大学物理试卷1
大学物理试题(含答案)

A ) 0 ~ / 2 B ) / 2 ~ C ) ~ 3 / 2
D √ ) 3 / 2 ~ 2
6、已知某简谐振动的振动曲线如图,位移的单位为厘米, 时间的单位为秒,则简谐振动的振动方程为:
A) x 2 cos( 2t / 3 2 / 3)cmx(cm ) B ) x 2 cos( 2t / 3 2 / 3)cm o 1 C ) x 2 cos( 4t / 3 2 / 3)cm 2 D ) x 2 cos( 4t / 3 2 / 3)cm
2 2 2 2 2
三、计算题: 1、一质量为 1kg 的钢球A,系于长为 l 的轻绳一端,绳的另一 端固定。今将绳拉到水平位置后由静止释放,球在最低点 与在粗糙平面上的另一质量为 5kg 的钢块B作完全弹性碰撞 后能回升到 h = 0.35m 处,而B沿水平面滑动最后停止。求: 1)绳长;2)B克服阻力所做的功。(取 g = 10 m/s2) 解:1)取小球为研究对象
4、以氢放电管发出的光垂直照射在某光栅上,在衍射角 φ = 41 0 的方向上看到 λ 1 =6562 Å 和λ 2 = 4101 Å 的谱线 重合,求光栅常数最小是多少? 解:
d sin k11
故:
d sin k21
k11 k22
5 8
k1 2 4101 k2 1 6562
2、1mol 理想气体在T1 = 400K 的高温热源与T2 = 300K的低温 热源间作卡诺循环(可逆的)。在400K 的等温线上起始体 积为V1 = 0.0 01m3,终止体积V2 = 0.005m3,试求此气体在 每一循环中 1)从高温热源吸收的热量Q1 。 2)气体所作的净功A 。3)气体传给低温热源的热量Q2 。 解:1)在高温热源等温膨胀时,吸热。
大学物理试题及答案 13篇

大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。
答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。
答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。
答案:两倍9. 加速度是速度的_____,速度是位移的_____。
答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。
答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。
12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。
求该飞船的向心加速度。
解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。
大学物理(一)题库1(黄时中)

⼤学物理(⼀)题库1(黄时中)⼤学物理(1)期末复习题库第⼀篇⼒学⼀、判断题1. 平均速度和瞬时速度通常都是相等的。
()2. 若⼒⽮量F 沿任何闭合路径的积分0=??Ll d F ,则该⼒为保守⼒() 3. 任意刚体的形状、⼤⼩和质量确定,则该刚体的转动惯量⼤⼩确定。
()4. 在狭义相对论时空观下,⼀个惯性系中同时(异地)发⽣的两件事,在另⼀个与它相对运动的惯性系中则⼀定不同时发⽣。
()5. 物体做曲线运动时,速度⽅向⼀定在运动轨道的切线⽅向,法向分速度恒为零,因此其法向加速度也⼀定为零。
()6. 在太阳系中,⾏星相对于太阳的的⾓动量不守恒。
()7. 因为 r r ?=?,所以速率等于速度的⼤⼩。
()8. 物体的运动⽅向与合外⼒⽅向不⼀定相同。
()。
9. 若系统外⼒所作的功0≠ext W ,只要0int,=+non ext W W ,则系统机械能保持不变。
()10. 在⾼速飞⾏的光⼦⽕箭中的观测者观测到地球上的钟变慢了,则地球上的观测者可认为光⼦⽕箭中的钟变快了。
()11. 假设光⼦在某惯性系中的速度为c ,那么存在这样的⼀个惯性系,光⼦在这个惯性系中的速度不等于c 。
()。
12. ⼀物体可以具有恒定的速率但仍有变化的速度()13. 物体运动的⽅向⼀定与它所受的合外⼒⽅向相同()14. 物体运动的速率不变,所受合外⼒⼀定为零()15. 相对论的运动时钟变慢和长度收缩效应是⼀种普遍的时空属性,与过程的具体性质⽆关()16. 质点作圆周运动的加速度不⼀定指向圆⼼。
()17. 有⼀竖直悬挂的均匀直棒,可绕位于悬挂点并垂直于棒的⼀端的⽔平轴⽆摩擦转动,原静⽌在平衡位置。
当⼀质量为m 的⼩球⽔平飞来,并与棒的下端垂直地相撞,则在⽔平⽅向上该系统的动量守恒。
()18. ⼀物体可具有机械能⽽⽆动量,但不可能具有动量⽽⽆机械能。
()19. 内⼒不改变质点系的总动量,它也不改变质点的总动能。
()20. 在某个惯性系中同时发⽣在相同地点的两个事件,对于相对该系有相对运动的其它惯性系⼀定是不同时的。
《大学物理(A)Ⅱ》期末试卷一及答案

