最小二乘法在曲线拟合中比较普遍。拟合的模型主要有

合集下载

最小二乘法拟合原理

最小二乘法拟合原理

最小二乘法拟合原理最小二乘法是一种常用的数学方法,用于寻找一组数据的最佳拟合曲线或者最佳拟合函数。

它的原理是通过最小化实际观测数据与拟合曲线之间的残差平方和,来确定最佳拟合曲线的参数。

这个方法在实际应用以及科学研究中非常常见,下面将详细介绍最小二乘法的拟合原理。

在介绍最小二乘法之前,我们首先需要了解线性回归模型。

线性回归是一种常见的数据拟合手段,它基于以下假设:给定自变量X和因变量Y,存在一个线性关系Y=aX+b。

其中,a称为斜率,b称为截距。

当我们拥有一组数据(X1,Y1),(X2,Y2),(X3,Y3),...,(Xn,Yn)时,最小二乘法通过找到最佳的a和b,使得方程Y=aX+b最好地拟合这组数据。

它通过最小化每个观测点的残差来确定最佳拟合曲线。

残差是指实际观测值与拟合值之间的差异。

对于每一个观测点(Xi,Yi),其拟合值为Yi'=aXi+b,残差为Ri=Yi-Yi',即实际观测值与拟合值的差。

S=∑(Yi-Yi')²=∑(Yi-aXi-b)²为了找到最佳的a和b,我们需要求解方程S对a和b的偏导数,并令其等于0。

求解a和b的偏导数得到以下两个方程:∂S/∂a=0∂S/∂b=0对第一个方程求解可以得到:∂S/∂a=-2∑(Yi-aXi-b)Xi=0进一步整理可以得到:∑YiXi-a∑(Xi)²-b∑(Xi)=0对第二个方程求解可以得到:∂S/∂b=-2∑(Yi-aXi-b)=0进一步整理可以得到:∑Yi - a∑(Xi) - nb = 0其中,n为观测点的数目。

