《机器人结构设计》课件
合集下载
机器人结构设计PPT学习课件
12
1—码盘; 2 —测速机; 3 —电机; 4 —联轴器; 5 —传动装置; 6 —转动关节; 7 —杆
8 —电机; 9 —联轴器; 10 —螺旋副; 11 —移动关节; 12 —电位器(或光栅尺)
伺服电机驱动关节——伺服电机+联轴节+传动装置+运动关节+反馈元件
13
2.2.2 驱动装置的类型和特点
第二章 机器人的主要结构
机器人本体的结构形式
机 器 人本体
执行机构
传动装置
驱动装置
控制系统
感知系统
手 部 (腕臂腰 操部部部 作 器 )
( 固基
定 或
移座
动
)
电 驱 动 装 置
液 压 驱 动 装 置
气 压 驱 动 装 置
关
节
伺
处服
理 器
控 制 器
内外 部部 传传 感感 器器
1
小臂(上臂)
腕部 手部
1.卡爪式夹持器; 2.吸附式取料手; 3.专用操作器及换接器 4.仿生多指灵巧手。
53
2.4.1 卡爪式夹持器
卡爪式夹持器通常有两个夹爪,分为弹力型、回转型和 平移型三种类型。 1、弹力型夹持器
几种弹力型夹持器
54
2、回转型夹持器 开合占用空间较 小,但是夹持中 心变化。
55
3、平移型夹持器 开合占用空间较大,但是夹持中心不变。
34
35
➢ 直动关节
直动关节可有两种类型;电机驱动和液压驱动。前者多采 用滚动丝杠和导柱(轨)式;后者可采用油缸驱动齿轮齿条的移 动结构。导柱(轨)起到导向及承受支承力与弯矩矩的作用。
36
➢ 多关节柔性臂 多关节柔性臂也称作象鼻型或蛇型臂。其手臂由多节串联
1—码盘; 2 —测速机; 3 —电机; 4 —联轴器; 5 —传动装置; 6 —转动关节; 7 —杆
8 —电机; 9 —联轴器; 10 —螺旋副; 11 —移动关节; 12 —电位器(或光栅尺)
伺服电机驱动关节——伺服电机+联轴节+传动装置+运动关节+反馈元件
13
2.2.2 驱动装置的类型和特点
第二章 机器人的主要结构
机器人本体的结构形式
机 器 人本体
执行机构
传动装置
驱动装置
控制系统
感知系统
手 部 (腕臂腰 操部部部 作 器 )
( 固基
定 或
移座
动
)
电 驱 动 装 置
液 压 驱 动 装 置
气 压 驱 动 装 置
关
节
伺
处服
理 器
控 制 器
内外 部部 传传 感感 器器
1
小臂(上臂)
腕部 手部
1.卡爪式夹持器; 2.吸附式取料手; 3.专用操作器及换接器 4.仿生多指灵巧手。
53
2.4.1 卡爪式夹持器
卡爪式夹持器通常有两个夹爪,分为弹力型、回转型和 平移型三种类型。 1、弹力型夹持器
几种弹力型夹持器
54
2、回转型夹持器 开合占用空间较 小,但是夹持中 心变化。
55
3、平移型夹持器 开合占用空间较大,但是夹持中心不变。
34
35
➢ 直动关节
直动关节可有两种类型;电机驱动和液压驱动。前者多采 用滚动丝杠和导柱(轨)式;后者可采用油缸驱动齿轮齿条的移 动结构。导柱(轨)起到导向及承受支承力与弯矩矩的作用。
36
➢ 多关节柔性臂 多关节柔性臂也称作象鼻型或蛇型臂。其手臂由多节串联
《机器人结构设计》课件
螺丝连接
适用于各种材料的连接,拆卸 方便,但连接强度较低。
粘接
适用于塑料、玻璃等材料的连 接,操作简便,但耐久性较差
。
扣件连接
适用于各种材料的连接,连接 强度较高,拆卸方便。
驱动系统设计
01
02
03
电动机驱动
利用电动机产生的扭矩或 直线推力驱动机器人运动 。
液压驱动
利用液压油产生的压力驱 动机器人运动,具有较大 的推力。
详细描述
可变形机器人通过先进的材料、驱动系统和控制算法,实现 自主变形和适应环境变化的能力。这种机器人可以在复杂环 境中执行任务,如搜救、探测和军事行动等。
微型机器人
总结词
微型机器人是指尺寸微小的机器人, 具有高度的机动性和灵活性。
详细描述