《大学物理(A)Ⅱ》期末试卷一及答案一、选择题 (每题3分,共30分)1.电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O点的磁感强度大小 ( )(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B≠ 0.2.用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 ( ) (A) 磁感强度大小为B = 0rNI .(B) 磁感强度大小为B = rNI / l . (C) 磁场强度大小为H =NI / l .(D) 磁场强度大小为H = NI / l .3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 ( ) (A) 7/16. (B) 9/16. (C) 11/16. (D) 13/16. (E) 15/16.4.如图所示,两列波长为的相干波在P 点相遇.波在S 1点振动的初相是1,S 1到P 点的距离是r 1;波在S 2点的初相是2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为: ( )(A) λk r r =-12.abcI O1 2 ISS 1S 2MPE(B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.S 1S 2r 1r 2P5.在双缝干涉实验中,屏幕E 上的P 点处是明条纹,若将缝 2S 盖住,并在1S 、2S 连线的垂直平分面处放一反射镜M ,如图所示,则此时 ( ) (A )P 点处仍为明条纹; (B )P 点处为暗条纹;(C )不能确定P 点处是明条纹还是暗条纹; (D )无干涉条纹.6.某元素的特征光谱中含有波长分别为1=450 nm 和2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处2的谱线的级数将是 ( ) (A) 2 ,3 ,4 ,5 ......; (B) 2 ,5 ,8 ,11......; (C) 2 ,4 ,6 ,8 ......;(D) 3 ,6 ,9 ,12......7. 关于同时性的以下结论中,正确的是 ( )(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生. (B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生. (C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.(D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生. 8.有一直尺固定在K ′系中,它与Ox ′轴的夹角′=45°,如果K ′系以匀速度沿Ox 方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角 ( )(A) 大于45°. (B) 小于45°. (C) 等于45°.(D) 当K ′系沿Ox 正方向运动时大于45°,而当K ′系沿Ox 负方向运动时小于45°.9.一个电子运动速度v = 0.99c ,它的动能是:(电子的静止能量为0.51 MeV ,2217.11v cγ=≈-)(A) 4.0MeV . (B) 3.5 MeV . (C) 3.1 MeV . (D) 2.5 MeV .10. (已知粒子在一维矩形无限深势阱中运动其波函数为 ( ))...(23cos1)(a x a axa x ≤≤-=πψ,粒子在x =5A /6处出现的几率密度为 (A )1/(2a ); (B )1/a ; (C )1/a 2; (D )1/a .二、填空题(共30分)1如图,平行的无限长直载流导线A 和B ,电流强度为I ,垂直纸面向外,两载流导线之间相距为a ,则(1)AB 中点(P 点)的磁感应强度 P B=____________________,(2)磁感应强度B 沿图中环路L 的积分⎰⋅l Bd =_________________.2两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______,运动轨迹半径之比是________. 3如图所示,在纸面上的直角坐标系中,有一根载流导线AC 置于垂直于纸面的均匀磁场B中,若I = 1 A ,B = 0.1 T ,则AC 导线所受的磁力大小为________________.4已知波源的振动周期为4.00×210-s ,波的传播速度为300 m 1-s .波沿X 轴正方向传播,则位于1x =10.0 m 和2x =16.0 m 的两质点的振动位相差为___________. 5一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为__________和____________(设空气中声速为340 m/s ).6平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为________ 个半波带.若将单缝宽度缩小一半,P 点处将是第________级________纹(填明或暗).7当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为____________偏振光,且反射光线和折射光线之间的夹角为___________. 8(当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从 0到 4.0×10-19 J .在作上述光电效应实验时遏止电压为 |U a | =____________V ;此金属的红限频率=__________________Hz .(普朗克常量h =6.63×10-34 J ·s ;基本电荷e =1.60×10-19 C)三、计算题 (共40分)1. 如图所示,长直导线和一个矩形导线框共面.且导线框的一个边与长直导线平行,他到长直导线的距离为r .已知导线中电流为t I I ωsin 0=,其中I 0和为常数,t为时间.导线框长为a 宽为b ,求导线框中的感应电动势.OA c 34x (cm) × × ×× × ×× × ×IIO xrab2. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1. (1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相.(3) 写出振动的数值表达式.3. 用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm的A处是从棱边算起的第四条暗条纹中心.(1) 求空气劈形膜A处的厚度?此空气劈形膜的劈尖角?(2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A处的范围内共有几条明纹?几条暗纹?4. 当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为E = 10.19 eV的状态时,发射出光子的波长是=4860 Å,试求该初始状态的能量和主量子数.(普朗克常量h =6.63×10-34 J·s,1 eV =1.60×10-19 J)答案一、选择题 (每题3分,共30分) 1 C 2 D 3 E 4 D 5 B 6 D 7 C 8 A 9 C 10 A 二、填空题(共30分)1(本题4分) 0 2分0I μ- 2分2(本题4分) 1:2 2分1:2 2分3(本题3分) 3510N -⨯3分4(本题3分) π-或π 3分5(本题4分)637.5Hz2分 566.7Hz2分6(本题5分) 4 2分 第一 2分 暗 1分7(本题3分) 部分 2分,2π或901分8(本题4分) 2.5 2分 144.010⨯2分三、计算题 (共40分) 1.(本题10分)解:两个载同向电流的长直导线在如图坐标x 处所产生的磁场为 02IB xμ=π 2分选顺时针方向为线框回路正方向,则 02r brIaBdS dx xμπ+Φ==⎰⎰3分 0ln2Iar brμ+=π2分 ∴ 0d d lnd 2d a r b I t r tμε+=-=-πΦ00lncos 2I a r bt rμωω+=-π3分2.(本题10分)解:(1) 1s 10/-==m k ω 1分 63.0/2=π=ωT s 1分 (2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A得 2200v 0.753 1.3A x ω=--=-=- m/s 3分 π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 ,∴ π=31φ 3分 (3) )3110cos(10152π+⨯=-t x (SI) 2分 3.(本题10分)解:(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=21处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度 e 4=λ23=750 nm 3分 ∴ ()l l e 2/3/4λθ===4.8×10-5 rad 2分 或者: 1222e k λλ⎛⎫+=+ ⎪⎝⎭ 第四条暗纹:k=3 e 4=λ23 (2) 对于'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为λ'+2124e ,它与波长λ'之比为0.321/24=+'λe .所以A 处是明纹 3分(3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗纹. 2分 4.(本题10分)解:所发射的光子能量为 ==λε/hc 2.56 eV 3分 氢原子在激发能为10.19 eV 的能级时,其能量为=+=∆E E E K 1-3.41 eV 2分 氢原子在初始状态的能量为 =+=K n E E ε-0.85 eV 2分 该初始状态的主量子数为 41==nE E n 3分。
大学物理(电磁学)试卷1

大学物理(电磁学)试卷1(考试时间 120分钟 考试形式闭卷)年级专业层次 姓名 学号注意:请将所有答案写在专用答题纸上,并注明题号。
答案写在试卷和草稿纸上一律无效。
一.选择题:(共30分 每小题3分)1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为:(A )r 012πελ. (B )r 0212πελλ+. (C ))(2202r R -πελ. (D ))(2101R r -πελ.2.如图所示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A ) A < 0且为有限常量.(B ) A > 0且为有限常量. (C ) A =∞.(D ) A = 0.3.一带电体可作为点电荷处理的条件是(A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小.4.下列几个说法中哪一个是正确的?(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C )场强方向可由q F E /=定出,其中q 为试探电荷的电量,q 可正、可负,F 为试探电荷所受的电场力.(D )以上说法都不正确.5.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则:(A )2121,d d P P L L B B l B l B =⋅=⋅⎰⎰ (B )2121,d d P P L L B B l B l B =⋅≠⋅⎰⎰(C )2121,d d P P L L B B l B l B ≠⋅=⋅⎰⎰ (D )2121,d d P P L L B B l B l B ≠⋅≠⋅⎰⎰6.电场强度为E 的均匀电场,E的方向与X 轴正向平行,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A )E R 2π.(B )E R 221π. (C )E R 22π. (D )07.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A )场强大的地方电势一定高. (B )场强相等的各点电势一定相等. (C )场强为零的点电势不一定为零. (D )场强为零的点电势必定是零.8.正方形的两对角上,各置点电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A )q Q 22-=. (B )q Q 2-=. (C )q Q 4-=. (D )q Q 2-=.9.在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (A )向下偏. (B )向上偏. (C )向纸外偏. (D )向纸内偏.10.对位移电流,有下述四种说法,请指出哪一种说法正确.(A )位移电流是由变化电场产生的. (B )位移电流是由线性变化磁场产生的. (C )位移电流的热效应服从焦耳—楞次定律.(D )位移电流的磁效应不服从安培环路定理.二.填空题:(共30分 每小题3分)1.一平行板电容器,两板间充满各向同性均匀电介质,已知相对电容率为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D = ,电场强度的大小E = .2.一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为 ,极板上的电荷量大小为 .3.在相对介电常数4=r ε的各向同性均匀电介质中,与电能密度36J/cm 102⨯=e w 相应的电场强度的大小E= .(ε0=8.85×10-12C 2N -1m -2)4.平行板电容器,充电后与电源保持连接,然后使两极板间充满相对电容率为0ε的各向同性均匀电介质,这时两极板上的电量是原来的 倍,电场强度是原来的 倍;电场能量是原来的 倍.5.真空中,半径为R 1和R 2的两个导体球,相距很远,则两球的电容之比C 1:C 2= .当用细长导线将两球相连后,电容C = ,今给其带电,平衡后两球表面附近场强之比E l /E 2= .6.电量为C 1059-⨯-的试探电荷放在电场中某点时,受到N 10209-⨯向下的力,则该点的电场强度大小为 ,方向 .7.当带电量为q 的粒子在场强分布为E的静电场中从a 点到b 点作有限位移时,电场力对该粒子所作功的计算式为A = .8.图示为某静电场的等势面图,在图中画出该电场的电力线.垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 .10.面积为S 的平面,放在场强为E 的均匀电场中,已知E 与平面间的夹角为)21(πθ<,则通过该平面的电场强度通量的数值=Φe .三.计算题:(共40分 每小题10分)1、两个点电荷,电量分别为+q 和-3q ,相距为d ,试求:(l )在它们的连线上电场强度0=E的点与电荷量为+q 的点电荷相距多远?(2)若选无穷远处电势为零,两点电荷之间电势U = 0的点与电荷量为+q 的点电荷相距多远?2、无限长直导线折成V 形,顶角为 θ,置于X —Y 平面内,且一个角边与X 轴重合,如图.当导线中通有电流I 时,求Y 轴上一点P (0,a )处的磁感应强度大小.3、电量Q 均匀分布在半径为a 、长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如图所示).若圆筒转速按照)/1(00t t -=ωω的规律(0ω和0t 是已知常数)随时间线性地减小,求圆形线圈中感应电流的大小和流向.4、图中所示为水平面内的两条平行长直裸导线LM 与L ′M ′,其间距离为l 其左端与电动势为0ε的电源连接.匀强磁场B垂直于图面向里.一段直裸导线ab 横放在平行导线间(并可保持在导线间无摩擦地滑动)把电路接通.由于磁场力的作用,ab 将从静止开始向右运动起来.求(1) ab 能达到的最大速度V .(2) ab 达到最大速度时通过电源的电流I .dq +q 3-大学物理(电磁学)试卷1答案一.选择题:(共30分,每小题3分) 1.(A )2.(D )3.(C )4.(C )5.(C ) 6.(D ) 7.(C ) 8.(A ) 9.(B ) 10.(A ) 二.填空题:(共30分)l . σ 2分)/(0r εεσ1分 2. C Fd /2 3分FdC 22分3. 3.36×1011V /m 4.r ε 1分 1 1分r ε1分 5. R 1/R 2l 分)(4210R R +πε 2分 R 2/R 12分 6. 4N/C2分 向上1分 7. ⎰⋅b al E qd3分8.9. B r 2π 3分 10.)21cos(θπ-ES 3分三.计算题:(共40分)l .解:设点电荷q 所在处为坐标原点O ,X 轴沿两点电荷的连线.(l )设0=E的点的坐标为x ′,则E0)'(43'42020=--=i d x qi x q E πεπε3分可得 0'2'222=-+d dx x 解出 d x )31(21'1+-=和 d x )13(21'2-= 2分其中'1x 符合题意,'2x 不符合题意,舍去. (2)设坐标x 处 U = 0,则)(43400x d qx q U --=πεπε0])(4[40=--=x d x xd q πε3分得 4/04d x x d ==-2分2.解:如图所示,将V 形导线的两根半无限长导线分别标为1和2。
大学物理1期末考试复习试卷原题与答案