解这个方程组,我们可以得到a和b的值,从而确定最佳拟合曲线的方程Y=aX+b。

最小二乘法还可以用于非线性的数据拟合。

对于非线性拟合,我们可以假设一个非线性的函数模型,例如Y=f(X,θ),其中θ是待拟合的参数。

然后,通过最小化残差平方和来确定最佳的θ值。

方法类似于线性拟合,其中拟合值变为Yi'=f(Xi,θ),残差为Ri=Yi-Yi'。

最小二乘法曲线拟合的基本概念

最小二乘法曲线拟合的基本概念

最小二乘法曲线拟合是一种数学方法,旨在找到一条曲线,使得该曲线尽可能地接近给定的数据点。

这种方法广泛应用于各种领域,如物理学、化学、经济学等,用于建立变量之间的数学模型。

最小二乘法的基本思想是,对于一组观测数据,我们可以构建一个误差平方和,表示每个观测值与拟合曲线之间的差异的平方。

最小二乘法旨在找到一条曲线,使得该曲线的拟合程度最小化误差平方和。

在进行最小二乘法曲线拟合时,需要确定曲线的方程。

常见的曲线方程包括直线、多项式、指数函数等。

以直线拟合为例,我们可以假设数据点之间的关系可以用一条直线来描述,即y = ax + b。

其中,a 和b 是需要拟合的参数,可以通过最小二乘法来求解。

最小二乘法的计算过程包括以下步骤:
1. 列出观测数据点的坐标。

2. 假设数据点之间的关系可以用一条曲线来描述,确定曲线的方程。

3. 计算每个数据点到拟合曲线的距离,并将其平方。

4. 将所有平方距离相加,得到误差平方和。

5. 对误差平方和求导,并令导数为零,解出参数的值。

6. 使用求出的参数值,得到拟合曲线的方程。

通过最小二乘法曲线拟合,我们可以得到一条最佳拟合曲线,用于描述数据点之间的关系。

最小二乘法不仅能够提高模型的精度,而且还可以帮助我们更好地理解数据点之间的规律和趋势。

拟合曲线的

拟合曲线的

拟合曲线的拟合曲线是一种数学方法,通过寻找最符合给定数据集的数学模型,以近似描述数据的趋势或规律。

拟合曲线可以用于理解数据的变化趋势、预测未来趋势以及找出数据背后的规律。

常见的拟合曲线方法包括:1.线性拟合(Linear Regression):使用线性模型拟合数据,例如通过最小二乘法找到一条直线,使其在数据点附近误差最小化。

2.多项式拟合(Polynomial Regression):使用多项式函数来拟合数据,可以是二次、三次或更高次的多项式模型,适用于非线性数据。

3.最小二乘法(Least Squares Fitting):一种常用的拟合方法,通过最小化实际观测值和模型预测值之间的误差平方和来找到最佳拟合曲线。

4.非线性拟合(Non-linear Regression):使用非线性模型来拟合数据,例如指数函数、对数函数、高斯函数等,适用于复杂的非线性关系。

5.局部拟合(Local Regression):通过在数据的不同区域内分别拟合局部模型,来更好地适应数据的变化。

拟合曲线的步骤通常包括:●数据收集和准备:收集数据并对数据进行清洗和预处理,确保数据质量和一致性。

●选择模型:根据数据的特征和问题的需求选择合适的拟合模型。

●拟合曲线:使用所选的拟合方法,在数据集上拟合出最优的曲线或模型。

●评估拟合:对拟合模型进行评估,检查模型的拟合程度和预测能力。

●应用和解释:将拟合曲线应用于数据预测、分析趋势或发现数据背后的规律,并进行解释和应用。

拟合曲线是数据分析和建模中常用的技术之一,但在选择模型和解释结果时需要小心谨慎。

不同的拟合方法适用于不同类型的数据和问题,正确选择适合数据特征的模型是非常重要的。

最小二乘法分类

最小二乘法分类

最小二乘法分类最小二乘法(Least Squares Method)是一种常用的参数估计方法,用于寻找一个函数模型的最佳拟合参数,使得模型的预测值与观测值的残差平方和最小化。

这种方法最早由高斯提出,并被广泛应用于统计学和计算机科学等领域。

本文将介绍最小二乘法的基本原理、应用场景以及相关的算法和评估指标。

一、基本原理:最小二乘法用于求解形如y = f(x;θ) 的函数模型的参数θ,其中y是观测值,x是自变量,f是函数模型。

最小二乘法的目标是找到最佳的参数θ,使得模型的预测值与实际观测值之间的残差平方和最小化。

具体步骤如下:1. 定义函数模型:根据具体问题,选择适当的函数模型,如线性模型、多项式模型、指数模型等。

2. 表达目标函数:根据函数模型和参数θ,将目标函数表达为关于θ的函数形式。

3. 定义损失函数:通常采用残差的平方和作为损失函数,即Loss = Σ(y_i - f(x_i;θ))^2 。

4. 求解参数θ:通过最小化损失函数,即求解使得∂Loss/∂θ = 0 的参数θ。

5. 参数估计:根据求解得到的参数θ,即可获得最佳的函数模型。

二、应用场景:最小二乘法在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 线性回归:最小二乘法用于拟合线性回归模型,求解自变量与因变量之间的关系。

2. 特征选择:最小二乘法可用于特征选择,筛选对目标变量影响最大的特征。

3. 数据压缩:通过最小二乘法可以估计出一个低维子空间,将高维数据进行压缩。

4. 图像处理:最小二乘法可用于图像去噪、图像恢复等问题,如使用低秩矩阵模型对图像进行恢复。

5. 信号处理:最小二乘法可用于信号滤波、信号恢复等问题,如基于 DCT 的音频和图像压缩。

三、算法与评估指标:1. 最小二乘法的数值解:在实际应用中,最小二乘法的数值解可以通过各种数值优化算法来求解,包括梯度下降法、牛顿法、共轭梯度法等。

2. 算法评估指标:常用的评估指标包括残差平方和(Residual Sum of Squares, RSS)、均方误差(Mean Square Error, MSE)以及决定系数(Coefficient of Determination, R^2)等。

最小二乘法与曲线拟合(共24张PPT)

最小二乘法与曲线拟合(共24张PPT)

j 1
n
aNj
xj
bN
j1
2a1k
a2k
aNk
(
Ax
b)
Q
故 x1
Q
x2
Q
2
AT
(
Ax
b)
2(
AT
Ax
AT b )
xn

Q 0
(k 1,2,, n)

ATxAk x
AT b
〔*〕
因为rankA=n,故由引理2知,上式有唯一解。设
解为x1=a1, x2=a2,…, xn=an,记为点P0(a1,a2,…,an),
或写为
其矩阵形式为
a11x1 a12x2 a1n xn b1 a21x1 a22x2 a2n xn b2
aN1x1 aN 2 x2 aNn xn bN
n
aij x j bi ( j 1,2,, N )
j 1
Ax b
当方程组的系数矩阵与增广矩阵的秩不相等时, 方程组无解,此时方程组称为矛盾方程组。对于 rankA=n〔A的秩为n〕的矛盾方程组〔N>n〕,我 们寻求其最小二乘意义下的解。
从给定的一组试验数据出发,寻求函数的一个近似表 达式y= (x),要求近似表达式能够反映数据的根本趋势 而又不一定过全部的点(xi,yi),这就是曲线拟合问题,函 数的近似表达式y= (x)称为拟合曲线。本章介绍用最小 二乘法求拟合曲线。
§5.1 用最小二乘法求解矛盾方程组
一、矛盾方程组的定义
设线性方程组
3.最小二乘法解矛盾方程组
计算步骤:
〔1〕判断方程组的秩是否满足rankA=n?
〔2〕写出正那么方程组;
〔3〕求解正那么方程组,其解就是矛盾方程组 的最小二乘解。

矩阵理论作业3:最小二乘法拟合

矩阵理论作业3:最小二乘法拟合

用最小二乘法确定m 次拟合多项式()m y P x =摘 要在实际问题中测得的实验数据有时需要较简单的函数逼近来解 , 最小二乘法拟合在解决这类问题的数据处理和误差分析中应用非常广泛 ,已成为这类问题数据处理的重要且可靠的技术手段。

