烷烃

合集下载

有机化学—烷烃

有机化学—烷烃
(CH3)3C-叔丁基 > CH3CH2(CH3)CH-仲丁基 > (CH3)2CH- 异丙基>(CH3)2CHCH2-异丁基 > CH3CH2CH2CH2-正丁基 > CH3CH2CH2-正丙基 > CH3CH2-乙基 > CH3-甲基
例:用衍生命名法给下列烷烃命名
CH3CHCH2CH3 CH3
戊烷
烷烃
同分异构
同分异构的分类
构造异构
碳链异构(正丁烷和异丁烷) 官能团位置异构(1-丁烯和2-丁烯) 官能团异构(乙醇和二甲醚)
互变异构(乙酰乙酸乙酯酮式和烯醇式)
立体异构
构型异构
顺反异构(烯烃) 光学异构(旋光异构)
构象异构(烷烃,环己烷,糖类)
一、烷烃的构造异构 分子构造:分子中原子间互相连接的顺序和方式。
CH4
C2H6
C3H8
C4H10
H
HH
HHH
HHHH
H C HH C C HH C C C HH C C C C H
H 甲烷
HH 乙烷
HHH 丙烷
HHHH 丁烷
第一节 烷烃的命名
一、伯、仲、叔、季碳原子和伯、仲、叔氢原子
1 H(伯氢)
2 H(仲氢)
H3C CH2 CH2 CH3
1 C(伯碳,一级碳) 2 C (仲碳,二级碳)
➢同系列 同系差 同系物 具有同一通式,结构、性质相似,组成上相差一个或若干个CH2 的一系列化合物称为同系列。CH2称为系差,同系列中各化合物 互称为同系物。如甲烷,乙烷,丙烷等都属于烷烃系列,三者彼此 之间互称烷烃同系物。
CH4 甲烷
C2H6 乙烷
C3H7 丙烷
C4H8 丁烷

有机化学烷烃

有机化学烷烃
普通命名法基本原则:
例:
(正己烷)
(异己烷)
(新己烷)
CH3CH2CH2CH2CH2CH3
CH3CHCH2CH2CH3
CH3
CH3—C—CH2 CH3
CH3
CH3
我国现在使用的有机化合物系统命名法是参考国际纯粹和应用化学联合会(International Union of Pure and Applied Chemistry 简称IUPAC)制定的命名原则,并结合我国的文字特点于1960年制定,1980年由中国化学会加以增减修订的《有机化学命名原则》。
色散力示意图:
烷烃属于非极性分子,分子间只有微弱的色散力,在室温(25℃)和下,
烷烃的状态
C1~C4的烷烃为气态(gas); C5~C16的烷烃为液态(liquid); C17以上的烷烃为固态(solid)。
1、随着碳原子数的递增,沸点依次升高。
1.沸点(boiling point)
有机化学烷烃
分子中只含有碳(carbon)和氢(hydrogen)两种元素的有机化合物叫做碳氢化合物,简称烃。 其它有机化合物可以看作是烃的衍生物,所以烃是有机化合物的“母体”。
烃(hydrocarbon)的定义:

开链烃 (脂肪烃)
例:
戊烷——系统命名
正戊烷——习惯命名
(A)从烷烃的构造式中选取最长的连 续碳链作为主链,支链作为取代基。当含有不止一个相等的最长碳链可供选择时,一般选取包含支链最多的最长碳链作为主链。根据主链所含碳原子数称为“某”烷。
系统命名的基本原则:(支链烷烃)
正确的选择是2,不是1。
例:
问:下列化合物应选择哪条主链?
CH3
正丁烷和异丁烷属于同分异构体。正丁烷和异丁烷这种同分异构体,是由于分子内原子间互相连接的顺序不同造成的(即不同构造(constitution)引起的),称为构造异构体(constitutional isomers) 。

烷烃

烷烃

三个相同: 三个相同: 分子组成相同 分子量相同 相似、 相似、 理解: 理解: 分子式相同 完全不同 两个不同 不同: 两个不同:结构不同 性质不同
P10“学与问”的第一问:己烷(C6H14)有 “学与问”的第一问:己烷 有 5种同分异构体 你能写出它们的结构式吗 种同分异构体,你能写出它们的结构式吗 种同分异构体 你能写出它们的结构式吗? 并总结同分异构体书写的基本规律 并总结同分异构体书写的基本规律! 同分异构体书写的基本规律
3. 同分异构体的书写规律 以碳骨架的同分异构体的书写口诀: 以碳骨架的同分异构体的书写口诀: 主链由长到短; 主链由长到短; 减碳架支链 支链由整到散; 支链由整到散; 位置由心到边; 位置由心到边; 排布由对到邻再到间。 排布由对到邻再到间。
最后用氢原子补足碳原子的四个价键。 最后用氢原子补足碳原子的四个价键。
异丁烷: 异丁烷:
H | H--C--H H H | | H-C——C——C-H - - | | | H H H
结构简式: 结构简式 例: H H H H H | | | | | H—C—C—C—C—C—H | | | | | H | H H H H- C-H H
省略C—H键 把同一C上的H合并 省略横线上C—C键 CH3—CH—CH—CH—CH3 2 2 CH 3 CH 3CHCH2CH 2CH 3
[CH3CH2CH3]
异丁烷: 异丁烷: H | H--C--H H H | | H-C——C——C-H - - | | | H H H
[CH3CH2CH2CH3]
[CH3CH(CH3 )CH3]
烷烃结构、 烷烃结构、组成特征
1.碳原子间都以 碳原子间都以C-C相连、其余都是 相连、 碳原子间都以 相连 其余都是C-H键; 键 2. C原子都形成 个共价键;形成四面体结构; 原子都形成4个共价键 原子都形成 个共价键;形成四面体结构; 3.碳链可以转动 碳链可以转动…… 碳链可以转动 4.组成上可以用通式“CnH2n+2”表示。 组成上可以用通式“ 表示。 组成上可以用通式

烷烃

烷烃

英文名
n-heptane
n-octane n-nonane n-decane n-undecane n-dodecane n-tridecane n-eicosane
正庚烷
正辛烷 正壬烷 正癸烷 正十一烷 正十二烷 正十三烷 正二十烷
C12
C13
C20
碳原子数为10以上时用大写数字表示
2. IUPAC命名法(系统命名法)
用“,”隔 开

含支链的取代基的命名
5 7 8 6 4
3 2
1
2
1
3
仲丁基 2-丁基 1-甲基丙基
2, 7-二甲基-4-仲丁基辛烷 2, 7-二甲基-4-(2-丁基)辛烷 2, 7-二甲基-4-(1-甲基丙基)辛烷
三.构象 (comformation) 和构象异构体
C—C单键是可以旋转的 单键的旋转使分子中的原子或基团在空间产生不同的排列 (构象) 不同的构象之间为构象异构关系(一类立体异构现象)
CH2
CH2
H 3C
C
CH3
1碳负离子 (伯碳负离子)
3碳正离子 (伯碳正离子)
二. 烷烃的命名