⼤学物理1期末考试复习试卷原题与答案⼤学物理1期末考试复习,试卷原题与答案⼒学8.A质量为m的⼩球,⽤轻绳AB、BC连接,如图,其中AB⽔平.剪断绳AB 前后的瞬间,绳BC中的张⼒⽐T : T′=____________________.9.⼀圆锥摆摆长为l、摆锤质量为m,在⽔平⾯上作匀速圆周运动,摆线与铅直线夹⾓θ,则(1) 摆线的张⼒T=_____________________;(2) 摆锤的速率v=_____________________.12.⼀光滑的内表⾯半径为10 cm的半球形碗,以匀⾓速度ω绕其对称OC 旋转.已知放在碗内表⾯上的⼀个⼩球P相对于碗静⽌,其位置⾼于碗底4cm,则由此可推知碗旋转的⾓速度约为(A) 10 rad/s.(B) 13 rad/s.(C) 17 rad/s (D) 18 rad/s.[]13.质量为m的⼩球,放在光滑的⽊板和光滑的墙壁之间,并保持平衡,如图所⽰.设⽊板和墙壁之间的夹⾓为α,当α逐渐增⼤时,⼩球对⽊板的压⼒将(A) 增加(B) 减少.(C) 不变.(D) 先是增加,后⼜减⼩.压⼒增减的分界⾓为α=45°.[ ]15.m m⼀圆盘正绕垂直于盘⾯的⽔平光滑固定轴O转动,如图射来两个质量相同,速度⼤⼩相同,⽅向相反并在⼀条直线上的⼦弹,⼦弹射⼊圆盘并且留在盘内,则⼦弹射⼊后的瞬间,圆盘的⾓速度ω(A) 增⼤.(B) 不变.(C) 减⼩.(D) 不能确定定.()16.如图所⽰,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂⼀质量为M的物体,B滑轮受拉⼒F,⽽且F=Mg.设A、B两滑轮的⾓加速度分别为βA和βB,不计滑轮轴的摩擦,则有(A) βA=βB.(B) βA>βB.(C) βA<βB.(D) 开始时βA=βB,以后βA<βB.18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A和J B,则(A) J A>J B(B) J A<J B.(C) J A =J B.(D) 不能确定J A、J B哪个⼤.22. ⼀⼈坐在转椅上,双⼿各持⼀哑铃,哑铃与转轴的距离各为0.6 m.先让⼈体以5 rad/s的⾓速度随转椅旋转.此后,⼈将哑铃拉回使与转轴距离为0.2 m.⼈体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每⼀哑铃的质量为5 kg可视为质点.哑铃被拉回后,⼈体的⾓速度ω=__________________________.28.质量m=1.1 kg的匀质圆盘,可以绕通过其中⼼且垂直盘⾯的⽔平光滑固定轴转动,对轴的转动惯量J=221mr(r为盘的半径).圆盘边缘绕有绳⼦,绳⼦下端挂⼀质量m1=1.0 kg的物体,如图所⽰.起初在圆盘上加⼀恒⼒矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加⼒矩,问经历多少时间圆盘开始作反⽅向转动.静电学1. 如图所⽰,两个同⼼球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球⼼为r 的P 点处电场强度的⼤⼩与电势分别为:(A) E =204r Q επ,U =r Q04επ.(B) E =204r Q επ,U =???? ??-πr R Q11410ε.(C) E =204r Qεπ,U =??-π20114R r Q ε.(D) E =0,U =204R Qεπ.[]10.E图中曲线表⽰⼀种轴对称性静电场的场强⼤⼩E 的分布,r 表⽰离对称轴的距离,这是由____________________________________产⽣的电场.14. ⼀半径为R 的均匀带电球⾯,其电荷⾯密度为σ.若规定⽆穷远处为电势零点,则该球⾯上的电势U =____________________.17.Lq如图所⽰,真空中⼀长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的⼀端距离为d 的P 点的电场强度.28. 关于⾼斯定理,下列说法中哪⼀个是正确的? (A) ⾼斯⾯内不包围⾃由电荷,则⾯上各点电位移⽮量D 为零.(B)⾼斯⾯上处处D为零,则⾯内必不存在⾃由电荷.(C)⾼斯⾯的D通量仅与⾯内⾃由电荷有关.(D) 以上说法都不正确. ( )q⼀空⼼导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所⽰.当球壳中⼼处再放⼀电荷为q 的点电荷时,则导体球壳的电势(设⽆穷远处为电势零点)为(A) 104R qεπ. (B) 204R qεπ. (C) 102R q επ . (D)20R q ε2π.[]35.如图所⽰,将⼀负电荷从⽆穷远处移到⼀个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增⼤、不变、减⼩)36. ⼀⾦属球壳的内、外半径分别为R1和R2,带电荷为Q.在球⼼处有⼀电荷为q的点电荷,则球壳内表⾯上的电荷⾯密度σ =______________.38. 地球表⾯附近的电场强度为100 N/C.如果把地球看作半径为6.4×105m的导体球,则地球表⾯的电荷Q=___________________.(2/CmN1094129=πε)40. 地球表⾯附近的电场强度约为100 N /C,⽅向垂直地⾯向下,假设地球上的电荷都均匀分布在地表⾯上,则地⾯带_____电,电荷⾯密度σ=__________.(真空介电常量ε 0 = 8.85×10-12 C2/(N·m2) )41. 12σda厚度为d的“⽆限⼤”均匀带电导体板两表⾯单位⾯积上电荷之和为σ.试求图⽰离左板⾯距离为a的⼀点与离右板⾯距离为b的⼀点之间的电势差.42. 半径分别为 1.0 cm与 2.0 cm的两个球形导体,各带电荷 1.0×10-8 C,两球相距很远.若⽤细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/CmN109419=πε)43.半径分别为R1和R2 (R2 > R1 )的两个同⼼导体薄球壳,分别带有电荷Q1和Q2,今将内球壳⽤细导线与远处半径为r的导体球相联,如图所⽰, 导体球原来不带电,试求相联后导体球所带电荷q.稳恒磁场习题1. 有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为(A) 0.90. (B) 1.00. (C)1.11.(D)1.22.[]2.边长为l 的正⽅形线圈中通有电流I ,此线圈在A 点(见图)产⽣的磁感强度B 为 (A) l I π420µ. (B) lI π220µ.(C)lI π02µ. (D) 以上均不对.[]3.通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P . ( )4.⽆限长载流空⼼圆柱导体的内外半径分别为a、b,电流在导体截⾯上均匀分布,则空间各处的B的⼤⼩与场点到圆柱中⼼轴线的距离r的关系定性地如图所⽰.正确的图是[]11. ⼀质点带有电荷q =8.0×10-10 C,以速度v =3.0×105 m·s-1在半径为R =6.00×10-3 m的圆周上,作匀速圆周运动.该带电质点在轨道中⼼所产⽣的磁感强度B =__________________,该带电质点轨道运动的磁矩p m=___________________.(µ0 =4π×10-7 H·m-1) 12. 载有⼀定电流的圆线圈在周围空间产⽣的磁场与圆线圈半径R有关,当圆线圈半径增⼤时,(1)圆线圈中⼼点(即圆⼼)的磁场__________________________(2.)圆线圈轴线上各点的磁场__________________________________________________________________________________________________.14. ⼀条⽆限长直导线载有10 A的电流.在离它0.5 m远的地⽅它产⽣的磁感强度B为______________________.⼀条长直载流导线,在离它1 cm处产⽣的磁感强度是10-4T,它所载的电流为__________________________.两根长直导线通有电流I,图⽰有三种环路;在每种情况下,??lB等于:____________________________________(对环路a).___________________________________(对环路b).____________________________________(对环路c).16.设氢原⼦基态的电⼦轨道半径为a0,求由于电⼦的轨道运动(如图)在原⼦核处(圆⼼处)产⽣的磁感强度的⼤⼩和⽅向.19.⼀根半径为R的长直导线载有电流I,作⼀宽为R、长为l的假想平⾯S,如图所⽰。
大学物理第一学期试题