本文针对最小二乘法的多项式拟合,进行了拟合曲线系数矩阵的理论公式推导,并由matlab 工具实现了拟合函数的编程。

然后在实际数据上进行了应用,并通过对结果的比较分析得出了结论,旨在提升对这种在工程中应用广泛的方法的理解和应用能力。

关键字:最小二乘法 多项式 拟合引言最小二乘拟合是一种数学上的近似和优化,利用某种方法由已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间距离的平方和达到最小。

最小二乘拟合在工程中具有普遍应用,是数据分析的重要方法。

最小二乘法拟合的模型有很多种,其中多项式拟合模型应用比较广泛。

()m P x 表示次数不高于m 次的多项式。

本文结合线性代数中有关矩阵的运算等知识[2],在最小二乘法多项式拟合基本公式的推导[1][3]基础上,应用matlab 工具进行编程实现[3],并对实际的例子进行一次、二次及多次拟合,做出拟合曲线。

实验发现,程序运行良好,基本可以很好地进行数据拟合分析。

最小二乘法基本原理对于一组给定数据点1122(,),(,),,(,)N N x y x y x y ,求一个次数不高于m 次的多项式2012()m m m y a a x a x a x P x =++++= (1)使得拟合出的近似曲线尽可能反映所给数据点的变化趋势(一般来说m N )。

那么,就要求()m P x 在所有数据点i x 上的偏差()i m i i P x y δ=-,(=12i N ,,,) (2)都较小。

为达到这个目标,令偏差的平方和最小,即2211()[()]min N Nimiii i P x y δ===-=∑∑ (3)称这种方法为最小二乘法,利用这一原则确定拟合多项式()m P x 的方法即为最小二乘法多项式拟合。

