,AD=AE,∠B=∠C.求证:△ABD≌△ACE.证明∵AD=AE(已知)∴∠1=∠2(等边对等角),∵∠ADB=∠180°-∠1,∠AEC=180°-∠2(邻补角定义),∴∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(AAS).全等三角形问题中常见的辅助线——倍长中线法△ABC中,AD是BC边中线方式1:直接倍长(图1):延长AD到E,使DE=AD,连接BEAAB CED F C BAD CB A方式2:间接倍长1) (图2)作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E, 连接BE 2) (图3)延长MD 到N ,使DN=MD ,连接CD【经典例题】1、已知,如图△ABC 中,AB=5,AC=3, 则中线AD 的取值范围是_________.(提示:画出图形,倍长中线AD ,利用三角形两边之和大于第三边)例2:已知在△ABC 中,AB=AC ,D 在AB 上, E 在AC 的延长线上, DE 交BC 于F ,且DF=EF.求证:BD=CE(提示:方法1:过D 作DG ∥AE 交BC 于G ,证明ΔDGF ≌ΔCEF 方法2:过E 作EG ∥AB 交BC 的延长线于G ,证明ΔEFG ≌ΔDFB方法3:过D 作DG ⊥BC 于G ,过E 作EH ⊥BC 的延长线于H ,证明ΔBDG ≌ΔECH )例3、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.变式:如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于 F. 求证:EF CF BE >+(提示:方法1: 在DA 上截取DG=BD ,连结EG 、FG , 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE=EG 、CF=FG 利用三角形两边之和大于第三方法2:倍长ED 至H ,连结CH 、FH ,证明FH=EF 、CH=BE ,利用三角形两三边)例4:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF (提示:方法1:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形。

八年级数学人教版(上册)小专题(六)构造全等三角形的常用辅助线

八年级数学人教版(上册)小专题(六)构造全等三角形的常用辅助线
易证△EPO≌△FPO,∴OE=OF. ∴ OM + ON = OE + EM + ON = OE + NF + ON = OE + OF = 2OE=定值.
【拓展 2】 四边形 PMON 的面积是否发生变化?请说明理由. 解:四边形 PMON 的面积不变. 理由:∵△PEM≌△PFN, ∴S△PEM=S△PFN.∴S 四边形 PMON=S 四边形 PEOF=定值.
1.如图,点 P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点 P 旋转的过程中,其两边分别与 OA, OB 相交于 M,N 两点,求证:PM=PN.
证明:过点 P 作 PE⊥OA 于点 E,PF⊥OB 于点 F, ∴∠PEO=∠PFO=90°. ∴∠EPF+∠AOB=180°. ∵∠MPN+∠AOB=180°, ∴∠EPF=∠MPN.
∴EF=FG.
∴EF=FG=DG+FD=BE+FD.
方法 3 利用“倍长中线法”构造全等三角形 将中线延长一倍,然后利用“SAS”判定三角形全等.
4.如图,已知 CD=AB,∠BAD=∠BDA,AE 是△ABD 的中线.
求证:AC=2AE. 证明:延长 AE 至点 F,使 AE=EF,连接 BF.
∵AE 是△ABD 的中线,∴BE=DE. 在△ADE 和△FBE 中, AE=FE, ∠AED=∠FEB, DE=BE, ∴△ADE≌△FBE(SAS).
∴BF=DA,∠FBE=∠ADE. ∵∠ABF=∠ABD+∠FBE, ∴∠ABF=∠ABD+∠ADB=∠ABD+∠BAD=∠ADC.
AB=CD, 在△ABF 和△CDA 中,∠ABF=∠CDA,
在△FCE 和△DCE 中,
∠CFE=∠D, ∠FCE=∠DCE, CE=CE, ∴△FCE≌△DCE(AAS).