大学物理第一学期试题(A 卷) (含力学、热学、静电场部分) 全卷满分100分;时量:120分钟一、 填空题(每空2分,共40分)1.一运动质点的速率与路程的关系为:v=1+S 2(SI ),则其切向加速度以路程S 表示为的表达式为:a τ= (SI )。
另有一质量为m 的质点在指向圆心的平方反比力F=-k / r 2 的作用下,作半径为r 的圆周运动,此质点的速度v = ,若取距圆心无穷远处为势能零点,它的机械能 E = 。
2. 如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结。
开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不再受其它力矩的作用。
当两用人才轮连结在一起后,共同的角速度为ω。
若A 轮的转动惯量为J A ,则B 轮的转动惯量J B =_________________。
3. 观察者甲以4c/5 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为l ,质量为m 的棒,这根棒安放在运动方向上,则 (1)甲测得此棒的线密度为________________; (2)乙测得此棒的线密度为________________。
4.1mol 氧气 ( 视为刚性双原子分子的理想气体 ) 贮于一氧气瓶中,温度为270C ,这瓶氧气的内能为 J ;分子的平均总动能为 J 。
5.用总分子数N 、气体分子速率v 和速率分布函数f(v)表示下列各量: (1)速率小于v 0的分子数= ;(2)多次观察某一分子的速率,发现其速率小于v 0的几率 = 。
(3)速率小于v 0的那些分子的平均速率 = 。
6.一氧气瓶的容积为V ,充入氧气的压强为P 1,用了一段时间后,压强降为P 2,。
则瓶中剩下的氧气的内能与未用前氧气的内能之比为 。
7.在一个孤立系统内,一切实际过程都向着 的方向进行,这是热力学第二定律的统计意义,从宏观上说,一切与热现象有关的的实际过程都是 。
大学基础教育《大学物理(一)》真题练习试卷 附答案

大学基础教育《大学物理(一)》真题练习试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
2、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
3、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
4、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
5、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
6、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
7、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
8、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
9、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
10、真空中有一半径为R均匀带正电的细圆环,其电荷线密度为λ,则电荷在圆心处产生的电场强度的大小为____。
大学物理试题精选1

(X )V ,某一段时间内的平均第一章质点运动学 1. 卜列物理量是标量的为(DA.速度B. 加速度2.卞万【【扬=F 田昌由阜生昌的 卜列物理量中是矢量的有A. 内能B.动量 C)C.位移D.路程(B )动能D .功一、位矢、位移、速度、加速度 等概念1. 一质点作定向直线运动,,下列说法中,正确的是(B )A. 质点位置矢量的方向一定恒定,位移方向一定恒定B. 质点位置矢量的方向不一定恒定,位移方向一定恒定C. 质点位置矢量的方向一定恒定,位移方向不一定恒定D.质点位置矢量的方向不一定恒定,位移方向不 定恒定rr 2 •质点的运动方程是 rRcos tiRsin t[, R, 为正的常数,从t / 到 t 2 /时间内,该质点的位移是( B )rrrA . - 2Rj B. 2RiC.- 2jD. 0 3.—质点以半径为 R 作匀速圆周运动,以圆心为坐标原点,质点运动半个周期内 ,其位移大小 r ________ 2R _____ ,其位矢大小的增量 r _______ 0 ____4.质点在平面内运动,矢径VV(t),速度V V (t),试指出下列四种情况中哪种质点一切向加速度的大小是( F ),总加速度大小是( E )Adr r drdr dv 厂dvdv A.——B.C.F.dtdtdtdtdtdt6. 在平面上运动的物体, 若 0 ,则物体的速度一定等于零。
dt7. 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为速度为V ,平均速率为V ,它们之间的关系应该是:A.定相对于参考点静止:A dr门d VA. 0B.0 dtdt dv cdV C. 0Ddtdt5.质点作曲线运动, 某时刻的位置矢量为 r ,速度为v ,则瞬时速度的大小是 ( (B )B ),C. v 丰v, |v|&平均速度的大小等于平均速率。
D.v= v,9.质点沿半径为R的圆周作匀速率运动小与平均速率大小分别为(x )时间转一周,在2t时间间隔中,其平均速度大A . 2 Rt, 2 R/t. B. 0, 2 R/t. C.0, 0. D.2 R/t, 0.10.质点作曲线运动r表示位置矢量,确s表示路程,a t 表示切向加速度,下列表达式中的(1) d v/d t=a;(2) d r/d t=v;(3) d s/d t=v;(4) dv dt = a t.A.B.C. 只有⑴、只有(2)、只有(2)是正确的. 只有(3)是正确的D.11.质点作半径为 R的变速圆周运动时的加速度大小为(v为任一时刻速率):A.屯dt2 B.—RC.包dt D.[冬)2dt4自]1/212.已知一质点在运动,则下列各式中表示质点作匀速率曲线运动的是( D ),表示作匀速直线运动的是( A ),表示作变速直线运动的是( C ),表示作变速曲线A. a t0,a n0 ;B. a t 00 0 ;C. a t0,a n 0 ;D. a t 00 013.质点作直线运动的条件是:C.质点作曲线运动的条件是: B.质点作匀速率运动的条件是: A运动的是( B )A. a t0 ;B. a n0 ;C. a n 0 ;D. a t0二.关于速度和加速度的关系:1.下列说法中正确的是( D )A. 加速度恒定不变时,质点运动方向也不变B. 平均速率等于平均速度的大小C. 当物体的速度为零时,其加速度必为零(注:抛物线运动)D.质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度2. 一物体具有加速度,但速度可能为零.3. 运动物体加速度越大,物体的速度也越大. ( X4. 物体在直线上运动前进时,如果物体向前的加速度减小,物体前进的速度也就减小了.5. 物体加速度的值很大,而物体速度可以不变.6. 物体在运动时,加速度的方向不变而速度方向变化的情况可能发生。
大学物理试题及答案(1-4章)