普通命名法
用于简单化合物的命名

IUPAC命名法(系统命名法)
(IUPAC: 国际纯粹与应用化学联合会, International Union of Pure and Applied Chemistry)
(正)丁基
n -b u ty l
n -B u
仲丁基
s e c -b u ty l (s e c o d a ry )
s -B u
CH3 C H 3C H C H 2 CH3 C H 3C CH3 叔丁基 te rt-b u ty l (te rtia ry ) t-B u 异丁基 is o b u ty l i-B u

烷烃

烷烃

一.定义,通式和同系列定义:由碳和氢两种元素组成的饱和烃称为烷烃.通式: CnH2n+2同系列: 相邻的两种烷烃分子组成相差一个碳原子和两个氢原子,像这样结构相似,而在组成上相差一个或几个CH2的一系列化合物称为同系列.二.同分异构体甲烷,乙烷和丙烷没有同分异构体,从丁烷开始产生同分异构体.碳链异构体:因为碳原子的连接顺序不同而产生的同分异构体.随着分子中碳原子数目的增加,碳链异构体的数目迅速增多.三.烷烃的结构碳原子的最外层上有4个电子,电子排布为1S22S22P2,碳原子通过SP3杂化形成四个完全相同的SP3杂化轨道,所谓杂化就是由若干个不同类型的原子轨道混合起来,重新组合成数目相等的.能量相同的新轨道的过程.由1个S轨道与3个P轨道通过杂化后形成的4个能量相等的新轨道叫做SP3杂化轨道,这种杂化方式叫做SP3杂化.在形成甲烷分子时,4个氢原子的S轨道分别沿着碳原子的SP3杂化轨道的对称轴靠近,当它们之间的吸引力与斥力达到平衡时,形成了4个等同的碳氢σ键.实验证明甲烷分子是正四面体型的.4个氢原子占据正四面体的四个顶点,碳原子核处在正四面体的中心,四个碳氢键的键长完全相等,所有键角均为109.5.σ 键的特点:(1)重叠程度大,不容易断裂,性质不活泼.(2)能围绕其对称轴进行自由旋转.四.烷烃的命名碳原子的类型:伯碳原子:(一级)跟另外一个碳原子相连接的碳原子.仲碳原子:(二级)跟另外二个碳原子相连接的碳原子.叔碳原子:(三级)跟另外三个碳原子相连接的碳原子.季碳原子:(四级)跟另外四个碳原子相连接的碳原子.普通命名法其基本原则是:(1)含有10个或10个以下碳原子的直链烷烃,用天干顺序甲,乙,丙,丁,戊,已,庚,辛,壬,癸10个字分别表示碳原子的数目,后面加烷字.例如: CH3CH2CH2CH3 命名为正丁烷.(2)含有10个以上碳原子的直链烷烃,用小写中文数字表示碳原子的数目.如CH3(CH2)10CH3命名为正十二烷.(3)对于含有支链的烷烃,则必须在某烷前面加上一个汉字来区别.在链端第2位碳原子上连有1个甲基时,称为异某烷,在链端第二位碳原子上连有2个甲基时,称为新某烷.如: 正戊烷异戊烷新戊烷系统命名法系统命名法是我国根据1892年曰内瓦国际化学会议首次拟定的系统命名原则.国际纯粹与应用化学联合会(简称IUPAC法)几次修改补充后的命名原则,结合我国文字特点而制定的命名方法,又称曰内瓦命名法或国际命名法.烷基:烷烃分子去掉一个氢原子后余下的部分.其通式为CnH2n+1-,常用R-表示.常见的烷基有:甲基CH3— (Me)乙基CH3CH2— (Et)正丙基CH3CH2CH2— (n-Pr)异丙基(CH3)2CH— (iso-Pr)正丁基CH3CH2CH2CH2— (n-Bu)异丁基(CH3)2CHCH2— (iso-Bu)仲丁基(sec-Bu)叔丁基(CH3)3C— (ter-Bu)在系统命名法中,对于无支链的烷烃,省去正字.对于结构复杂的烷烃,则按以下步骤命名:选择分子中最长的碳链作为主链,若有几条等长碳链时,选择支链较多的一条为主链.根据主链所含碳原子的数目定为某烷,再将支链作为取代基.此处的取代基都是烷基.从距支链较近的一端开始,给主链上的碳原子编号.若主链上有2个或者个以上的取代基时,则主链的编号顺序应使支链位次尽可能低.将支链的位次及名称加在主链名称之前.若主链上连有多个相同的支链时,用小写中文数字表示支链的个数,再在前面用阿拉伯数字表示各个支链的位次,每个位次之间用逗号隔开,最后一个阿拉伯数字与汉字之间用半字线隔开.若主链上连有不同的几个支链时,则按由小到大的顺序将每个支链的位次和名称加在主链名称之前.如果支链上还有取代基时,则必须从与主链相连接的碳原子开始,给支链上的碳原子编号.然后补充支链上烷基的位次.名称及数目.五.物理性质1.状态:在常温常压下,1至4个碳原子的直链烷烃是气体,5至16个碳原子的是液体,17个以上的是固体.2.沸点:直链烷烃的沸点随分子量的增加而有规律地升高.而低级烷烃的沸点相差较大,随着碳原子的增加,沸点升高的幅度逐渐变小.沸点的高低取决于分子间作用力的大小.烷烃是非极性分子,分子间的作用力(即范德华力)主要是色散力,这种力是很微弱的.色散力与分子中原子数目及分子的大小成正比,这是由于分子量大的分子运动需要的能量也大.多一个亚甲基时,原子数目和分子体积都增大了,色散力也增大,沸点即随之升高.色散力是一种近程力,它只有在近距离内才能有效地发挥作用,随着分子间距离的增大而迅速减弱.带着支链的烷烃分子,由于支链的阻碍,分子间不能像直链烷烃那样紧密地靠在一起,分子间距离增大了,分子间的色散力减弱,所以支链烷烃的沸点比直链烷烃要低.支链越多,沸点越低.3.熔点:直链烷烃的熔点,其本上也是随分子量的增加而逐渐升高.但偶数碳原子的烷烃熔点增高的幅度比奇数碳原子的要大一些.形成一条锯齿形的曲线.烷烃的熔点也主要是由分子间的色散力所决定的.固体分子的排列很有秩序,分子排列紧密,色散力强.固体分子间的色散力,不仅取决于分子中原子的数目和大小,而且也取决于它们在晶体中的排列状况.X-光结构分析证明:固体直链烷烃的晶体中,碳链为锯齿形的,由奇数碳原子组成的锯齿状链中,两端的甲基处在一边,由偶数碳原子组成的锯齿状链中,两端的甲基处在相反的位置.即偶数碳原子的烷烃有较大的对称性,因而使偶数碳原子链比奇数碳原子更为紧密,链间的作用力增大,所以偶数碳原子的直链烷烃的熔点要高一些.4.溶解度:烷烃是非极性分子,又不具备形成氢键的结构条件,所以不溶于水,而易溶于非极性的或弱极性的有机溶剂中.5.密度:烷烃是在所有有机化合物中密度最小的一类化合物.无论是液体还是固体,烷烃的密度均比水小.随着分子量的增大,烷烃的密度也逐渐增大.六.化学性质烷烃是非极性分子,分子中的碳碳键或碳氢键是非极性或弱极性的σ键,因此在常温下烷烃是不活泼的,它们与强酸.强碱.强氧化剂.强还原剂及活泼金属都不发生反应.氧化反应:烷烃很容易燃烧,燃烧时发出光并放出大量的热,生成CO2和H2O.CH4 + 2O2 CO2 + 2H2O + 热量在控制条件时,烷烃可以部分氧化,生成烃的含氧衍生物.例如石蜡(含20—40个碳原子的高级烷烃的混合物)在特定条件下氧化得到高级脂肪酸.RCH2CH2R + O2 RCOOH + RCOOH2,裂化:烷烃在隔绝空气的条件下加强热,分子中的碳碳键或碳氢键发生断裂,生成较小的分子,这种反应叫做热裂化.如:CH3CH2CH2CH3 CH4 + CH2=CHCH3CH3CH3 + CH2=CH2CH2=CHCH2CH3 + H2取代反应:卤代反应是烷烃分子中的氢原子被卤素原子取代.将甲烷与氯气混合,在漫射光或适当加热的条件下,甲烷分子中的氢原子能逐个被氯原子取代,得到多种氯代甲烷和氯化氢的混合物.CH4 +Cl2 CH3Cl + HClCH3Cl + Cl2 CH2Cl2 + HClCH2Cl2 + Cl2 CHCl3 + HClCHCl3 + Cl2 CCl4 + HCl卤素反应的活性次序为:F2 >Cl2 > Br2 > I2对于同一烷烃,不同级别的氢原子被取代的难易程度也不是相同的.大量的实验证明叔氢原子最容易被取代,伯氢原子最难被取代.卤代反应机理:实验证明,甲烷的卤代反应机理为游离基链反应,这种反应的特点是反应过程中形成一个活泼的原子或游离基.其反应过程如下:(1)链引发: 在光照或加热至250—400度时,氯分子吸收光能而发生共价键的均裂,产生两个氯原子游离基,使反应引发.Cl2 2Cl(2)链增长:氯原子游离基能量高,反应性能活泼.当它与体系中浓度很高的甲烷分子碰撞时,从甲烷分子中夺取一个氢原子,结果生成了氯化氢分子和一个新的游离基——甲基游离基.Cl + CH4 HCl + CH3甲基游离基与体系中的氯分子碰撞,生成一氯甲烷和氯原子游离基.CH3 + Cl2 CH3Cl + Cl反应一步又一步地传递下去,所以称为链反应.CH3Cl + Cl CH2Cl + HCl3CH2Cl + Cl2 CH2Cl2 + Cl(3)链终止: 随着反应的进行,甲烷迅速消耗,游离基的浓度不断增加,游离基与游离基之间发生碰撞结合生成分子的机会就会增加. Cl + Cl Cl2CH3 + CH3 CH3CH3CH3 + Cl CH3Cl七.重要的烷烃。