非线性回归分析与曲线拟合方法

非线性回归分析与曲线拟合方法

非线性回归分析与曲线拟合方法回归分析是一种常见的统计分析方法,用于研究自变量与因变量之间的关系。

在实际应用中,很多数据并不符合线性关系,而是呈现出曲线形式。

这时,我们就需要使用非线性回归分析和曲线拟合方法来更好地描述数据的规律。

一、非线性回归分析的基本原理非线性回归分析是一种通过拟合非线性方程来描述自变量与因变量之间关系的方法。

与线性回归不同,非线性回归可以更准确地反映数据的特点。

在非线性回归分析中,我们需要选择适当的非线性模型,并利用最小二乘法来估计模型的参数。

二、常见的非线性回归模型1. 多项式回归模型:多项式回归是一种常见的非线性回归模型,它通过多项式方程来拟合数据。

多项式回归模型可以描述数据的曲线特征,但容易出现过拟合问题。

2. 指数回归模型:指数回归模型适用于自变量与因变量呈指数关系的情况。

指数回归模型可以描述数据的增长或衰减趋势,常用于描述生物学、物理学等领域的数据。

3. 对数回归模型:对数回归模型适用于自变量与因变量呈对数关系的情况。

对数回归模型可以描述数据的增长速度,常用于描述经济学、金融学等领域的数据。

4. S形曲线模型:S形曲线模型适用于自变量与因变量呈S形关系的情况。

S形曲线模型可以描述数据的增长或衰减过程,常用于描述市场营销、人口增长等领域的数据。

三、曲线拟合方法曲线拟合是一种通过选择合适的曲线形状来拟合数据的方法。

在曲线拟合过程中,我们需要根据数据的特点选择适当的拟合方法。

1. 最小二乘法:最小二乘法是一种常用的曲线拟合方法,通过最小化观测值与拟合值之间的残差平方和来确定拟合曲线的参数。

2. 非线性最小二乘法:非线性最小二乘法是一种用于拟合非线性模型的方法,它通过最小化观测值与拟合值之间的残差平方和来确定模型的参数。

3. 曲线拟合软件:除了手动选择拟合方法,我们还可以使用曲线拟合软件来自动拟合数据。

常见的曲线拟合软件包括MATLAB、Python的SciPy库等。

四、应用实例非线性回归分析和曲线拟合方法在实际应用中有着广泛的应用。

曲线拟合方法在机器学习中的应用研究

曲线拟合方法在机器学习中的应用研究

曲线拟合方法在机器学习中的应用研究机器学习作为人工智能的一个重要分支,在许多领域中都有着广泛的应用。

为了构建准确的预测模型,曲线拟合方法被广泛应用于机器学习中。

本文将探讨曲线拟合方法在机器学习中的应用研究。

1. 简介机器学习是通过训练算法,使计算机能够自动地从数据中学习并做出预测或决策的技术。

然而,在实际问题中,数据往往是呈现出某种模式的曲线。

为了更好地理解数据和构建预测模型,我们需要对这些曲线进行拟合。

2. 曲线拟合方法曲线拟合是通过拟合曲线模型来逼近已知数据的过程。

常见的曲线拟合方法包括多项式拟合、最小二乘法、样条插值等。

这些方法都可以用于在机器学习中构建预测模型。

2.1 多项式拟合多项式拟合是一种将数据拟合成多项式函数的方法。

通过选择合适的多项式阶数,我们可以逼近数据曲线,使得预测模型更加准确。

然而,多项式拟合往往容易过拟合,需要通过交叉验证等方法来解决。

2.2 最小二乘法最小二乘法是一种通过最小化残差平方和来拟合数据的方法。

它可以拟合各种类型的曲线,包括线性和非线性曲线。

最小二乘法在机器学习中广泛应用于线性回归、岭回归等模型的训练和预测。

2.3 样条插值样条插值是一种通过使用一组插值函数来逼近已知数据的方法。

它将曲线分段拟合,每个段使用一个插值函数来逼近数据。

样条插值在机器学习中常用于平滑曲线的拟合,具有较好的稳定性和精度。

3. 曲线拟合在机器学习中的应用曲线拟合在机器学习中有着广泛的应用。

以下是一些常见的应用示例:3.1 图像处理图像处理中常常需要对曲线进行拟合,以提取其中的信息。

例如,人脸识别算法中通过对脸部轮廓进行曲线拟合,可以提取关键特征点,从而实现精确的人脸识别。

3.2 金融预测曲线拟合在金融预测中也有着重要的应用。

通过对历史股价曲线进行拟合,可以构建出精确的股价预测模型,帮助投资者做出准确的决策。

3.3 数据分析在数据分析中,曲线拟合可以用于处理不完整或嘈杂的数据。

通过拟合数据曲线,可以填补空缺的数据,更好地理解数据之间的关系,从而做出更准确的数据分析结果。

Matlab最小二乘法曲线拟合

Matlab最小二乘法曲线拟合

之杨若古兰创作最小二乘法在曲线拟合中比较普遍.拟合的模型次要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......普通对于LS成绩,通常利用反斜杠运算“\”、fminsearch 或优化工具箱提供的极小化函数求解.在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操纵.在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型.“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2]; 履行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这类方法对于系数是线性的模型也适应.2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是猜测变量,y是呼应变量.设计矩阵为X=[ones(size(x)) x t] %留意x,t大小相等!para=X\ypolyfit函数polyfit函数不须要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵.1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2)然后可以使用polyval在t处猜测:y_hat=polyval(p,t)polyfit函数可以给出相信区间. [p S]=polyfit(x,y,2) %S中包含了尺度差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处猜测在每个t处的95%CI为:(y_fit1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2) p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数.LS成绩的基本思想就是残差的平方和(一种范数,由此,LS发生了很多利用)最小,是以可以利用fminsearch函数进行曲线拟合. 