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式tsd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;trd d 在极坐标系中表示径向速率v r (如题1 -2 所述);ts d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d hl t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv 2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x-t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -=这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 402=+==⎰⎰x x s s QP1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin =', t TR y π2cos -='坐标变换后,在O x y 坐标系中有t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BA tB A y1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为R a n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan ==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2)令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3)当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O′中的点(x ′,y ′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和。
大学基础教育《大学物理(一)》期中考试试题 附答案

大学基础教育《大学物理(一)》期中考试试题附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
2、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
3、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。
4、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
5、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
6、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
7、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
8、简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为__________。
大 学 物 理 试 卷及答案1

大 学 物 理 试 卷班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________一、选择题:(每题3分,共33分)1、在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为 (A) Z 与T 无关. (B) Z 与T 成正比.(C) Z 与T 成反比. (D) Z 与T 成正比. [ ]2、关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3). (B) (1)、(2)、(4).(C) (2)、(4).(D) (1)、(4). [ ]3、 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是:(A) b 1a 过程放热,作负功;b 2a 过程放热,作负功. (B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功.(C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功. (D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功.[ ]4、如图所示,设某热力学系统经历一个由c →d →e 的过程,其中,ab 是一条绝热曲线,a 、c 在该曲线上.由热力学定律可知,该系统在过程中(A) 不断向外界放出热量. (B) 不断从外界吸收热量.(C) 有的阶段吸热,有的阶段放热,整个过程中吸的热量等于放出的热量. (D) 有的阶段吸热,有的阶段放热,整个过程中吸的热量大于放出的热量.(E) 有的阶段吸热,有的阶段放热,整个过程中吸的热量小于放出的热量. [ ]5、气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原pO V b 12ac a b cde Vp O来的2倍,问气体分子的平均速率变为原来的几倍? (A) 22/5. (B) 22/7.(C) 21/5. (D) 21/7. [ ]6、一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A) g l π2. (B) gl 22π. (C) g l 322π. (D) gl 3π. [ ]7、一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A) T /4. (B) 2/T . (C) T . (D) 2 T . (E) 4T . [ ]8、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]9、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]10、两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是: (A) 0. (B)π21. (C) π. (D) π23. [ ]11、若在弦线上的驻波表达式是 t x y ππ=20cos 2sin 20.0.则形成该驻波的两个反向进行的行波为:(A)]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π++π=x t y (SI).(B) ]50.0)10(2cos[10.01π--π=x t y]75.0)10(2cos[10.02π++π=x t y (SI).S 1S 2Pλ/4A/ -(C) ]21)10(2cos[10.01π+-π=x t y ]21)10(2cos[10.02π-+π=x t y (SI).(D) ]75.0)10(2cos[10.01π+-π=x t y]75.0)10(2cos[10.02π++π=x t y (SI). [ ]二、填空题:(共25分)12、两个容器容积相等,分别储有相同质量的N 2和O 2气体,它们用光滑细管相连通,管子中置一小滴水银,两边的温度差为 30 K ,当水银滴在正中不动时,N 2和O 2的温度为2N T = ___________,2O T =__________.(N 2气的摩尔质量M mol =28×10-3 kg ·mol -1)13、在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 ________________分布律来描述.如果气体处于外力场中,气体分子在空间的分布规律,可用__________分布律来描述.14、 图示的两条f (v )~v 曲线分别表示氢气和氧气在同一温度下的麦克斯韦速率分布曲线.由此可得氢气分子的最概然速率为________________;氧气分子的最概然速率为________________. 15、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.16、一平面余弦波沿Ox 轴正方向传播,波动表达式为 ])(2cos[φλ+-π=xT t A y , 则x = -λ 处质点的振动方程是____________________________________;若以x = λ处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_______________________________________________.) x (cm)t (s)O 1217、如图所示,在平面波传播方向上有一障碍物AB ,根据惠更斯原理,定性地绘出波绕过障碍物传播的情况.18、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )三、计算题:(共42分)19、有 2×10-3 m 3刚性双原子分子理想气体,其内能为6.75×102 J . (1) 试求气体的压强;(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度. (玻尔兹曼常量k =1.38×10-23 J ·K -1)20、汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?21、如图所示,有一定量的理想气体,从初状态a (p 1,V 1)开始,经过一个等体过程达到压强为p 1/4的b 态,再经过一个等压过程达到状态c ,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功W 和所吸的热量Q .22、如图,劲度系数为k 的弹簧一端固定在墙上,另一端连接一质量为M 的容器,容器可在光滑水平面上运动.当弹簧未变形时容器位于O 处,今使容器自O 点左侧l 0处从静止开始运动,每经过O 点一次时,从上方滴管中滴入一质量为m 的油滴,求:(1) 容器中滴入n 滴以后,容器运动到距O 点的最远距离;(2) 容器滴入第(n +1)滴与第n 滴的时间间隔.大 学 物 理 试 卷 解 答二、填空题:(共25分)pp 1112、 210 K 2分240 K 2分13、 麦克斯韦 2分玻尔兹曼 2分14、 2000 m ·s -1 1分 500 m ·s -1 2分15、 0.5(2n +1) n = 0,1,2,3,… 1分 n n = 0,1,2,3,… 1分 0.5(4n +1) n = 0,1,2,3,… 1分16、 ]/2cos[1φ+π=T t A y 2分 ])//(2cos[2φλ++π=x T t A y 3分17、 答案见图子波源、波阵面、波线各3分占1分18、 ])/(cos[754π+--=c z t E y ω (SI) 3分三、计算题:(共42分)19(10分)、解:(1) 设分子数为N .据 E = N (i / 2)kT 及 p = (N / V )kT得 p = 2E / (iV ) = 1.35×105 Pa 4分(2) 由 kT N kT Ew 2523=得 ()21105.75/3-⨯==N E w J 3分又 kT N E 25=得 T = 2 E / (5Nk )=362k 3分20(10分)、解:据 iRT M M E mol 21)/(=, RT M M pV m ol )/(= 2分 得 ipV E 21=变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p =即1221/)/(p p V V =γ3分题设 1221p p =, 则 21)/(21=γV V即 γ/121)21(/=V V∴)21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分21(10分)、解:设c 状态的体积为V 2,则由于a ,c 两状态的温度相同,p 1V 1= p 1V 2 /4 故 V 2 = 4 V 1 2分 循环过程 ΔE = 0 , Q =W . 而在a →b 等体过程中功 W 1= 0. 在b →c 等压过程中功W 2 =p 1(V 2-V 1) /4 = p 1(4V 1-V 1)/4=3 p 1V 1/4 2分在c →a 等温过程中功W 3 =p 1 V 1 ln (V 2/V 1) = -p 1V 1ln 4 2分 ∴ W =W 1 +W 2 +W 3 =[(3/4)-ln4] p 1V 1 1分 Q =W=[(3/4)-ln4] p 1V 1 3分22(12分)、解:(1) 容器中每滴入一油滴的前后,水平方向动量值不变,而且在容器回到O 点滴入下一油滴前, 水平方向动量的大小与刚滴入上一油滴后的瞬间后的相同。
物理试卷1-3