《烷烃》精品课件

《烷烃》精品课件
《烷烃》
1、烷烃
【温故知新】 甲烷:
2.烷烃的性质: (1)物理性质:
①均为难溶于水的无色物质; ②其熔点、沸点和密度一般随着分子中碳原子数的增加(相对分子质量增大) 而升高,密度均小于水;
碳原子数相同的烷烃,随支链增加,熔沸点降低。 ③随着分子中碳原子数的增加,常温下的状态由气态变为液态,再到固态。
【练习】
某两种气态烃组成的混合物,取其2.24L(标准状况下)充分燃烧,
得到0.16molCO2气体和3.6g液态水。据此判断下列分析中不正确
的是( D )
【解析】标况下,2.24L两种气态烃组成的混合物,其物质的 量为0.1mol,完全燃烧得到0.16molCO2和3.6g水,水的物质的 量为0.2mol,则混合气体平均分子式为C1.6H4 所以,肯定含有C原子数小于1.6的烃,即一定含有甲烷,因甲 烷中含有4个氢原子,则另一种烃也含有4个氢原子.
的是( D )
A.将气体通入酸性KMnO4溶液中,溶液颜色无变化,该气体一定是甲烷 B.在导管口点燃该气体,火焰呈淡蓝色,用干燥的冷烧杯罩在火焰上方,
杯壁有水滴产生,该气体一定是甲烷 C.点燃该气体,火焰呈淡蓝色,用沾有澄清石灰水的冷烧杯罩在火焰上
方,烧杯壁上有白色物质产生,该气体一定是甲烷 D.若上述B、C的现象均能出现,则可判断该气体一定是甲烷
加热、光照或使用催化剂的条件下进行。 有机物除了有以上通性,依据其组成和结构的不同,还具有很多特性。
【课堂小结】
物理性质
烷烃的性质
化学性质
稳定性 可燃性 高温分解 取代反应
【知识海洋】 高温分解: 在隔绝空气并加热至1000℃以上的高温条件下,甲烷分解
可以用于制造颜料、油墨、油漆等

烷烃

烷烃

H H
甲烷分子的楔形式
乙烷分子的楔形式
: 伸出纸平面之前 : 伸向纸平面之后 : 在纸平面之上
简言之: 楔前、虚后、实平面。
34
所谓直链烷烃,碳链并非是直的,只是 它不含侧链而已。 ≥ C3的直链烷烃固态 时碳链呈锯齿状,气态、液态下由于围绕 σ- 键的旋转而呈多种不规则的形状:
戊烷的多种不规则形状
22
CH3 __ CH __ CH2 __ CH __ CH2 __ CH3 例1:
1 2
1
2
3
3
4
5
6
CH3
4 __ 5 CH CH3
CH2 __ CH3
6 7
取:2,5—二甲基 — 4 —乙基庚烷 不取:2—甲基— 4—仲丁基己烷
注意书写规则:阿拉伯数字之间用逗号隔开, 阿拉伯数字与汉字之间用半字线“–”连接。
40 __ CH3 __ CH __ CH2 __ C CH3 10
10 30 20
CH3 10 CH3 10
CH3 10
异辛烷 1oC 1oH
一级
2oC 2oH
二级
3oC 3oH
三级
4oC
四级




17
请记住十个烷烃的英文名称:
甲烷 methane 丙烷 propane 戊烷 pentane 庚烷 heptane 壬烷 nonane 乙烷 ethane 丁烷 butane 己烷 hexane 辛烷 octane 癸烷 decane
甲基
Me—
乙基
Et—
正丙基
n-Pr—
异丙基
i-Pr—
CH3
–CH2–
亚甲基

烷烃

烷烃
6 7 8
有多种等长的最长碳链可供选择时,应选择取代基最多
的碳链为主链。 CH3-CH2-CH—CH-CH2-CH3 3 4 CH3— —CH3 2 CH CH 5 1 CH3 CH3 6
② 编号——从靠近支链的一端开始,编号时应尽可能
使取代基具有最低编号。
两端一样长时,从小取代基一端开始编号。 CH3CH2CHCH2CHCH2CH3 CH3 CH2CH3
C、2mol
D、6mol
3、 写出下列烷烃的分子式:
(1)含有38个碳原子的烷烃的分子式
(2)含有38个氢原子的烷烃的分子式 (3)相对分子量为128的烷烃的分子式
正丁烷