微型机器人在微纳操作、医疗、环保 等领域具有广泛的应用前景。通过精 密制造和智能控制技术,微型机器人 可以实现复杂的运动和操作功能,如 细胞操作、药物输送等。
02
足式机器人由腿部、关节、电机、控制器和身体等部分组成,
可以通过调节电机的输出实现机器人的步态控制。
足式机器人在人机交互、影视特效、反恐等领域有广泛应用。
03
飞行机器人
飞行机器人是一种能够在空中飞行的 机器人,具有高度的机动性和灵活性 。
飞行机器人在航拍、侦查、搜救等领 域有广泛应用。
飞行机器人通常由机翼、电机、控制 器和机身等部分组成,通过调节电机 的输出实现机器人的升降、俯仰、偏 航等动作。
环境中能够正常运行。
工业机器人
工业机器人是一种用于工业生产 的机器人,如焊接机器人、装配
机器人等。
工业机器人的结构设计需要考虑 机器人的负载能力、精度、稳定
机器人的机械臂结构课件
三、典型机械臂结构
1.手臂直线运动机构
常见方式:
行程小时:采用油缸或气缸直接驱动;
当行程较大时:可采用油缸或气缸驱动
齿条传动的倍增机构或采用步进电机或 伺服电机驱动,并通过丝杆螺母来转换 为直线运动。
典型结构:
油缸驱动的手臂伸缩运动结构 电机驱动的丝杆螺母直线运动结构
油缸—齿条机构图例:
2.手臂的回转运动机构
常见方式:
常见的有齿轮传动机构,链轮传动机构,活塞及连 杆传动机构等。
曲柄滑块机构:
假设滑块是主动件,当滑块沿一定的导轨移动时, 可以推动曲柄做摆动或圆周运动。
典型机构:
液压缸—连杆回转机构: 齿轮驱动回转机构:
平面四杆构图例:
双曲柄机构
平面四杆机构
双摇杆机构
二、机械臂的运动形式
1.直角坐标型
臂部由三个相互 正交的移动副组 成。带动腕部分 别 沿 X、Y、Z 三 个坐标轴的方向 作直线移动。结 构简单,运动位 置精度高。但所 占空间较大,工 作范围相对较小。
2.圆柱坐标型
臂部由一个转 动副和两个移 动副组成。相 对来说,所占 空间较小,工 作范围较大, 应用较广泛。
3.关节型机械臂的结构(1)
存在的运动型式:
机身的旋转运动; 肩关节和肘关节的摆动; 腕关节的俯仰和旋转运动;
各运动的协调: 称为5轴关节型机器人。
五轴关节型机器人手臂运动图例(1):
偏转 肘转
俯仰
肩转
腰转
腰转姿态
五轴关节型机器人手臂运动图例(2):
肩关节、肘关节与手腕的协调
3.关节型机械臂的结构(2)
3、《钢结构》
3、导向性能好,定位精度高
为防止手臂在直线运动中,沿运动轴 线发生相对转动,应设置导向装置。 同时要采用一定形式的缓冲措施。
工业机器人--工业机器人结构设计 ppt课件
1/3~1/2左右。
(4)运动精度高,回差小。
(5)传动效率高,一般单级传动效率为70%-90%。
(6)可向密闭空间传递运动和动力,这一点是其它任
何机械传动无法实现
PPT课件
16
行星减速器的主要特点如下: (1)体积小、重量轻、结构紧凑、传递功率大、承载能力高。
由于行星齿轮传动是一种共轴线式传动形式,即具有同轴线传动 的特点。在结构上采用了对称分流传动结构,即用几个完全相同 的行星轮均匀分布在中心轮圆周来共同分担载荷,并且合理地应 用了内啮合,充分地利用了空间的容积,从而缩小了径、轴向尺 寸,使结构紧凑,而承载能力又高。因而行星齿轮传动在相同功 率和传动比的条件下,可使其外部尺寸和重量只为普通齿轮传动 的1/2-1/6。
臂部设计的基本要求 手臂的常用结构 臂部运动驱动力计算
4、手腕设计
概述 手腕分类 手腕设计举例
5、手部设计
概述 手部分类 手爪设计和选用的要求 普通手爪设计 6、机身及行走机构设计 机身设计 行走机构设计
PPT课件
3
一 工业机器人总体设计
工业机器人 机械系统设计
PPT课件
1
主 要 内 容
1、工业机器人总体设计
主体结构设计
传动方式选择
模块化结构设计