中 南 大 学大 学 物 理 试 卷一一、 选择题:(共12分)1.(本题3分)图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下列哪方面内容(E 为电场强度的大小,U 为电势):(A ) 半径为R 的无限长均匀带电圆柱体电场的E~r 关系。
(B ) 半径为R 的无限长均匀带电圆柱面电场的E~r 关系。
(C ) 半径为R 的均匀带正电球体电场的U~r 关系。
(D ) 半径为R 的均匀带正电球面电场的U~r 关系。
( )2.(本题3分)有一连长为a 的正方形平面,在其中垂线上距中心O 点21a 处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A )64q π (B )04πεq (C )03πεq (D )6εq( )3.(本题3分)将一空气平行板电容器接到电源上充电到一定电压后,在保持与电源连接的情况下,把一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示,介质板的插入及其所处位置的不同,对电容器储存电能的影响为:(A)储能减少,但与介质板位置无关。
(B)储能减少,但与介质板位置有关。
(C)储能增加,但与介质板位置无关。
(D)储能增加,但与介质板位置有关。
()4.(本题3分)如图,长载流导线ab和cd相互垂直,它们相距l,ab固定不动,cd能绕中点O转动,并能靠近或离开 ab。
当电流方向如图所示时,导线ca将(A)顺时针转动同时离开ab。
(B)顺时针转动同时靠近ab。
(C)逆时针转动同时离开ab。
(D)逆时针转动同时靠近ab。
()二、 填空题:(共48分)1.(本题3分)一面积为S 的平面,放在场强为E 的均匀电场中,已知E 与平面间的夹角为)21(πθ<,则通过该平面的电场强度通量的数值e Φ= 。
2.(本题3分)真空中一半径为R 的半圆细环,均匀带电Q ,如图所示。
设无穷远处为电势零点,则圆心O 点外的电势0U = ,若将一带电量为q 的点电荷从无穷远处移到圆心O 点,则电场力做功A= 。
大学物理试卷1

1. 如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定.[ ] 2. 一辆汽车从静止出发在平直公路上加速前进.如果发动机的功率一定,下面哪一种说法是正确的?(A) 汽车的加速度是不变的. (B) 汽车的加速度随时间减小. (C) 汽车的加速度与它的速度成正比. (D) 汽车的速度与它通过的路程成正比.(E) 汽车的动能与它通过的路程成正比. [ ]3. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v . (B) mkTπ831=x v . (C) mkTπ38=x v . (D) =x v 0 . [ ] 4. 在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则 (A) 温度和压强都提高为原来的2倍. (B) 温度为原来的2倍,压强为原来的4倍. (C) 温度为原来的4倍,压强为原来的2倍. (D)温度和压强都为原来的4倍. [ ]5. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的(A) n 倍. (B) n -1倍.(C) n 1倍. (D) nn 1+倍. [ ]6. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A) a qQ023επ . (B) aqQ 03επ.(C)a qQ 0233επ. (D) aqQ032επ. [ ]7. 一带电大导体平板,平板二个表面的电荷面密度的代数和为σ ,置于电场强度为0E的均匀外电场中,且使板面垂直于0E的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为: (A) 002εσ-E ,002εσ+E . (B)002εσ+E ,002εσ+E .q2E(C) 002εσ+E ,002εσ-E . (D) 002εσ-E 002εσ-E . [ ]8. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关. (B) 使电容减小,且与介质板相对极板的位置有关. (C) 使电容增大,但与介质板相对极板的位置无关. (D) 使电容增大,且与介质板相对极板的位置有关. [ ]9. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(A)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ]10. 两根很长的平行直导线,其间距离为a ,与电源组成闭合回路,如图.已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的(A) 总磁能将增大. (B) 总磁能将减少. (C) 总磁能将保持不变. (D) 总磁能的变化不能确定. [ ]11. 如图所示,小船以相对于水的速度 v与水流方向成α角开行,若水流速度为u,则小船相对于岸的速度的大小为___________________,与水流方向的夹角为____________________.12. 一个质量为m 的质点,沿x 轴作直线运动,受到的作用力为i t F Fcos 0ω= (SI)t = 0时刻,质点的位置坐标为0x ,初速度00=v.则质点的位置坐标和时间的关系式是x =______________________________________13. 质量为M 的车沿光滑的水平轨道以速度v 0前进,车上的人质量为m ,开始时人相对于车静止,后来人以相对于车的速度v 向前走,此时车速变成V ,则车与人系统沿轨道方向动量守恒的方程应写为______________________________.14. 处于平衡态A 的一定量的理想气体,若经准静态等体过程变到平衡态B ,将从外界吸收热量416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸收热量582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中气体对外界所作的功为____________________.15. 一空气平行板电容器,两板相距为d ,与一电池连接时两板之间相互作用力的大小为F ,在与电池保持连接的情况下,将两板距离拉开到2d ,则两板之间的静电作用力的大小是______________________. 16. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的αuv_________倍.17. 有很大的剩余磁化强度的软磁材料不能做成永磁体,这是因为软磁材料__________________,如果做成永磁体________________.18. 一根直导线在磁感强度为B的均匀磁场中以速度 v运动切割磁力线.导线中对应于非静电力的场强(称作非静电场场强)=K E____________.19. 加在平行板电容器极板上的电压变化率1.0×106 V/s ,在电容器内产生1.0 A 的位移电流,则该电容器的电容量为__________μF .20. 一质点的运动轨迹如图所示.已知质点的质量为20 g ,在A 、B 二位置处的速率都为20 m/s ,A v 与x 轴成45°角,B v垂直于y 轴,求质点由A 点到B 点这段时间内,作用在质点上外力的总冲量.21. 两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2/ 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10cm .求:(1) 组合轮的角加速度β; (2) 当物体A 上升h =40 cm 时,组合轮的角速度ω.22. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?23. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x=bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.24. 假设把氢原子看成是一个电子绕核作匀速圆周运动的带电系统.已知平面轨道的半径为r ,电子的电荷为e ,质量为m e .将此系统置于磁感强度为0B 的均匀外磁场中,设0B的方向与轨道平面平行,求此系统所受的力矩M.25. 均匀磁场B被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,已知π=31θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向.xyOBA Bv Avcαcos 222v v u u ++ 2分 20. 解:由动量定理知质点所受外力的总冲量 I =12m m m -=∆)(由A →BA B Ax Bx x m m m m I v v v v --=-=cos45°=-0.683 kg·m·s -1 1分I y =0- m v Ay = - m v A sin45°= - 0.283 kg·m·s -1 1分 I =s N 739.022⋅=+y x I I2分方向:==11/tg θθxy I I 202.5° (θ 1为与x 轴正向夹角) 1分21.解:(1) 各物体受力情况如图. 图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (2r )-Tr =9mr 2β / 2 1分 a =r β 1分 a '=(2r )β 1分由上述方程组解得:β=2g / (19r )=10.3 rad ·s -2 1分(2) 设θ为组合轮转过的角度,则θ=h / rω2=2βθ所以,ω = (2βh / r )1/2=9.08 rad ·s -12分22. 解:等压过程 W = p ΔV =(M /M mol )R ΔT1分iW T iR M M E mal 2121)/(==∆∆ 1分 双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分23. 解: 通过x =a 处平面1的电场强度通量Φ1 = -E 1 S 1= -b a 3 1分通过x = 2a 处平面2的电场强度通量Φ2 = E 2 S 2 = 2b a 3 1分其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为Φ = Φ1+ Φ2 = 2b a 3-b a 3 = b a 3 =1 N ·m 2/C 3分24. 解:电子在xz 平面内作速率为v 的圆周运动(如图), 则r m r e e 22024v=πε ∴ erm e04επ=v 2分电子运动的周期 erm r r e0422T εππ=π=v 1分 则原子的轨道磁矩 em m re r T e IS p 0224επ=π== 3分m p的方向与y 轴正向相反. 1分设0B方向与x 轴正向平行,则系统所受力矩=⨯=0B p M mk m r B e e0024επ 3分a 'a 'y25.解:大小: =⎪d Φ /dt ⎪= Sd B/dt1分= S d B / d t =t B Oa R d /d )sin 2121(22θθ⋅- 1分1分 =3.68mV方向:沿adcb 绕向. 2分c。
大学物理期末考试试卷(含答案)