异丁烷
名称 正丁烷 异丁烷
熔点/℃ -138.4 -159.6
沸点/℃ 相对密度 -0.5 0.5788 -11.7 0.557
2、立方烷是一种新合成的烃,其分子 结构为正方体,碳架结构如图所示: (1)立方烷的分子式为? C8H8 (2)该立方烷的二氯代物具有同分异 构体的数目是? 三种
4:
1 互为同位素,___ 2 是同 下列五组物质中___ 素异形体,___ 5 是同分异构体,___ 4 是同 系物,___ 3 是同一物质。
沸点/ ℃
-164 -88.6 -42.1 -0.5 36.1 301.8
相对 密度
0.466 0.572 0.585 0.5788 0.6262 0.7780
水溶性 不溶 不溶 不溶 不溶 不溶 不溶
分析表3-1烷烃的结构简式,写出对应的分子式。相邻
两个烷烃结构和分子组成上有什么联系?
五. 烷烃的命名
1.直链烷烃的命名
与普通命名法基本相同,但不用“正”字。

烷烃

烷烃
取代基位置-----取代基数目-----取代基名称-----母体名称
3.数字意义: 阿拉伯数字---------取代基位置 汉字数字---------相同取代基的个数
1、最长原则
2、最近原则 3、最小原则 4、最简原则
1、用系统命名法命名 下列物质:
CH3—CH—CH2—CH—CH3
CH2 CH3 CH2 CH3
CH3—CH—CH2—CH—CH3 CH3 CH2—CH3
己烷
2、编号,定支链所在的位置。
把主链中离支链最近的一端作为起点, 用1、2、3等数字给主链的各碳原子依次编 号定位,以确定支链所在的位置。
CH3—CH—CH2—CH—CH3
6
5
4
3
1
2
CH3
3
4 2
CH2—CH3
1
5
6
2、编号,定支链所在的位置。
CH3 CH3–C–CH2–CH–CH2–CH3 CH3 CH2–CH3
2,2—二甲基—4—乙基己烷
最简原则:当有两条相同 碳原子的主链时,选支链 最简单的一条为主链。
CH3 CH3–CH–2,5—二甲基—3—乙基己烷
1.命名步骤: (1)找主链------最长的主链; (2)编号-----靠近支链(小、多)的一端; (3)写名称-------先简后繁,相同基合并写. 2.名称组成:
练习1:
1 互为同位素,___ 2 是同素异形体, 下列五组物质中___ 5 是同分异构体,___ 4 是同系物,___ 3 是同一物质。 ___
1、 12 C
6 14 6
C
2、白磷、红磷
3、
H H | | H-C-Cl 、Cl-C-Cl | | Cl H

烷烃ppt课件

烷烃ppt课件
变化规律
烷烃在光照、高温或催化剂作用下可发生裂解、异构化、烷基化等反应;与卤 素、氧气等发生取代、氧化等反应。
02 烷烃的化学性质
自由基取代反应
01
02
03
自由基的产生
光照、加热等条件下,烷 烃分子中的C-H键均裂产 生氢自由基。
自由基的链式反应
氢自由基与烷烃分子发生 碰撞,引发新的C-H键均 裂,产生新的氢自由基和 烷基自由基。
的离子型异构化反应。
03 烷烃的来源与制 备
天然气及石油中的烷烃成分
天然气主要成分
天然气和石油的成因
甲烷(CH4),少量乙烷、丙烷等低 碳烷烃。
生物成因和化学成因,经过长期地质 作用形成。
石油中的烷烃
从C5到C20+的各种烷烃,以直链和 支链形式存在。
实验室合成方法简介
1 2
格氏试剂法 卤代烃与镁在无水乙醚中反应,生成格氏试剂, 再与羰基化合物反应得到烷烃。
05 环境影响与安全 防护措施
大气中烷烃的污染问题
温室效应
烷烃在大气中的存在会加剧温室效应,导致全球气候变暖。
光化学烟雾
在阳光照射下,烷烃与氮氧化物等污染物发生光化学反应,生成光 化学烟雾,对人类健康和生态环境造成危害。
大气污染
烷烃作为挥发性有机物(VOCs)的主要成分,对大气环境造成污染, 影响空气质量。
武兹反应 卤代烃与钠在无水乙醇中反应,生成烷烃和卤化 钠。
3
科尔贝-施密特反应 烯烃在高压下与氢气和催化剂反应,得到烷烃。
工业生产途径概述
石油裂化
在高温高压下,重质石油馏分裂 化为轻质烷烃和烯烃。
天然气液化分离
将天然气冷却至低温,使不同碳数 的烷烃依次液化分离。

烷烃

烷烃

第二章 烷烃一 . 基本内容1. 定义及命名法只含碳和氢两种元素且分子中只存在单键的饱和烃称为烷烃。

除简单的烷烃可以用普通命名法外,主要是掌握系统命名法,系统命名法的原则如下:(1)选取主链:选择最长的碳链作为母体,称为某烷。

当有一种以上的碳链可供选择时,应选择碳链上支链(支链可视为取代基)最多的碳链作母体。

(2)主链编号:编号的原则是从最靠近取代基的一端开始依次用阿拉伯数字编号,位次和取代基之间要用半字线“-”连接。

当首先出现的取代基所连碳原子的编号相同时,则尽可能使连有较多取代基的碳原子的编号最小,如CH 3CH 2CH(CH 2CH 3)C- (CH 3)2CH 2CH 3应命名为3,3-二甲基-4-乙基己烷。

主链上碳原子的编号有几种可能时,则采取“最低系列”的编号方法,即逐个比较两种编号中取代基位次的数字,最先遇到位次较低者,定为“最低系列”,如CH 3CH(CH 3)CH 2CH(CH 3)CH(CH 3)CH 3命名为2,3,5-三甲基己烷。

(3)取代基的名称写在母体名称之前,取代基的排列次序按“优先次序规则”排列,将较优的基团后列出。

2. 反应烷烃在常温下与强酸(如浓硫酸、浓硝酸),强碱(如熔化的氢氧化钠),强氧化剂(如重铬酸钾、高锰酸钾),强还原剂(如锌加盐酸、钠加乙醇)等都不起反应或反应速度很慢。

但在适当的温度、压力和催化剂的作用下可以起反应。

(1) 烷烃的燃烧:烷烃完全燃烧生成二氧化碳和水,同时放出大量的热。

反应的通式为:(2)烷烃的热解:烷烃热解时,碳-碳或碳-氢键断裂,生成含有未配对电子的烷基自由基,烷基自由基的反应活性很高,寿命很短,可发生如下反应: CH 3· + ·CH 2CH 3 → CH 3CH 2CH 3 ·CH 2CH 3 + ·CH 2CH 3 → CH 3CH 3 + CH 2=CH 2(3) 烷烃的卤化C H 2n +2+O 2n CO 2+n+1H 2On 3n +12烷烃的卤化产物通常是混合物。