材料选择
平衡系统设计
2、传动部件设计
移动关节导轨及转动关节轴承
传动件的定位及消隙
谐波传动
丝杠螺母副及其滚珠丝杠传动
其它传PP动T课件
2
主要内容
3、臂部设计
6
一 工业机器人总体设计
材料的选择
材料选择的基本要求
强度高
机器人机械结构PPT演示文稿
腰转姿态
27
五轴关节型机器人手臂运动图例(2):
肩关节、肘关节与手腕的协调
2021/3/10
28
3.关节型机械臂的结构(2)
• 各运动的实现:
– 腕部的旋转:
• 电机M5→减速器R5→链轮副C5→锥齿轮副G5→旋转运动n5
– 腕部俯仰:
• 电机M4→减速器R4→链轮副C4→俯仰运动n4
– 肘关节摆动:
• 电机M3→两级同步带传动B3、B3′→减速器R3→肘关节摆动 n3
– 肩关节的摆动:
• 电机M2→同步带传动B2→减速器R2→肩关节摆动n2
2021/3/10
29
腕部俯仰
关节型机器人传动 系统图:
肘关节摆动
肩关节的摆动
腕部的旋转
2021/3/10
30
腕部旋转局部图例:
电机M5→减速器R5→链轮 副 C5→锥齿轮副G5→旋转运动n5
2021/3/10
7
右图为铣端面,打中心孔机 床的上料机器人,臂架2带动 臂3绕机身立柱1回转,同时, 通过行星齿轮使臂3绕臂架2的 轴线回转,手部夹持中心的轨 迹为一空间曲线,能迅速地将 工件从料架送到机床的夹具上, 但惯性较大,适用于中小型工件
2021/3/10
8
(2)双臂配置
双臂同步升降和回 转机器人,两臂互 成直角,当两臂下 降时,上料手在料 道上取料,下料手 从机床两顶尖取下 工件。两臂上升后 转900再下降,上料 手将毛坯放到顶尖 间,下料手放工件
2021/3/10
双臂同步回转机 器人,两臂的伸 缩分别驱动用来 完成较大行程的 提升与转位工作, 双臂对称布置, 较平稳
双臂水平交叉配置 机器人,它通过两 臂同时升降,交错 伸缩,实现一手上 料,一手下料
工业机器人结构设计ppt课件
2.2.1 钳爪式手部的设计
四、钳爪式手部结构及其夹紧力的计算公式举例
N
N
P
N=P/2 注:①两手指平移 ②增力比(N/P)小
齿轮齿条式手部结构
No.32
2.2.1 钳爪式手部的设计
四、钳爪式手部结构及其夹紧力的计算公式举例
α
γB A β
P
C
EN
N
N=PLcos(α+β+γ)/(2lsinαcosβ)
2、开式连杆系中的每根连杆都 具有独立的驱动器,属于主动连 杆系,连杆的运动各自独立,不 同连杆的运动之间没有依从关系, 运动灵活。
No.5
2.1 机器人本体的基本结构
二、机器人本体基本结构特点:
3、连杆驱动扭矩的顺态过程在 时域中的变化非常复杂,且和执 行器反馈信号有关。连杆的驱动 属于伺服控制型,因而对机械传 动系统的刚度、间隙和运动精度 都有较高的要求。
应根据被抓取工件的要求确定吸盘的形 状。由于气吸式手部多吸附薄片状的工 件,故可用耐油橡胶压制不同尺寸的盘 状吸头。
No.41
2.2.2 吸附式手部的设计
三、气吸式手部的吸力计算
吸盘吸力的大小主要取决于真空度(或 负压的大小)与吸附面积的大小。
真空吸盘吸力F计算公式:
F nD2 ( H )
4K1K2K3 76
注:①AB=DE,DB=AE,L=BC杆长,l=AB杆长; ②两手指保持平行;③当α角较小时,可获得较大的力比。
平行连杆杠杆式手部结构
No.33
2.2.1 钳爪式手部的设计
四、钳爪式手部结构及其夹紧力的计算公式举例
P
φ
α
c
bN
N
N=Pcsin(α+φ)/2bsinαsinφ
机器人的机械结构ppt课件
精选PPT课件
39
图为采用四根导向柱的臂伸缩结构.手臂的垂直伸缩 运动由油缸3驱动.其特点是行程长,抓重大.工件形 状不规则时,为了防止产生较大的偏重力矩,采用四根 导向柱.这种结构多用于箱体加工线上.