大学物理一、单选题(本大题共8小题,每小题5分,共40分)1.下面表述正确的是[ ](A)质点作圆周运动,加速度一定与速度垂直 (B) 物体作直线运动,法向加速度必为零 (C)轨道最弯处法向加速度最大 (D)某时刻的速率为零,切向加速度必为零。
2.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f [ ](A) 恒为零 (B) 不为零,但保持不变(C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 3.地球绕太阳公转,从近日点向远日点运动的过程中,下面叙述中正确的是 [ ] (A)太阳的引力做正功 (B)地球的动能在增加 (C)系统的引力势能在增加 (D) 系统的机械能在减少4.如图所示:一均匀细棒竖直放置,其下端与一固定铰链O 连接,并可绕其转动,当细棒受到扰动,在重力作用下由静止向水平位置绕O 转动,在转动过程中, 下述说法哪一种是正确的[ ](A) 角速度从小到大,角加速度从小到大; (B) 角速度从小到大,角加速度从大到小; (C) 角速度从大到小,角加速度从大到小; (D) 角速度从大到小,角加速度从小到大. 5.已知一高斯面所包围的体积内电量代数和iq =0,则可肯定:[ ](A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
(C )穿过整个高斯面的电通量为零。
(D )以上说法都不对。
6 有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N=2的平面圆线圈,导线长度不变,并通以同样的电流,则该线圈中心的磁感强度是原来的[ ](A )4倍 (B )2倍 (C ) 1/2 (D )1/47. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是[ ](A) ad 边转入纸内,bc 边转出纸外 (B) ad 边转出纸外,bc 边转入纸内 (C) ab 边转出纸外,cd 边转入纸内(D) ab 边转入纸内,cd 边转出纸外8.两根无限长的平行直导线有相等的电流, 但电流的流向相反,如右图,而电流的变化率dtdI均小于零,有一矩形线圈与两导线共面,则[ ] (A )线圈中无感应电流;(B )线圈中感应电流不确定。
大学基础教育《大学物理(一)》模拟考试试题 含答案

大学基础教育《大学物理(一)》模拟考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
2、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
5、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
6、一质点作半径为R的匀速圆周运动,在此过程中质点的切向加速度的方向______,法向加速度的大小______。
(填“改变”或“不变”)7、两列简谐波发生干涉的条件是_______________,_______________,_______________。
8、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
9、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
10、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
二、名词解释(共5小题,每题3分,共15分)1、自由度:2、光的吸收:3、基态:4、刚体:5、半波损失:三、选择题(共10小题,每题2分,共20分)1、下面说法正确的是()。
安徽大学《大学物理》2023-2024学年第一学期期末试卷

安徽大学《大学物理》2023-2024学年第一学期期末试卷考生须知:1.作答前,请将自己的姓名、准考证号填写在答题纸上相应位置,并核对条形码上的姓名、准考证号等有关信息。
2.答题内容一律涂或书写在答题纸上规定的位置,在试题卷上作答无效。
一、选择题(每题3分,共30分)1.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量,当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是()。
(A)0221v v +=kt (B)0221v v +-=kt (C)02121v v +=kt (D)02121v v +-=kt 2.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间是()。
(A)gt 0v v -(B)g t 20v v -(C)()g t 2/1202v v-(D)()g t 22/1202v v -3.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:()。
(A)vv v,v == (B)vv v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 4.在相对地面静止的坐标系内,A 、B 二船都以2m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i 、j 表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为()。
(A)2i +2j(B)2i +2j(C)-2i -2j(D)2i -2j5.一条河在某一段直线岸边同侧有A 、B 两个码头,相距1km,甲、乙两人需要从码头A 到码头B ,再立即由B 返回。
甲划船前去,船相对河水的速度为4km/h;而乙沿岸步行,步行速度也为4km/h。
如河水流速为2km/h,方向从A 到B ,则()。
(A)甲比乙晚10分钟回到A(B)甲和乙同时回到A(C)甲比乙早10分钟回到A(D)甲比乙早2分钟回到A6.一飞机相对空气的速度大小为200km/h,风速为56km/h,方向从西向东。
大学物理1试卷

大学物理1试卷11。
一质点在力F= 5m(5- 2t)(SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t为时间,则当t = 5 s时,质点的速率为(A)50 m·s—1.。
(B)25 m·s—1.(C) 0.(D) —50 m·s—1.[]2一人造地球卫星到地球中心O的最大距离和最小距离分别是R A和R B.设卫星对应的角动量分别是L A、L B,动能分别是E KA、E KB,则应有(A) L B〉L A,E KA〉E KB.(B) L B〉L A,E KA = E KB.(C) L B = L A,E KA = E KB.(D)L B〈L A,E KA = E KB.(E)L B = L A,E KA〈E KB.[]3。
(质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A),顺时针.(B),逆时针.(C),顺时针.(D),逆时针.[]4。
根据高斯定理的数学表达式可知下述各种说法中,正确的是:(A)闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B)闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C)闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.[]5. 一空心导体球壳,其内、外半径分别为R1和R2,带电荷q,如图所示.当球壳中心处再放一电荷为q的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A).(B).(C)。
(D).[]6。
电流由长直导线1沿半径方向经a点流入一电阻均匀的圆环,再由b点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I,圆环的半径为R,且a、b与圆心O三点在一直线上.若载流直导线1、2和圆环中的电流在O点产生的磁感强度分别用、和表示,则O点磁感强度的大小为(A)B = 0,因为B1 = B2 = B3 = 0.(B)B = 0,因为虽然B1≠0、B2≠0,但,B3 = 0.(C) B≠0,因为虽然,但B3≠0.(D)B≠0,因为虽然B3 = 0,但.[]7。
100101大学物理(一)

《大学物理(一)》课程综合复习资料一、单选题1.一质点作匀速率圆周运动时:A.它的动量不变,对圆心的角动量也不变B.它的动量不变,对圆心的角动量不断不变C.它的动量不断改变,对圆心的角动量不变D.它的动量不断改变,对圆心的角动量也不断改变答案:C2.某人骑自行车以速率V向正西方行驶,遇到由北向南刮的风(设风速大小也为V),则他感到风是从:A.东北方向吹来B.东南方向吹来C.西北方向吹来D.西南方向吹来答案:C3.对功的概念有以下几种说法:(l)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.(l)、(2)是正确的B.(2)、(3)是正确的C.只有(2)是正确的D.只有(3)是正确的答案:C4.A.不变B.变小C.变大D.无法判断答案:C5.一个人站在有光滑固定转轴的转动平台上,双臂水平地举二哑铃.在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的:A.机械能守恒,角动量守恒B.机械能守恒,角动量不守恒C.机械能不守恒,角动量守恒D.机械能不守恒,角动量也不守恒答案:C6.A.匀速直线运动B.变速直线运动C.抛物线运动D.一般曲线运动答案:B7.A.向左运动B.静止不动C.向右运动D.不能确定答案:C8.质点系的内力可以改变:A.系统的总质量B.系统的总动量C.系统的总动能D.系统的总角动量答案:C9.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端。
他们由初速为零同时向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是:A.甲先到达B.乙先到达C.同时到达D.谁先到达不能确定答案:C10.在一根很长的弦线上形成的驻波是:A.由两列振幅相等的相干波,沿着相同方向传播叠加而形成的B.由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的C.由两列振幅相等的相干波,沿着反方向传播叠加而形成的D.由两列波,沿着反方向传播叠加而形成的答案:C11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态。
2022年大学物理学专业《大学物理(一)》期末考试试题 附答案