烷烃

烷烃

4—甲基—3—乙基
⑦写名称
取代基在前,“某烷”在后,将两者名写在一起
6 7 8 CH3 CH2 —CH2 —CH3 | | 例: CH3—CH—CH2—CH2—CH—CH2—CH3 |2 1 3 4 5| CH3 CH3
2,2,5—三甲基—5—乙基辛烷
练习:用系统命名法命名下列有机物
CH3—CH2—CH2 | CH2 戊烷 | CH3 CH3 |2 1 5 4 3 CH3—CH2—CH—CH—CH3 | CH3
同分异构现象和同分异构体
[讨论]下面是正丁烷和异丁烷的组成和某些物质性质,试分析有 何异同并探讨其原因。 名 称 分子式 C4H10 相对分子质量 熔 58 点 沸 点 相对密度 0.5788 正丁烷 -138.4 -0.5
CH 3—CH—CH— CH2 —CH 3 2 CH 3 CH 3CHCH2CH 2CH 3
CH 3 或者: CH 3CH(CH3 )CH2CH 2CH 3
它们对应的结构简式:
乙烷: H H | | H-C-C-H | | H H 丙烷: H H H | | | H-C-C-C-H | | | H H H
CH3CHCH3 CH3
3烷烃的名称:
碳原子数 分子式 名称
1 CH4
2 C 2H 6
3 4 5 C3H8 C4H10 C5H12
甲烷 乙烷
丙 烷 丁烷
戊烷
6 7 8 9 10 碳原子数 分子式 C6H14 C7H16 C8H18 C9H20 C10H22 名称
己 烷 庚 烷 辛烷 壬烷 癸 烷
碳原子数大于十时,以汉字数字代表称某烷,
①找起点 主链中离支链最近端作为起点 先简单取代基 再繁取代基 ②编序号 用阿拉伯数字给主链碳原子编号 以确定支链的位置

烷烃

烷烃

二.同分异构体 1.概念: 同分异构: 具有相同的分子式,而不同构造式的化合物互称同分 异构体,这种现象称同分异构现象。 同系列: 相邻的两种烷烃分子组成相差一个碳原子和两个氢原 子,像这样结构相似,而在组成上相差一个或几个 CH2的一系列化合物称为同系列。同系物间有相似 的化学性质,物理性质也显示出一定的规律性。 2. 推算简单烷烃的同分异构体
CH3(CH2)3CH3 Pentane CH3(CH2)5CH3 Heptane CH3(CH2)7CH3 Nonane
CH3(CH2)8CH3
11~19Alkane = Number prefix-decane for example: 11-alkane 12-alkane 13-alkane 14-alkane 15-alkane 16-alkane 17-alkane
(CH3)2CHCH3
异丁烷
(CH3)3CCH2CH3
新己烷
用正异新只能区别三个化合物,当分子数增加,同分异构体 数目增加时便无法区分,故普通命名法只适用于简单的化合物。
2、IUPAC命名法(International Union of Pure and Applied Chemistry) 1892年日内瓦国际化学会上拟定,也称“系统命名法”。 系统命名法依次满足三大原则:最长碳链;最多取代;最低序列。
2,3,5-三甲基 丙基庚烷 三甲基-4-丙基庚烷 三甲基
7
6
5
4
3
2
1
CH3 CHCH2CH3 CH3CHCH2CCH2CH2CH2CH3 CH3 C(CH3)3
2-甲基 仲丁基 叔丁基辛烷 甲基-4-仲丁基 甲基 仲丁基-4-叔丁基辛烷
CH3 3 4 5 6 7 8 CH3CH2CHCH2CH2CCH2CH3 CH3 CHCH3 CH3

烷烃

烷烃

CH2
CH3
CH3(CH2)10CH3 正十二烷 n-十二烷
(一)普通命名法
根据碳原子数目命名为“某烷” 根据碳原子数目命名为“某烷”。用天干十个字 (甲、乙、丙、丁、戊、己、庚、辛、壬、 癸) 及中文数字表示碳原子数目。 及中文数字表示碳原子数目。 对于直链烷烃在母体前加词头“ 对于直链烷烃在母体前加词头“正(n-)”。 。 仅在碳链一端第2 仅在碳链一端第2碳原子上带有一个甲基则命名 为“异某烷”(iso-,i-)。 异某烷” iso仅在碳链一端第2 仅在碳链一端第2碳原子上带有两个甲基则命名 为“新某烷”(neo-)。 新某烷” neo-
仲丁基
s - B u t y l , s e c - Bu t y l
s - Bu
( C H 3 ) 3 C-
叔丁基
t - B u t y l , t e r t -B u t y l
t - Bu
烷烃去掉一个氢原子后的原子团,通式为C 称为烷基, 烷烃去掉一个氢原子后的原子团,通式为CnH2n+1 — ,称为烷基, 表示。烷基的词尾-ane改为 yl yl, methane变为 变为methyl 常用 R- 表示。烷基的词尾-ane改为 –yl,比如 methane变为methyl
III 邻位交叉式 。 120
H CH3 H H
H H
H H
H
H H3C
IV 全重叠式 。 180
V 邻位交叉式 。 240
VI 部分重叠式 。 300
三 烷烃的命名
碳原子和氢原子类型
伯碳( 伯碳(1°):只与1个其他碳原子直接相连, 一级碳原子 只与1个其他碳原子直接相连, 仲碳( 只与2个其他碳原子直接相连, 仲碳(2°):只与2个其他碳原子直接相连, 二级碳原子 叔碳( 叔碳(3°):与3个其他碳原子直接相连, 三级碳原子 个其他碳原子直接相连, 季碳( 个其他碳原子直接相连, 季碳(4°):与4个其他碳原子直接相连, 四级碳原子

烷烃完整版课件

烷烃完整版课件
合成路线
化学合成法主要是通过有机化学 反应来合成烷烃,如卤代烃的还
原、烯烃的加氢等。
反应条件
不同的合成路线需要不同的反应条 件,如温度、压力、催化剂等。
产物纯化
通过精馏、结晶等方法将合成产物 中的杂质去除,得到纯净的烷烃产 品。
03
烷烃的反应与转化
燃烧反应
烷烃燃烧反应的定义
烷烃与氧气在点燃条件下发生氧化反 应,生成二氧化碳和水。
工艺流程
天然气经过压缩、冷却、 精馏等步骤,得到不同沸 点的烷烃产品。
石油裂解法
原料选择
石油裂解的原料主要是重 质石油馏分,如重油、渣 油等。
裂解反应
在高温和催化剂的作用下, 重质石油馏分发生裂解反 应,生成小分子的烷烃和 烯烃。
产品分离
通过精馏、萃取等方法将 裂解产物中的烷烃和烯烃 分离。
化学合成法
汽油和柴油
由不同碳链长度的烷烃混合而成,是交通运输领 域的主要燃料。
3
液化石油气(LPG) 丙烷和丁烷的混合物,用作燃料和烹饪用途。
有机合成原料
乙烯和丙烯
通过石油裂解得到,是合成塑料、橡胶和纤维等高分子材料的基 础原料。
丁二烯和苯乙烯
用于合成橡胶、树脂和合成纤维等。
高级烷烃
用作表面活性剂、增塑剂和润滑剂等化学品的合成原料。
生物降解困难
烷烃在土壤中的生物降解速度较慢,长期积累可对土壤生态系统产 生负面影响。
农作物污染
被烷烃污染的土壤种植出的农作物可能含有有害物质,影响食品安 全和人类健康。
治理措施与政策建议
01
02
03
04
源头控制
加强烷烃生产、储存、运输等 环节的监管,减少泄漏和排放。