精选PPT课件
40
三、机器人机身和臂部的配置形式(4种)
1. 横梁式 ① 单臂悬挂式 ② 双臂悬挂式 ③ 多臂悬挂 ④ 多用于自动化生产中,在工位间传送工 件
精选PPT课件
18
圆柱坐标机器人: 1个回转运动,2个直线运动
精选PPT课件
19
球坐标(极坐标)机器人: 2个转动, 1个直线运动
精选PPT课件
20
关节坐标机器人:3个转动自由度
精选PPT课件
21
SCARA机器人:2个旋转运动, 1个直线运动
精选PPT课件
22
机器人 关节1 关节2 关节3 转动关节数
精选PPT课件
4
按照应用领域
工业机器人、农业机器人、军事机器人、 医用机器人、空间机器人、水下机器人
按照驱动方式
•液压驱动:机构紧凑、力大、运行平稳,密封
要求高
•气压驱动:结构简单造价低,负荷能力小
•电动驱动:结构简单紧凑,控制灵活
•新型:记忆合金、人工肌肉、压电
精选PPT课件
5
按控制方式分类(4种)
5、控制方式:机器人用于轴的控制方式,
伺服/非伺服,PTP/CP
6、驱动方式:关节执行器的动力源形式
精选PPT课件
27
7、精度、重复精度、分辨率:用来定义机 器人手部的定位能力。
▪ 分辨率 指机器人每根轴能够实现的最小移动距离 或最小转动角度。
▪ 精度 指机器人到达指定点的精确程度。它与机器 人驱动器的分辨率及反馈装置有关。
第2章 工业机器人的总体设计PPT课件
2)提高支承刚度和接触刚度。支撑刚度主要取决于支座的结构 形状。接触刚度主要取决于配合表面的加工精度和粗糙度。
3)合理布置作用力的位置和方向。尽量使各作用力引起的变形 互相抵消,如下图Unimate2000机器人。
8/9/2020
河北科技大学机械电子工程学院
23
Unimate2000机器人
8/9/2020
1、刚度
▪ 刚度是指机身或臂部在外力作用下抵抗变形的能力。用外力和 在外力方向上的变形量(位移)之比来度量的,变形越小,刚 度越大。在有些情况下,刚度比强度更重要,为了提高刚度, 应注意:
1)根据受力情况,合理选择截面形状或轮廓尺寸。机身和臂部 既受弯矩,又受扭矩,应选用抗弯和抗扭刚度较大的截面形状。 一般采用具有封闭空心截面的构件。不仅有利于提高结构刚度, 而且空心内部还可以布置安装驱动装置、传动机构和管线等, 使整体结构紧凑,外形美观。
▪ 若柔性齿轮(齿数Z2)固定,谐波发生器为输入,刚性齿
轮(齿数Z1)为输出,则速比为 i z正1 号表示方向与输入
相同。
z1 z2
▪ 特点:
1)传动比大而且范围宽。可达50~500。
2)同时啮合的齿数多(总齿数的30%~40%),承载能力 高。
3)零件少,体积小,重量轻。
4)运动精度高,效率高。
5倍,弹性模量E大,抗变形能力强,是应用最广泛的材 料。 2)铝、铝合金及其他轻合金材料 ▪ 这类材料的共同特点是重量轻,弹性模量E并不大,但是 材料密度小,故E/ρ之比仍可与钢材相比。有些稀贵铝合 金的品质得到了更明显的改善,例如添加3.2%(重量百分 比)锂的铝合金,弹性模量增加了14%,E/ρ比增加了16 %。 3)纤维增强合金 ▪ 这类合金如硼纤维增强铝合金、石墨纤维增强镁合金等, 其E/ρ比分别达到11.4×107 和8.9×107。这种纤维增强金 属材料具有非常高的E/ρ比,但价格昂贵。
3)合理布置作用力的位置和方向。尽量使各作用力引起的变形 互相抵消,如下图Unimate2000机器人。
8/9/2020
河北科技大学机械电子工程学院
23
Unimate2000机器人