假设要拟合:y = a+b*exp(x)+c*exp(x.?2) 首先建立函数,可以通过m文件或函数句柄建立:x=[......]';y=[......]';f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.?2) %留意向量化:p(1)=a;p(2)=b;p(3)=c; %可以根据须要选择是否优化参数%opt=options()p0=ones(3,1);%初值para=fminsearch(@(p) (yf(p,x)).^2,p0) %可以输出Hessian矩阵res=yf(para,x)%拟合残差曲线拟合工具箱提供了很多拟合函数,对大样本场合比较无效!非线性拟合nlinfit函数clear all; x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]'; x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]'; x=[x1 x2]; y=[0.517 0.509 0.44 0.466 0.479 0.309]'; f=@(p,x)2.350176*p(1)*(11/p(2))*(1(1x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(1 /p(2))1).^(p(2)).*x(:,1).^(1/p(2)0.5).*x(:,2);p0=[8 0.5]'; opt=optimset('TolFun',1e3,'TolX',1e3);%[p R]=nlinfit(x,y,f,p0,opt)例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子直线型例子2.多项式型的一个例子19002000年的总人口情况的曲线拟合clear all;close all; %cftool提供了可视化的曲线拟合!t=[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]'; y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.4220]'; %t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依.变换为[1 1]上s=(t1950)/50;%plot(s,y,'ro');%回归线:y=a+bx mx=mean(s);my=mean(y);sx=std(s);sy=std(y);r=corr(s,y);b=r*sy/sx;a=myb*mx;rline=a+b.*s;figure;subplot(3,2,[1 2]) plot(s,y,'ro',s,rline,'k');%title('多项式拟合'); set(gca,'XTick',s,'XTickLabel',sprintf('%d|',t));%hold on; n=4;PreYear=[ ];%猜测年份tPreYear=(PreYear1950)/50;Y=zeros(length(t),n);res=zeros(size(Y));delta=zeros(size(Y));PrePo=zeros(length(PreYear),n);Predelta=zeros(size(PrePo));for i=1:n[p S(i)]=polyfit(s,y,i);[Y(:,i) delta(:,i)]=polyval(p,s,S(i));%拟合的Y [PrePo(:,i) Predelta(:,i)]=polyval(p,tPreYear,S(i));%猜测res(:,i)=yY(:,i);%残差end% plot(s,Y);%a主动添加分歧色彩% legend('data','regression line','1st poly','2nd poly','3rd poly','4th poly',2)% plot(tPreYear,PrePo,'>'); % hold off % plot(Y,res,'o');%残差图r=corr(s,Y).^2 %R^2 %拟合误差估计CI YearAdd=[t;PreYear'];tYearAdd=[s;tPreYear'];CFtit={'一阶拟合','二阶拟合','三阶拟合','四阶拟合'}; for col=1:nsubplot(3,2,col+2);plot(s,y,'ro',s,Y(:,col),'g');%原始数据和拟合数据legend('Original','Fitted',2);hold on;plot(s,Y(:,col)+2*delta(:,col),'r:');%95% CIplot(s,Y(:,col)2*delta(:,col),'r:');plot(tPreYear,PrePo(:,col),'>');%猜测值plot(tPreYear,PrePo(:,col)+2*Predelta(:,col));%猜测95% CIplot(tPreYear,PrePo(:,col)2*Predelta(:,col));axis([1.2 1.8 0 400]);set(gca,'XTick',tYearAdd,'XTickLabel',sprintf('%d|',YearAdd));title(CFtit{col});hold off; endfigure;%残差图for col=1:nsubplot(2,2,col);plot(Y(:,i),res(:,i),'o'); end一个非线性的利用例子(多元情况)在百度晓得中,要拟合y=a*x1^n1+b*x2^n2+c*x3^n3%注:只是作为利用,模型纷歧定准确!!!%x2=x3!!!y=[1080.94 1083.03 1162.80 1155.61 1092.82 1099.26 1161.06 1258.05 1299.03 1298.30 1440.22 1641.30 1672.21 1612.73 1658.64 1752.42 1837.99 2099.29 2675.47 2786.33 2881.07]'; x1=[1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2]'; x2=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x3=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]'; x=[x1 x2 x3]; f=@(p,x) p(1)*x(:,1).^p(2)+p(3)*x(:,2).^p(4)+p(5)*x(:,3).^p(6); p0=ones(6,1);p=fminsearch(@(p)sum(yf(p,x)).^2,p0)res=yf(p,x);res2=res.^2 %失败的模型。