烷烃

烷烃

(2)带有支链的烷烃
•选择主链 ——把构造式中连续的最长碳链--作为母
体称为某烷.若最长碳链不止一条,选择其中含较多支 链的为主链. 例1:
最长连续碳链有八个碳原子,该化合物母体的名称为辛烷
例2:
六个碳的主链上有四个取代基
六个碳的主链上有两个取代基
带有支链的烷烃编号:
按最接近取带基的一端开始将主链碳原子用阿拉伯 数字1,2,3...编号. (使取代基的位次最小)
CH3CH3CH2CH3CH2CH2(CH3)2CHCH3CH2CH2CH2CH3CH2CHCH3
Me Et n-Pro i-Pro n-Bu sec-Bu
CH3CH2CH2CH3 sec-Butyl


iso-Butane—— iso-Butyl
(CH3)2CHCH3 tert-Butyl
(CH3)2CHCH2(CH3)3C-
条件:催化剂KMnO4,MnO2或脂肪酸锰.120℃,1.5~3MPa
其中C10~C20的脂肪酸可代替天然油脂制取肥皂. CH3 2.6.2 异构化反应 AlBr3+HBr,27℃ •CH3CH2CH2CH3 CH3-CH-CH3 20% 80%
2.6.3 裂化反应
•裂化——在高温下使烷烃分子发生裂解的过程。
丁烷
C4H10
戊烷
C5H12
CH3(CH2)3CH3
Name Methane(甲烷) Ethane(乙烷)
Condensed Structure 甲基: -Methyl CH4 CH3CH3
Propane(丙烷)
Butane(丁烷) Pentane Hexane Heptane Octane Nonane Decane Undecane Dodecane

《烷烃》 知识清单

《烷烃》 知识清单

《烷烃》知识清单一、烷烃的定义与结构烷烃是一类有机化合物,它们仅由碳(C)和氢(H)两种元素组成,并且碳与碳之间都是单键相连,碳原子的其余价键都被氢原子所饱和。

从结构上来看,烷烃的分子通式为CₙH₂ₙ₊₂(n 为整数,n≥1)。

例如,甲烷(CH₄)是最简单的烷烃,乙烷(C₂H₆)、丙烷(C₃H₈)等依次类推。

烷烃的碳链可以是直链,也可以是支链。

直链烷烃的碳原子呈线性排列,而支链烷烃则在主链上有分支。

二、烷烃的命名1、普通命名法对于碳原子数在 10 以内的烷烃,用天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)来表示碳原子的数目,后面加上“烷”字,如甲烷、乙烷、丙烷等。

对于碳原子数在 10 以上的,则用数字表示,如十二烷、二十烷等。

2、系统命名法这是一种更规范和准确的命名方法。

选择最长的碳链作为主链,根据主链所含碳原子的数目称为“某烷”。

从距离支链最近的一端开始,给主链上的碳原子依次编号。

将支链的名称和位置写在主链名称的前面,数字与汉字之间用短线“”隔开。

例如,对于结构为 CH₃CH(CH₃)CH₂CH₂CH₃的烷烃,其系统命名为 2-甲基戊烷。

三、烷烃的物理性质1、状态在常温常压下,甲烷到丁烷是气态;戊烷到十六烷是液态;十七烷及以上是固态。

2、溶解性烷烃一般不溶于水,而易溶于有机溶剂,如苯、乙醇等。

3、密度烷烃的密度都小于水的密度,且随着碳原子数的增加,密度逐渐增大。

4、沸点和熔点烷烃的沸点和熔点随着碳原子数的增加而升高。

在同分异构体中,支链越多,沸点越低。

四、烷烃的化学性质1、稳定性在常温下,烷烃不与强酸、强碱、强氧化剂等发生反应,表现出相对的稳定性。

2、氧化反应烷烃在空气中可以燃烧,生成二氧化碳和水,并放出大量的热。

例如,甲烷燃烧的化学方程式为:CH₄+ 2O₂ → CO₂+ 2H₂O3、取代反应在光照或高温条件下,烷烃中的氢原子可以被卤素(如氯、溴)原子逐步取代,生成卤代烷。