8/9/2020
1、刚度
▪ 刚度是指机身或臂部在外力作用下抵抗变形的能力。用外力和 在外力方向上的变形量(位移)之比来度量的,变形越小,刚 度越大。在有些情况下,刚度比强度更重要,为了提高刚度, 应注意:
1)根据受力情况,合理选择截面形状或轮廓尺寸。机身和臂部 既受弯矩,又受扭矩,应选用抗弯和抗扭刚度较大的截面形状。 一般采用具有封闭空心截面的构件。不仅有利于提高结构刚度, 而且空心内部还可以布置安装驱动装置、传动机构和管线等, 使整体结构紧凑,外形美观。
▪ 若柔性齿轮(齿数Z2)固定,谐波发生器为输入,刚性齿
轮(齿数Z1)为输出,则速比为 i z正1 号表示方向与输入
相同。
z1 z2
▪ 特点:
1)传动比大而且范围宽。可达50~500。
2)同时啮合的齿数多(总齿数的30%~40%),承载能力 高。
3)零件少,体积小,重量轻。
4)运动精度高,效率高。
5倍,弹性模量E大,抗变形能力强,是应用最广泛的材 料。 2)铝、铝合金及其他轻合金材料 ▪ 这类材料的共同特点是重量轻,弹性模量E并不大,但是 材料密度小,故E/ρ之比仍可与钢材相比。有些稀贵铝合 金的品质得到了更明显的改善,例如添加3.2%(重量百分 比)锂的铝合金,弹性模量增加了14%,E/ρ比增加了16 %。 3)纤维增强合金 ▪ 这类合金如硼纤维增强铝合金、石墨纤维增强镁合金等, 其E/ρ比分别达到11.4×107 和8.9×107。这种纤维增强金 属材料具有非常高的E/ρ比,但价格昂贵。
工业机器人工业机器人结构设计PPT文档33页
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
工业机器人工业机器人结构设计
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机器人结构设计》
传动方式选择
(1)选择驱动源和传动装置与关节部件的连接、驱动方式 (2)工业机器人的传动形式
传动形式 直接连结传动
特征
优点
直接装在关节上 结构紧凑
缺点
需考虑电机自重,转 动惯量大,能耗大
远距离连结传动
经远距离传动装 不需考虑电机自重, 额外的间隙和柔性,
置与关节相连 平衡性良好
结构庞大,能耗大
工艺过程的不同,对机器人或机械手重复定位精度的要求也不同,不同 工艺过程所要求的定位精度如下:
金属切削机床上下料:±(0.05-1.00) mm 冲床上下料:±1 mm
模锻:
±(0.1-2.0) mm 点焊: ±1 mm
装配、测量: ±(0.01-0.50) mm 喷涂: ±3 mm
当机器人或机械手本身所能达到的定位精度有困难时,可采用辅助工夹 具协助定位的办法,即机器人实现粗定位、工夹具实现精定位。
(3)虽然功能模块的形式有多种多样,但是尚未真正做到根 据作业对象就可以合理进行模块化分析和设计。
《机器人结构设计》
机器人本体材料的选择
强度高
弹性模量大
重量轻
经济性好 阻尼大
材料选择 基本要求
《机器人结构设计》
(1)强度高。机器人的臂是直接受力的构件,高强度材料不仅 能满足机器人臂的强度条件,而且可望减少臂杆的截面尺寸,减 轻重量。
《机器人结构设计》
4
(2) 机器人运动形式的选择。 常见机器人的运动形式有 五种:直角坐标型、圆柱坐标型、极坐标型、关节型和 SCARA型。
(3) 拟定检测传感系统框图。选择合适的传感器,以便结 构设计时考虑安装位置。
(4) 确定控制系统总体方案,绘制框图。