2022年大学物理学专业《大学物理(一)》期末考试试题附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、两列简谐波发生干涉的条件是_______________,_______________,_______________。
2、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
3、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
4、一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B的大小为___________;铁芯中的磁场强度H的大小为___________ 。
5、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
6、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
7、一质点作半径为0.1m的圆周运动,其角位置的运动学方程为:,则其切向加速度大小为=__________第1秒末法向加速度的大小为=__________。
8、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
9、一小球沿斜面向上作直线运动,其运动方程为:,则小球运动到最高点的时刻是=_______S。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2的重物的加速度为的大小a ′,则(A) a ′= a (B) a ′> a(C) a ′< a (D) 不能确定.[ ] 2. 一辆汽车从静止出发在平直公路上加速前进.如果发动机的功率一定,下面哪一种说法是正确的?(A) 汽车的加速度是不变的. (B) 汽车的加速度随时间减小. (C) 汽车的加速度与它的速度成正比. (D) 汽车的速度与它通过的路程成正比.(E) 汽车的动能与它通过的路程成正比. [ ]3. 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v . (B) mkTπ831=x v . (C) mkTπ38=x v . (D) =x v 0 . [ ] 4. 在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则 (A) 温度和压强都提高为原来的2倍. (B) 温度为原来的2倍,压强为原来的4倍. (C) 温度为原来的4倍,压强为原来的2倍. (D)温度和压强都为原来的4倍. [ ]5. 设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取热量的(A) n 倍. (B) n -1倍.(C) n 1倍. (D) nn 1+倍. [ ]6. 如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A) a qQ023επ . (B) aqQ 03επ.(C)a qQ 0233επ. (D) aqQ032επ. [ ]7. 一带电大导体平板,平板二个表面的电荷面密度的代数和为σ ,置于电场强度为0E的均匀外电场中,且使板面垂直于0E的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为: (A) 002εσ-E ,002εσ+E . (B)002εσ+E ,002εσ+E .q2E(C) 002εσ+E ,002εσ-E . (D) 002εσ-E 002εσ-E . [ ]8. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关. (B) 使电容减小,且与介质板相对极板的位置有关. (C) 使电容增大,但与介质板相对极板的位置无关. (D) 使电容增大,且与介质板相对极板的位置有关. [ ]9. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B、2B 和3B 表示,则O 点的磁感强度大小(A)B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ]10. 两根很长的平行直导线,其间距离为a ,与电源组成闭合回路,如图.已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的(A) 总磁能将增大. (B) 总磁能将减少. (C) 总磁能将保持不变. (D) 总磁能的变化不能确定. [ ]11. 如图所示,小船以相对于水的速度 v与水流方向成α角开行,若水流速度为u,则小船相对于岸的速度的大小为___________________,与水流方向的夹角为____________________.12. 一个质量为m 的质点,沿x 轴作直线运动,受到的作用力为i t F Fcos 0ω= (SI)t = 0时刻,质点的位置坐标为0x ,初速度00=v.则质点的位置坐标和时间的关系式是x =______________________________________13. 质量为M 的车沿光滑的水平轨道以速度v 0前进,车上的人质量为m ,开始时人相对于车静止,后来人以相对于车的速度v 向前走,此时车速变成V ,则车与人系统沿轨道方向动量守恒的方程应写为______________________________.14. 处于平衡态A 的一定量的理想气体,若经准静态等体过程变到平衡态B ,将从外界吸收热量416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸收热量582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中气体对外界所作的功为____________________.15. 一空气平行板电容器,两板相距为d ,与一电池连接时两板之间相互作用力的大小为F ,在与电池保持连接的情况下,将两板距离拉开到2d ,则两板之间的静电作用力的大小是______________________. 16. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的αuv_________倍.17. 有很大的剩余磁化强度的软磁材料不能做成永磁体,这是因为软磁材料__________________,如果做成永磁体________________.18. 一根直导线在磁感强度为B的均匀磁场中以速度 v运动切割磁力线.导线中对应于非静电力的场强(称作非静电场场强)=K E____________.19. 加在平行板电容器极板上的电压变化率1.0×106 V/s ,在电容器内产生1.0 A 的位移电流,则该电容器的电容量为__________μF .20. 一质点的运动轨迹如图所示.已知质点的质量为20 g ,在A 、B 二位置处的速率都为20 m/s ,A v 与x 轴成45°角,B v垂直于y 轴,求质点由A 点到B 点这段时间内,作用在质点上外力的总冲量.21. 两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2/ 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10cm .求:(1) 组合轮的角加速度β; (2) 当物体A 上升h =40 cm 时,组合轮的角速度ω.22. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?23. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:E x=bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.24. 假设把氢原子看成是一个电子绕核作匀速圆周运动的带电系统.已知平面轨道的半径为r ,电子的电荷为e ,质量为m e .将此系统置于磁感强度为0B 的均匀外磁场中,设0B的方向与轨道平面平行,求此系统所受的力矩M.25. 均匀磁场B被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,已知π=31θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向.xyOBA Bv Avcαcos 222v v u u ++ 2分 20. 解:由动量定理知质点所受外力的总冲量 I =12m m m -=∆)(由A →BA B Ax Bx x m m m m I v v v v --=-=cos45°=-0.683 kg·m·s -1 1分I y =0- m v Ay = - m v A sin45°= - 0.283 kg·m·s -1 1分 I =s N 739.022⋅=+y x I I2分方向:==11/tg θθxy I I 202.5° (θ 1为与x 轴正向夹角) 1分21.解:(1) 各物体受力情况如图. 图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (2r )-Tr =9mr 2β / 2 1分 a =r β 1分 a '=(2r )β 1分由上述方程组解得:β=2g / (19r )=10.3 rad ·s -2 1分(2) 设θ为组合轮转过的角度,则θ=h / rω2=2βθ所以,ω = (2βh / r )1/2=9.08 rad ·s -1 2分22. 解:等压过程 W = p ΔV =(M /M mol )R ΔT 1分内能增量iW T iR M M E mal 2121)/(==∆∆ 1分 双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分23. 解: 通过x =a 处平面1的电场强度通量Φ1 = -E 1 S 1= -b a 3 1分通过x = 2a 处平面2的电场强度通量Φ2 = E 2 S 2 = 2b a 3 1分其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为Φ = Φ1+ Φ2 = 2b a 3-b a 3 = b a 3 =1 N ·m 2/C 3分24. 解:电子在xz 平面内作速率为v 的圆周运动(如图), 则r m r e e 22024v=πε ∴ erm e04επ=v 2分电子运动的周期 erm r r e0422T εππ=π=v 1分 则原子的轨道磁矩 em m re r T e IS p 0224επ=π== 3分m p的方向与y 轴正向相反. 1分设0B方向与x 轴正向平行,则系统所受力矩=⨯=0B p M mk m r B e e0024επ 3分mgA B N T T βa T ' T 'a 'Oya2aE 1 E 2 1 2y rzv0BM25.解:大小: =⎪d Φ /dt ⎪= Sd B/dt1分= S d B / d t =t B Oa R d /d )sin 2121(22θθ⋅- 1分 1分 =3.68 mV 方向:沿adcb 绕向. 2分c。