例如,甲烷与氯气反应会生成一氯甲烷、二氯甲烷、三氯甲烷和四氯化碳等。

烷烃归纳总结

烷烃归纳总结

烷烃归纳总结烷烃是一类碳氢化合物,由碳氢原子构成。

它们是有机化合物中最简单的一类,也是石油和天然气等化石燃料的主要成分。

烷烃的分子结构简单,但在化学和工业领域中具有重要的应用。

本文将对烷烃进行归纳总结,从烷烃的命名规则、物理性质到化学性质进行阐述,以便更好地理解和应用烷烃。

一、烷烃的命名规则烷烃的命名是根据其碳原子数目来进行的。

以甲烷为例,它只含有一个碳原子,所以称为甲烷。

乙烷含有两个碳原子,丙烷含有三个碳原子,以此类推。

此外,烷烃的命名还要根据它们的分子结构和有机基团进行修饰,如取代基的位置和种类等。

二、烷烃的物理性质1. 性质简介烷烃主要以气体和液体形式存在,碳原子数较多的烷烃可为固体。

烷烃具有无色、无味,不溶于水,不导电等特点。

2. 碳原子数与物理性质关系随着碳原子数的增加,烷烃的沸点和熔点逐渐增加。

这是因为随着碳链的增长,分子量增大,分子之间的相互作用也增强,导致需要较大的能量来克服相互之间的吸引力。

3. 分子结构的影响分子结构对烷烃的物理性质也有一定的影响。

立体异构体之间存在空间构型的差异,从而影响分子间的相互作用。

例如,正构烷烃和支链烷烃具有不同的沸点和熔点,这也是与它们的分子结构有关。

三、烷烃的化学性质1. 燃烧反应烷烃能够与氧气反应产生水和二氧化碳,并释放大量的能量,这是烷烃作为燃料的重要特性。

烷烃的燃烧反应通常是剧烈而完全的。

2. 卤代反应烷烃可以与卤素(如氯、溴等)发生取代反应,生成卤代烷烃。

这种反应常用于合成有机化合物和药物。

3. 氧化反应烷烃可以被氧气氧化,形成醇和醛等化合物。

这在化学合成中是一个重要的反应类型。

4. 裂解反应高温条件下,烷烃可以发生裂解反应,生成较短的链烷烃和烯烃。

这种反应广泛应用于石油和炼油等工业过程中。

四、烷烃的应用由于烷烃的简单结构和丰富来源,它们在工业、能源和化学合成中有广泛的应用。

以下是一些常见的应用领域:1. 燃料烷烃是石油和天然气的主要成分,被广泛应用于能源领域,作为燃料供给家庭、交通和工业等方面的需求。

烷烃的定义

烷烃的定义

烷烃的定义烷烃是有机化合物的一种,由碳和氢元素组成。

它是最简单的烃类化合物,也被称为脂烃。

烷烃分子中只含有碳碳单键和碳氢单键。

烷烃由于其结构的简单性和化学性质的稳定性,在许多领域都有广泛的应用。

烷烃的分子由一系列连续的碳原子构成,并用碳氢单键将它们连接在一起。

根据碳原子的数量,烷烃可以分为不同的类别,包括甲烷、乙烷、丙烷、丁烷等。

甲烷是最简单的烷烃,只含有一个碳原子和四个氢原子。

乙烷由两个碳原子和六个氢原子组成,以此类推。

烷烃的化学式可以用CnH2n+2表示,其中n代表碳原子的数量。

这个化学式显示了烷烃分子的碳氢比为2:1。

由于烷烃分子中只含有碳碳单键和碳氢单键,它们被认为是饱和化合物,与之相对的是不饱和化合物,如烯烃和炔烃,它们含有碳碳双键和三键。

烷烃的化学性质相对稳定,不容易发生化学反应。

这是因为烷烃分子中的碳碳和碳氢单键都是相对强度很高的化学键,需要较高的能量才能打断。

因此,烷烃在常温下不会自发地与其他物质发生反应。

然而,一些较活泼的物质,如氧气和氯气,在适当的条件下可以与烷烃反应。

烷烃的物理性质与碳原子的数量和分子结构有关。

随着碳原子数量的增加,烷烃的分子量和沸点通常也会增加。

这是因为分子量的增加会导致分子之间的分子力增强,从而需要更高的能量来克服这种力。

同时,烷烃的密度和粘度也随着分子量的增加而增加。

烷烃在常温下通常是无色无味的气体或液体,某些烷烃也可以是无色无味的固体。

它们通常具有较低的溶解度,但能够与非极性溶剂(如非极性有机溶剂)良好溶解。

烷烃的燃烧热值通常较高,可以作为燃料使用。

甲烷是自然气体的主要成分,被广泛应用于煤气和热能的生产。

烷烃在生物体内也起着重要的作用。

例如,脂肪是一种由烷烃构成的化合物,在动植物体内存储能量。

烷烃也是生物分子的组成部分,如脂肪酸和胆固醇。

总结起来,烷烃是一类由碳和氢元素组成的有机化合物。

它们的分子结构简单,只含有碳碳单键和碳氢单键。

烷烃分子的化学性质相对稳定,不容易发生化学反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理性质 在室温下,含有1~4个碳原子的烷烃为气体;含有5~16个碳原子的烷烃为液体;含有17个碳原子以上的正烷烃为固体,但直至含有60个碳原子的正烷烃(熔点99℃),其熔点(mehing pomg)都不超过100℃。低沸点(boiling point)的烷烃为无色液体,有特殊气味;髙沸点烷烃为黏稠油状液体,无味。烷烃为非极性分子(non-polar molecule),偶极矩(dipole moment)为零,但分子中电荷的分配不是很均匀的,在运动中可以产生瞬时偶极矩,瞬时偶极矩间有相互作用力(色散力)。此外分子间还有vander Waals引力,这些分子间的作用力比化学键的小一二个数量级,克服这些作用力所需能量也较低,因此一般有机化合物的熔点、沸点很少超过300℃。 正烷烃的沸点随相对分子质量的增加而升高,这是因为分子运动所需的能量增大,分子间的 接触面(即相互作用力)也增大。低级烷烃每增加一个CH2,相对分子质量变化较大,沸点也相差较大,高级烷烃相差较小,故低级烷烃比较容易分离,髙级烷烃分离困难得多。 在同分异构体中,分子结构不同,分子接触面积不同,相互作用力也不同,正戊烷沸点36.1℃,2-甲丁烷沸点25℃,2,2-二甲丙烷沸点只有9℃。叉链分子由于叉链的位阻作用,其分子不能像正烷烃那样接近,分子间作用力小,沸点较低。 固体分子的熔点也随相对分子质量增加而增高,这与质量大小及分子间作用力有关外,还与分子在晶格中的排列有关,分子对称性髙,排列比较整齐,分子间吸引力大,熔点就高。在正烷烃中,含单数碳原子的烷烃其熔点升高较含双数碳原子的少。 通过X射线衍射方法分析,固体正烷烃晶体为锯齿形,在单数碳原子齿状链中两端甲基同处在ー边,如正戊烷,双数碳链中两端甲基不在同一边,如正己烷,双数碳链彼此更为靠近,相互作用力大,故熔点升高值较单数碳链升髙值较大一些。 烷烃的密度(density)随相对分子质量增大而增大,这也是分子间相互作用力的结果,密度增加到一定数值后,相对分子质量增加而密度变化很小。 与碳原子数相等的链烷烃相比,环烷烃的沸点、熔点和密度均要髙一些。这是因为链形化合物可以比较自由地摇动,分子间“拉”得不紧,容易挥发,所以沸点低一些。由于这种摇动,比较难以在晶格内做有次序的排列,所以熔点也低一些。由于没有环的牵制,链形化合物的排列也较环形化合物松散些,所以密度也低一些。同分异构体和顺反异构体也具有不同的物理性质。下表是若干烷烃和环烷烃的物理常数。
烷烃的氧化
在生活中经常碰到这样的现象,人老了皮肤有皱纹,橡胶制品用久了变硬变黏,塑料制品用 久了变硬易裂,食用油放久了变质,这些现象称为老化。老化过程很慢,老化的原因首先是空气 中的氧进人具有活泼氢的各种分子而发生自动氧化反应(autoxidaticm),继而再发生其它反应。[1]
燃烧