(5) 机械结构设计。确定驱动方式,选择运动部件和设计 具体结构,绘制机器人总装图及主要部件零件图。
《机器人结构设计》
《机器人结构设计》
3.模块化工业机器人所存在的问题
(1)模块化工业机器人整个机械系统的刚度比较差。因为模 块之间的结合是可方便拆卸的,尽管在设计上已经注意到了 标准机械接口的高精度要求,但实际制造仍会存在误差,所 以与整体结构相比刚度相对地差些。
(2)因为有许多机械接口及其它连接附件,所以模块化工业 机器人的整体重量有可能增加。
机器人制造厂家也希望改变设计和制造模式,采用批量 制造技术来生产标准化系列化的工业机器人模块,自由拼 装工业机器人,满足用户经济性好和基本功能全的要求。
《机器人结构设计》
(2)灵活性。其主要体现在:
①可根据工业机器人所要实现的功能来决定模块的数量,机 器人的自由度可以方便地增减。比如,用户要求机器人能为多 台设备进行作业时,可增选一个底座移动轴模块或其它行走轴 模块,工业机器人成为移动式机器人。
1、系统分析
机器人是实现生产过程自动化、提高劳动生产率的有力工
具。首先确定使用机器人是否需要与合适,决定采用后需要做如
下分析工作:
(1)明确采用机器人的目的和任务。
(2)分析机器人所在系统的工作环境,包括设备兼容性等。
(3)认真分析系统的工作要求,确定机器人的基本功能和方 案。 如机器人的自由度数、信息的存储容量、定位精度、抓取重 量……
(5)方案和参数修改。运用仿真分析的结果对所设计的方案、结
构、尺寸和参数进行修改,加以完善。
机器人机械系统设计是机器人设计的重要部分。其他系统的
设计尽管有各自的独立性,但都必须与机械系统相匹配,相辅
相成,构成一个完整的机器人系统。
《机器人结构设计》
6
主体结构设计
主体结构设计的关键是选择由连杆件和运动副组成的坐标形式 (1)直角坐标机器人。主体结构有三个自由度,全为伸缩 (2)圆柱坐标机器人。主体结构有三个自由度,腰转、升降、 伸缩 (3)球面坐标机器人。主体结构有三个自由度,转动、转动 和伸缩 (4)关节坐标机器人。主体结构有三个自由度,全为转动
②为了扩大工业机器人的工作范围,可更换具有更长长度的 手臂模块或加接手臂模块。下图所示是一种多关节多臂检测机 器人,不仅多臂模块组合成的手臂很长,而且手臂可作波浪运 动。
③能不断对现役模块化工业机器人更新改造。比如,用户可 以选用伸缩套筒式手臂模块来更替原有固定长度的模块;随着 控制技术和传感技术的发展,可更换更高性能的控制模块和更 高精度的传感器模块;更换新模块来进行工业机器人的维修保 养。
成本高
模块化结构设计
模块化工业机器人。由一些标准化、系列化的模块件通过具有 特殊功能的结合部用积木拼搭方式组成的工业机器人系统。
模块化工业机器人的特点
(1)经济性。 设计和制造通用性很强的工业机器人是很不经济的,价
格昂贵。用户希望厂商能为诸多的作业岗位提供可选择的, 自由度尽可能少,控制和编程简单,实用性强的专用机器 人。
《机器人结构设计》
5
3、仿真分析
(1)运动学计算。分析是否达到要求的速度、加速度、位置。
(2)动力学计算。计算关节驱动力的大小,分析驱动装置是否满
足要求。
(3)运动的动态仿真。将每一位姿用三维图形连续显示出来,实
现机器人的运动仿真。
(4)性能分析。建立机器人数学模型,对机器人动态性能进行仿
真计算。
间接传动 直接驱动
减速比远>1的传 经济、对载荷变化不 传动精度低、结构不
动装置与关 节相 敏感、便于制动设计、紧凑、引入误差,降
连
方便一些运动转换 低可靠性
不经中间关 节或 传动精度高,振动小,控制系统设计困难,