曲面拟合是啥原理图的应用

曲面拟合是啥原理图的应用

曲面拟合是啥原理图的应用1. 曲面拟合的概念曲面拟合是一种数学建模技术,用于将一组离散点数据拟合成平滑的曲面。

它通过寻找最适合给定点集的曲面来实现数据的近似和拟合。

曲面拟合在计算机图形学、CAD/CAM、工程设计和地理信息系统等领域得到了广泛应用。

2. 曲面拟合的原理曲面拟合的原理基于数学最优化方法,旨在找到一个曲面模型,使其最接近给定的离散点数据。

常见的曲面拟合方法包括最小二乘法和样条曲面拟合等。

2.1 最小二乘法最小二乘法是曲面拟合中常用的一种方法。

它通过最小化数据点与曲面之间的距离来确定最佳拟合曲面。

最小二乘法可以分为线性最小二乘法和非线性最小二乘法。

2.1.1 线性最小二乘法线性最小二乘法适用于拟合线性模型的情况。

其基本原理是建立一个与数据点相匹配的线性模型,并通过最小化残差平方和来确定最佳拟合曲面。

线性最小二乘法的数学公式可以表示为:min E = Σ (yi - f(xi))^2其中,E为残差平方和,yi为实际观测值,f(xi)为线性模型的预测值。

2.1.2 非线性最小二乘法非线性最小二乘法适用于拟合非线性模型的情况。

其原理与线性最小二乘法类似,不过在计算残差平方和时,需要通过迭代的方式逼近最佳拟合结果。

非线性最小二乘法的数学公式可以表示为:min E = Σ (yi - f(xi;θ))^2其中,θ为模型参数,f(xi;θ)为非线性模型的预测值。

2.2 样条曲面拟合样条曲面拟合是一种使用控制点和插值方法构造曲面的技术。

它将拟合问题转化为一个插值问题,在给定的控制点上生成一个平滑的曲面。

样条曲面拟合的原理是通过插值方法将数据点与控制点相连,并在控制点上生成一个曲面模型,以实现数据的拟合。

3. 曲面拟合的应用曲面拟合在许多领域都有广泛的应用。

以下是一些常见的应用场景:•计算机图形学:曲面拟合可以用于生成光滑的曲线和曲面,用于渲染和动画效果的生成。

•CAD/CAM:曲面拟合可以用于设计和制造曲面形状的产品,例如汽车、飞机等。

拟合曲线的方法

拟合曲线的方法

拟合曲线的方法
拟合曲线是一种数据分析方法,用于找到最适合描述数据的数学函数或曲线。

这种方法主要用于通过已知数据点来估计未知数据点的数值。

在拟合曲线的过程中,有几种常见的方法可以使用。

下面是其中一些常见的方法:
1. 最小二乘法:最小二乘法是一种常见的拟合曲线方法,其目标是通过最小化观测数据点与拟合曲线之间的误差来找到最佳拟合曲线。

这种方法可以应用于线性和非线性函数。

2. 多项式拟合:多项式拟合是一种通过多项式函数来拟合数据的方法。

它通常用于拟合曲线比较平滑的数据集。

多项式拟合方法可以根据数据的复杂度选择合适的多项式阶数,例如线性、二次、三次等。

3. 样条插值:样条插值是一种通过多个分段多项式函数来拟合数据的方法。

这种方法通过将数据集划分为多个小段,并在每个小段上拟合一个多项式函数,从而得到整体的曲线拟合。

4. 非参数拟合:非参数拟合是一种不依赖于特定函数形式的拟合曲线方法。

这种方法主要通过使用核函数或直方图等技术来估计数据的概率密度函数,并从中得到拟合曲线。

总体而言,选择合适的拟合曲线方法取决于数据的特征和对拟合结果的要求。

需要根据数据的分布、噪声水平和所需精度等因素来选择合适的方法。

此外,还可以使用交叉验证等技术来评估拟合曲线的质量,并选择最佳的拟合曲线模型。

curvefitting拟合三元函数

curvefitting拟合三元函数

curvefitting拟合三元函数曲线拟合是一种用于找到已知数据点之间的最佳拟合曲线的数学技术。

三元函数是指包含三个自变量的函数,通常的形式为z=f(x,y)。

在进行三元函数的曲线拟合时,我们需要找到最适合已有数据点的三元函数模型。

三元函数的曲线拟合问题可以描述为以下的最小二乘问题:min,z - f(x, y),^2,其中z为已知的目标值,f(x, y)为拟合的三元函数模型。

为了解决这个问题,我们可以采用多项式拟合、非线性最小二乘法等方法。

下面将介绍两种常用的曲线拟合方法:多项式拟合和非线性最小二乘法。

1.多项式拟合多项式拟合是一种常见的曲线拟合方法,它通过在数据点之间插值构建一个多项式函数来拟合数据。

最常用的多项式拟合方法是最小二乘多项式拟合。

通过最小化误差的平方和,我们可以得到最佳拟合曲线。

2.非线性最小二乘法当三元函数模型不能用多项式函数来表示时,我们可以使用非线性最小二乘法进行曲线拟合。

非线性最小二乘法是一种通过最小化误差的平方和来找到最佳拟合曲线的方法。

这种方法可以根据已有数据点,拟合出一个与实际数据较为接近的三元函数模型。

无论采用哪种方法进行曲线拟合,我们需要考虑以下几个步骤:1.数据准备:准备需要进行拟合的数据点,包括自变量和目标值。

数据点的数量应足够多,以确保拟合的准确性。

2.模型选择:根据问题的特点选择合适的三元函数模型。

3.模型拟合:使用拟合方法来拟合数据点,得到拟合的三元函数模型。

4.模型评估:评估拟合的三元函数模型与实际数据之间的拟合程度,常用的评估指标包括均方根误差(RMSE)、决定系数(R²)等。

5.模型应用:将拟合的三元函数模型应用于实际问题,进行预测、分析等。

综上所述,曲线拟合是一种重要的数学技术,用于找到最佳拟合曲线以描述已知数据点之间的关系。

在拟合三元函数时,我们可以使用多项式拟合或非线性最小二乘法等方法。

通过选择合适的模型、拟合数据点和评估拟合结果,我们可以找到一个与实际数据较为接近的三元函数模型,进而应用于实际问题的预测和分析。

线性最小二乘法拟合

线性最小二乘法拟合

线性最小二乘法拟合
线性最小二乘法(Linear Least Squares,LLS)是一种用来对观测数据建立数学模型的最常见的统计学方法,它可以有效地从数据中恢复出一组最优参数值。

它可以用来拟合各种类型的多项式曲线,甚至可以应用到混合型曲线,并且具有良好的拟合效果。

一、线性最小二乘法的定义
线性最小二乘法是一种数学方法,记为$argmin \ \sum_{i=1}^{n} (Y_i - f(X_i))^2$,表明最小二乘法通过最小化残差(残差是指观测值与实际值的差异)的平方和,来估计参数模型的参数。

二、线性最小二乘法的原理
线性最小二乘法即最小误差平方和法,即参数估计问题关于误差平方和有最小值时参数向量,该参数向量即构成最小二乘解。

另外,在假定数据舍入误差符合高斯分布的情况下,最小二乘法可以被认为是可行统计方法的最优的一种。

三、线性最小二乘法的应用
(1)拟合函数式在数学及工程中,最小二乘法非常常见,主要用于拟合函数式,特别是二元一次函数式,如曲线或抛物线;
(2)计算未知参数线性最小二乘法可以用来解决只有已知数据,而求解未知参数的最小二乘问题,它除了可以拟合多项式表达式,还可以拟合非线性方程;
(3)建立数据模型经过数据分析处理,可以使用最小二乘法的方法建立数据模型,来求解某些复杂的问题。

四、线性最小二乘法的优缺点
(1)优点:算法简单,收敛速度快,适用于线性拟合;
(2)缺点:模型不一定适用所有数据,受输入噪声影响,不适用高次函数拟合。

线性最小二乘法是广泛用于统计学和工程领域的有效方法,它不仅可以提供良好的拟合效果,而且可以有效地恢复出参数模型的最优参数值,可以满足许多不同的场景的需求,也被广泛认可和使用。