(完整版)初二数学辅助线常用做法及例题(含答案)

(完整版)初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

人教版八年级数学上册第十二章全等三角形中的证明思路及常用辅助线学案(无答案)

人教版八年级数学上册第十二章全等三角形中的证明思路及常用辅助线学案(无答案)

证明三角形全等解题思路【知识点复习】一、全等三角形的概念与性质1、概念:能够完全重合的两个三角形叫做全等三角形 。

(1)表示方法:两个三角形全等用符号“≌”来表示,记作ABC ∆≌DEF ∆ 2、性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等 二 、全等三角形的判定1 全等三角形的判定方法:(SAS ),(SSS), (ASA), (AAS),(HL)三边对应相等的两三角形全有两角和它们两角和及其中一个角所对的边对应相等的两个三角形全等.2.全等三角形证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS ③②①【对应练习】1、如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN2、某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去AB CD E第11题第1题第2题第5题3、下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等4、AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是()A.AD>1B.AD<5C.1<AD<5D.2<AD<105、如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=__________°. 三角形全等的证明中包含两个要素:边和角。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学第十一章全等三角形综合复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

思路:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由AE BF =两边同时减去EF 得到AF BE =,又得到一个全等条件。

还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。

由条件AC CE ⊥,BD DF ⊥可得90ACE BDF ∠=∠=,再加上AE BF =,AC BD =,可以证明ACE BDF ∆≅∆,从而得到A B ∠=∠。

证明AC CE ⊥,BD DF ⊥ 在Rt ACE ∆与Rt BDF ∆中 ∴Rt ACE Rt BDF ∆≅∆(HL)∴AE EF BF EF -=-,即AF BE =在ACF ∆与BDE ∆中 ∴ACF BDE ∆≅∆(SAS)思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。

再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。

小结:本题不仅告诉我们如何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路。

例2.如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

思路:直接证明21C ∠=∠+∠比较困难,我们可以间接证明,即找到α∠,证明2α∠=∠且1C α∠=∠+∠。

也可以看成将2∠“转移”到α∠。

那么α∠在哪里呢?角的对称性提示我们将AD 延长交BC 于F ,则构造了△FBD ,可以通过证明三角形全等来证明∠2=∠DFB ,可以由三角形外角定理得∠DFB=∠1+∠C 。

证明:延长AD 交BC 于F 在ABD ∆与FBD ∆中 90ABD FBD BD BDADB FDB ⎧∠=∠⎪=⎨⎪∠=∠=⎩ ∴ABD FBD ∆≅∆(ASA ∴2DFB ∠=∠又1DFB C ∠=∠+∠ ∴21C ∠=∠+∠。

思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。

思路:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。

以线段AE 为边的ABE ∆绕点B 顺时针旋转90到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。

证明:90ABC ∠=,F 为AB 延长线上一点在ABE ∆与CBF ∆中 ∴ABE CBF ∆≅∆(SAS) ∴AE CF =。

思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。

小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。

这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。

例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

思路:关于四边形我们知之甚少,通过连接四边形的对角线,可以把原问题转化为全等三角形的问题。

证明:连接ACAB //CD ,AD //BC ∴12∠=∠,34∠=∠ 在ABC ∆与CDA ∆中 ∴ABC CDA ∆≅∆(ASA) ∴AB CD =。

思考:连接四边形的对角线,是构造全等三角形的常用方法。

例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

思路:要证明“BP 为MBN ∠的平分线”,可以利用点P 到,BM BN 的距离相等来证明,故应过点P 向,BM BN 作垂线;另一方面,为了利用已知条件“,AP CP 分别是MAC ∠和NCA ∠的平分线”,也需要作出点P 到两外角两边的距离。

证明:过P 作PD BM ⊥于D ,PE AC ⊥于E ,PF BN ⊥于F AP 平分MAC ∠,PD BM ⊥于D ,PE AC ⊥于E CP 平分NCA ∠,PE AC ⊥于E ,PF BN ⊥于FPD PE =,PE PF =PD PF =,且PD BM ⊥于D ,PF BN ⊥于F ∴BP 为MBN ∠的平分线。