经速比=1的传动 传动损耗小,可靠性 对传感元件要求高,
装置与关节相连《机器高人,结构响设计应》快
(4)进行必要的调查研究,搜集国内外的有关技术资料。
《机器人结构设计》
3
2、技术设计
(1)机器人基本参数的确定。臂力、工作节拍、工作范围、 运动速度及定位精度等。
举例:定位精度的确定
机器人或机械手的定位精度是根据使用要求确定的,而机器人或机械手 本身所能达到的定位精度取决于定位方式、运动速度、控制方式、臂部刚 性、驱动方式、缓冲方式等。
工业机器人的本体结构设计
任务1:工业机器人的总体设计 任务2:工业机器人的驱动与传动 任务3:机身和臂部设计 任务4:腕部设计 任务5:手部设计《机器人结构设计》来自任务1 工业机器人总体设计
总体设计的步骤 主体结构设计 传动方式选择 模块化结构设计 材料选择 平衡系统设计
《机器人结构设计》
2
总体设计的步骤
传动方式选择
(1)选择驱动源和传动装置与关节部件的连接、驱动方式 (2)工业机器人的传动形式
传动形式 直接连结传动
特征
优点
直接装在关节上 结构紧凑
缺点
需考虑电机自重,转 动惯量大,能耗大
远距离连结传动
经远距离传动装 不需考虑电机自重, 额外的间隙和柔性,
置与关节相连 平衡性良好
结构庞大,能耗大
工艺过程的不同,对机器人或机械手重复定位精度的要求也不同,不同 工艺过程所要求的定位精度如下:
金属切削机床上下料:±(0.05-1.00) mm 冲床上下料:±1 mm
模锻:
±(0.1-2.0) mm 点焊: ±1 mm
装配、测量: ±(0.01-0.50) mm 喷涂: ±3 mm
当机器人或机械手本身所能达到的定位精度有困难时,可采用辅助工夹 具协助定位的办法,即机器人实现粗定位、工夹具实现精定位。
(3)虽然功能模块的形式有多种多样,但是尚未真正做到根 据作业对象就可以合理进行模块化分析和设计。
《机器人结构设计》
机器人本体材料的选择
强度高
弹性模量大
重量轻
经济性好 阻尼大
材料选择 基本要求
《机器人结构设计》
(1)强度高。机器人的臂是直接受力的构件,高强度材料不仅 能满足机器人臂的强度条件,而且可望减少臂杆的截面尺寸,减 轻重量。
《机器人结构设计》
4
(2) 机器人运动形式的选择。 常见机器人的运动形式有 五种:直角坐标型、圆柱坐标型、极坐标型、关节型和 SCARA型。
(3) 拟定检测传感系统框图。选择合适的传感器,以便结 构设计时考虑安装位置。
(4) 确定控制系统总体方案,绘制框图。
(5) 机械结构设计。确定驱动方式,选择运动部件和设计 具体结构,绘制机器人总装图及主要部件零件图。
《机器人结构设计》
《机器人结构设计》
3.模块化工业机器人所存在的问题
(1)模块化工业机器人整个机械系统的刚度比较差。因为模 块之间的结合是可方便拆卸的,尽管在设计上已经注意到了 标准机械接口的高精度要求,但实际制造仍会存在误差,所 以与整体结构相比刚度相对地差些。
(2)因为有许多机械接口及其它连接附件,所以模块化工业 机器人的整体重量有可能增加。
机器人制造厂家也希望改变设计和制造模式,采用批量 制造技术来生产标准化系列化的工业机器人模块,自由拼 装工业机器人,满足用户经济性好和基本功能全的要求。
《机器人结构设计》
(2)灵活性。其主要体现在:
①可根据工业机器人所要实现的功能来决定模块的数量,机 器人的自由度可以方便地增减。比如,用户要求机器人能为多 台设备进行作业时,可增选一个底座移动轴模块或其它行走轴 模块,工业机器人成为移动式机器人。