物理学实验中的常用数学模型与拟合方法

物理学实验中的常用数学模型与拟合方法

物理学实验中的常用数学模型与拟合方法物理学实验是研究物质和能量之间相互作用规律的重要手段,通过实验可以得到大量数据。

然而,这些数据往往需要通过数学模型进行处理与分析,以便进行更深入的研究与理解。

在物理学实验中,常用的数学模型与拟合方法有以下几种。

一、直线模型与线性回归分析直线模型是物理学实验中最简单也是最常见的数学模型之一。

在许多实验中,通过实验测量得到的数据呈现一条直线趋势。

这时,我们可以运用线性回归分析的方法,通过最小二乘法拟合出一条最佳拟合直线,以描述实验数据的整体分布趋势。

线性回归模型的方程通常采用y = kx + b的形式,其中k为斜率,表示物理量之间的线性关系;b 为截距,表示直线与y轴的交点。

二、二次曲线模型与曲线拟合在某些实验中,通过实验测量得到的数据并不呈现直线趋势,而更接近于二次曲线。

这时,我们可以运用二次曲线模型进行拟合,以更准确地揭示实验数据的规律。

常见的二次曲线模型方程为y = ax^2 + bx + c,其中a,b和c是拟合参数,代表二次曲线的形状。

三、指数模型与指数拟合指数模型在物理实验中也经常出现,特别是在描述物理过程中的指数衰减或增长现象时。

通过使用指数模型进行有效的数据拟合,可以帮助我们了解物理现象的变化规律。

指数模型的方程通常为y = ae^(bx),其中a和b为拟合参数,e为自然对数的底。

四、对数模型与对数拟合某些实验中,由于物理量之间的关系比较复杂,不适合使用线性、二次曲线或指数模型进行拟合。

这时,对数模型就成为一种有效的选择。

对数模型可以将非线性关系转化为线性关系,从而通过最小二乘法进行拟合。

对数模型的方程通常为y = a + b * ln(x),其中a和b为拟合参数,ln表示自然对数函数。

五、幂函数模型与幂函数拟合幂函数模型在描述某些物理现象时较为常见,如电阻与电流之间的关系、速度与时间之间的关系等。

幂函数模型的方程通常为y = ax^b,其中a和b为拟合参数。

最小二乘法拟合原理

最小二乘法拟合原理

最小二乘法拟合原理最小二乘法(Least Squares Method)是一种常用的线性回归分析方法,用于拟合数据点到一个理论模型的直线或曲线的原理。

它的目标是通过最小化实际数据点与拟合曲线之间的垂直距离(也称为残差)的平方和来找到最佳的拟合曲线。

假设我们有一个包含n个数据点的数据集,其中每个数据点的坐标可以表示为(xi,yi)。

我们希望找到一个模型y=f(x,θ),其中x是自变量,θ是模型的参数,使得对于每个数据点,模型预测的y值与实际的观测值之间的差异最小化。

yi = yi_true + ei以线性回归为例,模型可以表示为y=θ0+θ1x,其中θ0和θ1是要估计的参数。

我们的目标是找到最佳的θ0和θ1,使得所有数据点的残差平方和最小。

残差可以定义为:ei = yi - (θ0 + θ1xi)为了最小化残差平方和,我们需要对残差平方和进行求导,并令导数等于零。

这样一来,我们就能得到使得残差平方和最小的参数估计值。

对于线性回归而言,最小二乘法的公式可以写为:θ1 = (sum(xi - x_mean)(yi - y_mean))/(sum(xi - x_mean)^2)θ0 = y_mea n - θ1x_mean其中,x_mean和y_mean分别是自变量和因变量的均值。

需要注意的是,最小二乘法只是一种估计参数的方法,它没有办法告诉我们模型是否真实有效。

为了评估拟合效果,我们还需要使用一些指标,如决定系数(coefficient of determination),来评估拟合曲线与数据之间的拟合程度。

总结起来,最小二乘法是一种通过最小化实际数据点与拟合曲线之间的垂直距离的平方和来找到最佳的拟合曲线的方法。

它的原理建立在数据具有随机误差,且服从独立同分布的正态分布的假设上。

通过最小二乘法,我们可以估计出模型的参数,以及评估拟合程度,从而对数据进行分析、预测与优化。

python曲线拟合的最小二乘法

python曲线拟合的最小二乘法

Python曲线拟合的最小二乘法引言在实际应用中,我们经常需要通过已知数据去拟合一条曲线,以便更好地理解数据的趋势和规律。

曲线拟合是一种常用的数据分析方法,而最小二乘法则是其中最常见和重要的一种技术手段。

本文将介绍如何使用Python进行曲线拟合,并着重讨论最小二乘法的应用和原理。

1. 什么是最小二乘法?最小二乘法是一种数学优化方法,用于确定一组数据和一个数学关系式之间的最优拟合曲线。

具体来说,对于给定的一组数据点,最小二乘法的目标是找到一个数学模型,使得该模型计算出的值与实际观测值之间的残差平方和最小。

2. 最小二乘法的原理考虑一个简单的情况,假设我们有一组数据点(x1, y1), (x2, y2), … , (xn, yn),我们想要用一条直线y = ax + b来拟合这些数据。

最小二乘法的目标是找到最优的参数a和b,使得拟合后的直线与数据点之间的残差平方和最小。

为了求解最优参数,可以通过最小化残差平方和的方式来进行。

具体来说,可以定义一个损失函数,即残差平方和的平均值,如下所示:J(a, b) = (1/n) * Σ(yi - (axi + b))^2其中,n表示数据点的个数,xi和yi分别表示第i个数据点的横坐标和纵坐标。