思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

思路:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。

因此,延长AE 至F ,使EF AE =。

证明:延长AE 至点F ,使EF AE =,连接DF 在ABE ∆与FDE ∆中∴ABE FDE ∆≅∆(SAS)ADF ADB EDF ∠=∠+∠,ADC BAD B ∠=∠+∠ 又ADB BAD ∠=∠ AB DF =,AB CD =在ADF ∆与ADC ∆中 ∴ADF ADC ∆≅∆(SAS)又2AF AE = ∴2AC AE =。

思考:三角形中倍长中线,可以构造全等三角形,继而得出一些线段和角相等,甚至可以证明两条直线平行。

例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

求证:AB AC PB PC ->-。

原图 法一图 法二图思路:欲证AB AC PB PC ->-,不难想到利用三角形中三边的不等关系来证明。

由于结论中是差,故用两边之差小于第三边来证明,从而想到构造线段AB AC -。

而构造AB AC -可以采用“截长”和“补短”两种方法。

证明:法一:在AB 上截取AN AC =,连接PN 在APN ∆与APC ∆中 ∴APN APC ∆≅∆(SAS)在BPN ∆中,PB PN BN -<∴-<-PB PC AB AC ,即AB -AC>PB -PC 。

法二:延长AC 至M ,使AM AB =,连接PM 在ABP ∆与AMP ∆中∴ABP AMP ∆≅∆(SAS)在PCM ∆中,CM PM PC >- ∴AB AC PB PC ->-。

思考:当已知或求证中涉及线段的和或差时,一般采用“截长补短”法。

具体作法是:在较长的线段上截取一条线段等于一条较短线段,再设法证明较长线段的剩余线段等于另外的较短线段,称为“截长”;或者将一条较短线段延长,使其等于另外的较短线段,然后证明这两条线段之和等于较长线段,称为“补短”。

小结:本题组总结了本章中常用辅助线的作法,以后随着学习的深入还要继续总结。

我们不光要总结辅助线的作法,还要知道辅助线为什么要这样作,这样作有什么用处。

同步练习一、选择题:1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等D. 斜边相等2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA = B. 4AB =,3BC =,30A ∠=C. 60C ∠=,45B ∠=,4AB =D. 90C ∠=,6AB =3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。

其中能使ABC AED ∆≅∆的条件有( )A. 4个B. 3个C. 2个D. 1个 4. 如图,12∠=∠,C D ∠=∠,,AC BD 交于E 点,下列不正确的是( )A. DAE CBE ∠=∠B. CE DE =C. DEA ∆不全等于CBE ∆D. EAB ∆是等腰三角形 5. 如图,已知AB CD =,BC AD =,23B ∠=,则D ∠等于( ) A. 67 B. 46 C. 23 D. 无法确定 二、填空题:6. 如图,在ABC ∆中,90C ∠=,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;7. 如图,已知AB DC =,AD BC =,,E F 是BD 上的两点,且BE DF =,若100AEB ∠=,30ADB ∠=,则BCF ∠=____________;8. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________;9. 如图,在等腰Rt ABC ∆中,90C ∠=,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于____________;10. 如图,点,,,D E F B 在同一条直线上,AB //CD ,AE //CF ,且AE CF =,若10BD =,2BF =,则EF =___________;三、解答题: 11. 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。

求AQN ∠的度数。

12. 如图,90ACB ∠=,AC BC =,D 为AB 上一点,AE CD ⊥,BF CD ⊥,交CD 延长线于F 点。

求证:BF CE =。

同步练习的答案一、选择题: 1. A 2. C3. B4. C5. C 二、填空题:6. 47. 70 8. 909. 1010. 6三、解答题:11. 解:ABC ∆为等边三角形∴AB BC =,60ABC C ∠=∠= 在ABM ∆与BCN ∆中 ∴ABM BCN ∆≅∆(SAS)∴60AQN ABQ BAM ABQ NBC ∠=∠+∠=∠+∠=。

12. 证明:AE CD ⊥,BF CD ⊥ 在ACE ∆与CBF ∆中 ∴ACE CBF ∆≅∆(AAS) ∴BF CE =。

相关文档
最新文档