1、系统分析
机器人是实现生产过程自动化、提高劳动生产率的有力工
具。首先确定使用机器人是否需要与合适,决定采用后需要做如
下分析工作:
(1)明确采用机器人的目的和任务。
(2)分析机器人所在系统的工作环境,包括设备兼容性等。
(3)认真分析系统的工作要求,确定机器人的基本功能和方 案。 如机器人的自由度数、信息的存储容量、定位精度、抓取重 量……
(5)方案和参数修改。运用仿真分析的结果对所设计的方案、结
构、尺寸和参数进行修改,加以完善。
机器人机械系统设计是机器人设计的重要部分。其他系统的
设计尽管有各自的独立性,但都必须与机械系统相匹配,相辅
相成,构成一个完整的机器人系统。
《机器人结构设计》
6
主体结构设计
主体结构设计的关键是选择由连杆件和运动副组成的坐标形式 (1)直角坐标机器人。主体结构有三个自由度,全为伸缩 (2)圆柱坐标机器人。主体结构有三个自由度,腰转、升降、 伸缩 (3)球面坐标机器人。主体结构有三个自由度,转动、转动 和伸缩 (4)关节坐标机器人。主体结构有三个自由度,全为转动
②为了扩大工业机器人的工作范围,可更换具有更长长度的 手臂模块或加接手臂模块。下图所示是一种多关节多臂检测机 器人,不仅多臂模块组合成的手臂很长,而且手臂可作波浪运 动。
③能不断对现役模块化工业机器人更新改造。比如,用户可 以选用伸缩套筒式手臂模块来更替原有固定长度的模块;随着 控制技术和传感技术的发展,可更换更高性能的控制模块和更 高精度的传感器模块;更换新模块来进行工业机器人的维修保 养。
成本高
模块化结构设计
模块化工业机器人。由一些标准化、系列化的模块件通过具有 特殊功能的结合部用积木拼搭方式组成的工业机器人系统。
模块化工业机器人的特点
(1)经济性。 设计和制造通用性很强的工业机器人是很不经济的,价
格昂贵。用户希望厂商能为诸多的作业岗位提供可选择的, 自由度尽可能少,控制和编程简单,实用性强的专用机器 人。
《机器人结构设计》
5
3、仿真分析
(1)运动学计算。分析是否达到要求的速度、加速度、位置。
(2)动力学计算。计算关节驱动力的大小,分析驱动装置是否满
足要求。
(3)运动的动态仿真。将每一位姿用三维图形连续显示出来,实
现机器人的运动仿真。
(4)性能分析。建立机器人数学模型,对机器人动态性能进行仿
真计算。
间接传动 直接驱动
减速比远>1的传 经济、对载荷变化不 传动精度低、结构不
动装置与关 节相 敏感、便于制动设计、紧凑、引入误差,降
连
方便一些运动转换 低可靠性
不经中间关 节或 传动精度高,振动小,控制系统设计困难,
经速比=1的传动 传动损耗小,可靠性 对传感元件要求高,
装置与关节相连《机器高人,结构响设计应》快
(4)进行必要的调查研究,搜集国内外的有关技术资料。
《机器人结构设计》
3
2、技术设计
(1)机器人基本参数的确定。臂力、工作节拍、工作范围、 运动速度及定位精度等。
举例:定位精度的确定
机器人或机械手的定位精度是根据使用要求确定的,而机器人或机械手 本身所能达到的定位精度取决于定位方式、运动速度、控制方式、臂部刚 性、驱动方式、缓冲方式等。
工业机器人的本体结构设计
任务1:工业机器人的总体设计 任务2:工业机器人的驱动与传动 任务3:机身和臂部设计 任务4:腕部设计 任务5:手部设计《机器人结构设计》来自任务1 工业机器人总体设计
总体设计的步骤 主体结构设计 传动方式选择 模块化结构设计 材料选择 平衡系统设计
《机器人结构设计》
2
总体设计的步骤