所有的烷烃都能燃烧,完全燃烧时,反应物全被破坏,生成二氧化碳和水,同时放出大量热。[1]
烷烃的热裂
无氧存在时,烷烃在髙温(800℃左右)发生碳碳键断裂,大分子化合物变为小分子化合物,这 个反应称为热裂(pymlysis)。石油加工后除得汽油外,还有煤油、柴油等相对分子质量较大的烷烃;通过热裂反应,可以变成汽油、甲烷、乙烷、乙烯及丙烯等小分子的化合物,其过程很复杂,产 物也复杂;碳碳键、碳氢键均可断裂,断裂可以在分子中间,也可以在分子一侧发生;分子愈大,愈易断裂,热裂后的分子还可以再进行热裂。热裂反应的反应机制是热作用下的自由基反应,所用的原料是混合物。 热裂后产生的自由基可以互相结合。热裂产生的自由基也可以通过碳氢键断裂,产生烯烃。 总的结果是大分子烷烃热裂成分子更小的烷烃、烯烃。这个反应在实验室内较难进行,在工业上 却非常重要。工业上热裂时用烷烃混以水蒸气在管中通过800℃左右的加热装置,然后冷却到 300~400°C,这些都是在不到一秒钟时间内完成的,然后将热裂产物用冷冻法加以一一分离。塑料、橡胶、纤维等的原料均可通过此反应得到。 目前用热裂反应生产乙烯,世界规模年产数千万吨,而且还在不断增长。各国所用烷烃原料 不同,产物也有差别,如用石脑油为原料热裂后可得甲烷15%、乙烯31.3%、乙烷3.4%、丙烯 13.1 %、丁二烯4.2%、丁烯和丁烷2.8%、汽油22%、燃料油6%,尚有一些少量其它产品。 一般在碳链中间较易断裂,然后再产生一系列的β-断裂。 石脑油中还有支链烷烃、环烷烃、芳香烃,如环烷烃热裂可得乙烯与丁二烯。 芳香烃仅在侧链上发生反应,因芳环稳定,保持不变。因此,如生产乙烯最好是含直链烷烃最多的石油馏分。 如用催化剂进行热裂反应可降低温度,但反应机理就不是自由基反应而是离子型反应应,和与硝酸反应相似,生成烷基磺酸,这种反应叫做磺化(sulfcmation)。 长链烷基磺酸的钠盐是一种洗涤剂,称为合成洗涤剂,例如十二烷基磺酸钠即其中的一种。 高级烷烃与硫酰氯(或二氧化硫和氯气的混合物)在光的照射下,生成烷基磺酰氯的反应称为氯磺化。磺酰氯这个名称是由硫酸推衍出来的。硫酸去掉一个羟基后剩下的基闭称为磺(酸)基,磺(酸)基和烷基或其它烃基相连而成的化合物统称为磺酸。磺酸中的羟基去掉后,就得磺酰基,它与氯结合,就得磺酰氯。 磺酰氯经水解,形成烷基磺酸,其钠盐或钾盐即上述的洗涤剂。其反应机理与烷烃的氯化很相似。[1]
分子中没有环的烷烃称为链烷烃(acyclic alkane),其通式为CnH2n+2,n为碳原子数。分子中含有环状结构的烷烃叫环烷烃(cycloalkane),又称为脂环化合物(alicyclic compound)。只含有一个环的环烷烃称为单环烷烃,单环烷烃的通式为CnH2n,与单烯烃互为同分异构体。环烷烃按环的大小,分为①小环:三、四元环,②普通环:五、六、七元环,③中环:八至十一元环,④大环:十二元环以上。分子中只有一个环的称为单环;两个环的称为双环;有三个或以上环的称为多环环系各以环上一个碳原子用单键直接相连而成的多环烧烃称为集合环烷烃(cycloalkane ring assembly)。两个环共用两个或多个碳原子的多环烷烃称为桥环烷烃(bridged cycloalkane)。单环之间共用一个碳原子的多环 烧径称为螺环烷烃(spirocyclicalkane
烷烃
烷烃,即饱和烃(saturated group),是只有碳碳单键和碳氢键的链烃,是最简单的一类有机化合物。烷烃分子里的碳原子之间以单键结合成链状(直链或含支链)外,其余化合价全部为氢原子所饱和。烷烃分子中,氢原子的数目达到最大值。烷烃的通式为CnH2n+2。分子中每个碳原子都是sp3杂化。烷烃的作用主要是做燃料。天然气和沼气(主要成分为甲烷)是近来广泛使用的清洁能源。石油分馏得到的各种馏分适用于各种发动机。
化学性质自由基反应
1.碳自由基的定义和结构 某一键均裂时会产生带有孤电子的原子或基团,称之为自由基。孤电子在氢原子上的自由基称为氢自由基。孤电子在碳原子上的自由基称为碳自由基。烷烃中的碳氢键均裂时会产生一个氢自由基和一个烷基自由基即碳自由基。自由基碳sp2杂化,三个sp2杂化轨道具有平面 三角形的结构,每个sp2杂化轨道与其它原子的轨道通过轴向重叠形成σ键,成键轨道上有一对自旋相反的电子。一个p轨道垂直于此平面,p轨道被一个孤电子占据。 2.键解离能和碳自由基的稳定性 (1)键解离能 分子中的原子总是围绕着它们的平衡位置做微小的振动,分子振动类似于弹簧连接的小球的运动,室温时,分子处于基态,这时振幅很小,分子吸收能量,振幅增大。如果吸收了足够的能量,振幅增大到一定程度,键就断了,这时吸收的热量,是键解离反应的焓(ΔH),是这个键的键 能,或称键解离能(bond-dissociation energy),用Ed表示。 (2)碳自由基的稳定性 自由基的稳定性,是指与它的母体化合物的稳定性相比较,比母体化合物能量高得多的较不稳定,高得少的较稳定。从上面C一H键的解离能数据可以看出:CH4中C—H键解离,其解离能最大,在同列系中第一个化合物往往是比较特殊的;CH3CH3与CH3CH2CH3中断裂一级碳上的氢,解离能较CH4稍低,形成的均为一级自由基;CH3CH2CH3中断裂二级碳原子上的氢, 其解离能又低一些,形成二级自由基;(CH3)3CH中三级碳原子上的氢断裂,其解离能最低,形成三级自由基。这些键解离反应中,产物之一是,均是相同的,因此键解离能的不同,是反映了碳自由基的稳定性不同。解离能越低的碳自由基越稳定。因此碳自由基的稳定性顺序为 3°C·>2°C·>1°C·>H3C· 在烷烃分子中,C—C键也可解离。 3.自由基反应的共性 化学键均裂产生自由基。由自由基引发的反应称为自由基反应,或称自由基型的链反应(chain reaction)。自由基反应一般都经过链引发(initiation )、链转移(propagation,或称链生成)、链终止(termirrntimi)三个阶段。链引发阶段是产生自由基的阶段。由于键的均裂需要能量,所以链引发阶段需要加热或光照。 有些化合物十分活泼,极易产生活性质点自由基,这些化合物称之为引发剂(initiator)。有时也可以通过单电子转移的氧化还原反应来产生自由基。链转移阶段是由一个自由基转变成另一个自由基的阶段,犹如接力赛一样,自由基不断地传递下 去,像一环接一环的链,所以称之为链反应。链终止阶段是消失自由基的阶段。自 由基两两结合成键。所有的自由基都消失了,自由基反应也就终止了。 自由基反应的特点是没有明显的溶剂效应,酸、碱等催化剂对反应也没有明显影响,当反应 体系中有氧气(或有一些能捕捉自由基的杂质存在)时,反应往往有一个诱导期(induction period) 。[1]
烷烃的硝化
烷烃与硝酸或四氧化二氮进行气相(400~450℃)反应,生成硝基化合物(RNO2)。 这种直接生成硝基化合物的反应叫做硝化(nitration),它在工业上是一个很重要的反应。它之所以重要是由于硝基烷烃可以转变成多种其它类型的化合物,如胺、羟胺、腈、醇、醛、酮及羧酸等。此外,硝基烷烃可以发生多种反应,故在近代文献中有关硝基烷烃的应用的报道日益增多。 在实验室中采用气相硝化法有很大的局限性,所以实验室内主要通过间接方法制备硝基烷烃。 气相硝化法制备硝基烷烃,常得到多种硝基化合物的混合物。[1]
相关文档
最新文档