差模信号干扰和共模信号
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压电流的变化通过导线传输时有二种形态,我们将此称做"共模"和"差模".设备的电源线,电话等的通信线,与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号.但在这两根导线之外通常还有第三导体,这就是"地线".干扰电压和电流分为两种:一种是两根导线分别做为往返线路传输;另一种是两根导线做去路,地线做返回路传输.前者叫"差模",后者叫"共模".
电源线噪声是电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的。电源线噪声分为两大类:共模干扰、差模干扰。共模干扰(Common-mode Interference)定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰(Differential-mode Interference)定义为任何两个载流导体之间的不希望有的电位差。
任何电源线上传导干扰信号,均可用差模和共模信号来表示。差模干扰在两导线之间传输,属于对称性干扰;共模干扰在导线与地(机壳)之间传输,属于非对称性干扰。在一般情况下,差模干扰幅度小、频率低、所造成的干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。
什么叫差模信号?什么叫共模信号?
答:两个大小相等、极性相反的一对信号称为差模信号。差动放大电路输入差模信号(u il =-u i2)时,称为差模输入。
两个大小相等、极性相同的一对信号称为共模信号。差动放大电路输入共模信号(u il =u i2)时,称为共模输入。
差模输入使两管的集电极电流一增一减,相应两管的集电极电位也一增一减,于是有输出电流出现出现。而在共模输入信号作用下,如果两管完全
对称,则两管的集电极电位变化相同,因而此时输出电压为零。
共模和差模信号与滤波器
山东莱芜钢铁集团动力部周志敏(莱芜271104)
1概述
随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传播途径分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。
2差模信号和共模信号
差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是VDIFF。纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(IDIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。
共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。共模信号的电路如图2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。
3滤波器
滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),它们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用π型滤波器抑制,如图3(a)所示。图3(a)中,LD为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,LC为滤波扼流圈。由于LC的两个线圈绕向一致,当电源输入电流流过LC时,所产生的磁场可以互相抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。LC对共模噪声来说,相当于一个大电感,能有效地抑制共模传导噪声。开关电源输入端分别对地并接的电容CY对共模噪声起旁路作用。共模扼流圈两端并联的电容CX对共模噪声起抑制作用。R为CX的放电电阻,它是VDE 0806和IEC 380安全技术标准所推荐的。图3(b)中各元件参数范围为:CX=0.1μF~2μF;CY=2.0nF~33nF;LC=几~几十mH,随工作电流不同而取不同的参数值,如电流为25A时LC=1.8mH;电流为0 3A时,LC=47mH。另外在滤波器元件选择中,一定要保证输入滤波器的谐振频率低于开
关电源的工作频率。
滤波电容的大小计算
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!
电容的等效模型为一电感L,一电阻R和电容C的串联,
电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.
因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
采用电容滤波设计需要考虑参数:
ESR ESL 耐压值谐振频率
去耦电容.旁路电容区别
旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用。
电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容。后来也有的资料把它引申使用于类似情况。
去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。
数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5μH。0.1μF 的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的