通过最小化这个损失函数,可以得到最优的参数a和b。

对于更复杂的情况,比如需要拟合高阶曲线,最小二乘法的原理类似,只是拟合模型不同。

还可以通过增加更多的参数来适应更复杂的曲线形状。

3. 使用Python进行最小二乘法曲线拟合在Python中,使用最小二乘法进行曲线拟合非常方便,可以使用scipy库的optimize模块中的curve_fit函数来实现。

我们需要导入必要的库:import numpy as npfrom scipy.optimize import curve_fitimport matplotlib.pyplot as plt我们可以定义拟合的数学模型。

以拟合一条指数函数为例,定义一个指数函数的模型:def func(x, a, b, c):return a * np.exp(-b * x) + c接下来,我们可以生成一组测试数据:x = np.linspace(0, 4, 50)y = func(x, 2.5, 1.3, 0.5)使用curve_fit函数进行曲线拟合:params, params_covariance = curve_fit(func, x, y)我们可以绘制原始数据和拟合曲线的图像:plt.plot(x, y, 'bo', label='Original Data')plt.plot(x, func(x, params[0], params[1], params[2]), 'r-', label='Fitted Curv e')plt.legend()plt.show()4. 个人观点和总结最小二乘法在数据分析和曲线拟合中被广泛应用,其原理简单而有效。

最小二乘法曲线拟合算法

最小二乘法曲线拟合算法

最小二乘法曲线拟合算法
最小二乘法是一种常见的曲线拟合算法,其原理是通过计算样本点与拟合曲线的误差平方和最小化,得到最佳的曲线拟合结果。

以下是最小二乘法曲线拟合算法的步骤:
步骤一:选择合适的拟合函数。

通常情况下,拟合函数的选择取决于数据集的特性和需要得到的拟合效果。

例如,对于线性拟合,拟合函数可采用一次多项式函数y=kx+b;对于非线性拟合,拟合函数可能需要采用高次多项式函数或指数函数等。

步骤二:确定误差函数。

误差函数的目的是衡量样本点与拟合曲线的偏差程度。

最常用的误差函数是均方误差,即将每个样本点的实际值与相应拟合函数的输出值之间的平方误差求和,得到样本点的一般均方误差。

公式为:E = Σ(yi-f(xi))^2。

步骤三:最小化误差函数。

最小二乘法的核心就是通过求解误差函数的最小值来得到最佳的拟合曲线。

最小化误差函数可以采用梯度下降法或牛顿法等优化算法进行求解。

步骤四:得到最佳的拟合曲线。

在得到最小化误差函数的解后,即可获得最佳的拟合曲线,该曲线可用于对数据集进行预测、分类或回归等任务。

步骤五:评估拟合效果。

为了验证最佳拟合曲线的精度和泛化能力,需要将新的数据样本输入到该曲线中进行预测,并通过各种评估指标(例如均方根误差、相关系数等)来评估拟合效果。

最小二乘法曲线拟合算法是数据分析领域中的重要算法之一,可用于各种领域中的数据拟合和模型预测任务,例如气象科学、金融投资、信号处理等。

在应用过程中,需要根据实际情况灵活选择拟合函数和误差函数,同时对拟合结果进行合理的评估和优化,以获得更好的预测效果。

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理最小二乘法曲线拟合原理是指用曲线来拟合已知数据点的一种优化算法,也叫“误差最小化法”,更多的称之为“最小二乘法”,简称LSM。

最小二乘法曲线拟合的应用范围很广,拟合分析复杂数据的应用越来越多。

最小二乘法曲线拟合的原理最小二乘曲线拟合的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差(SSE)最小。

均方误差是指观测值和拟合函数值之间的差的平方(SSE = SΣ(Yi - Xk)^2)。

均方误差最小,表明拟合函数就是最适合拟合数据的函数,而最小二乘法的基本思想就是求均方误差最小,即求解最优解的函数,这个函数就是最合适拟合给定数据点的曲线函数,即最小二乘法曲线拟合函数。

最小二乘法曲线拟合的应用最小二乘法曲线拟合最常见的应用是拟合曲线,以解决未知函数形式的问题。

拟合曲线可以使用曲线来估计一组数据,曲线拟合可以使得模型更准确地拟合数据,并且可以获得该曲线的未知参数。

如果数据不符合一个函数,可以使用自定义函数进行拟合,比如指数函数、sin函数、双曲线等。

最小二乘法也可以用于拟合回归模型,这是一种统计学中常用的方法,它可以用来推断大量随机变量的变化趋势,或者用来分析一个可能受其他变量影响的变量之间的关系。

最小二乘法也可以用于数值估计,比如最小二乘法用于数值拟合,用于数值拟合可以求出未知函数的参数,用于回归分析中,可以估计因变量受自变量影响的参数。

最小二乘法曲线拟合的缺点最小二乘法曲线拟合的最大缺点是其依赖性强:由于拟合的曲线函数有固定形式,因此无法拟合数据点的异常值,也无法拟合数据不具有规律性的情况;另外,最小二乘法曲线拟合也可能因过拟合导致拟合出的函数复杂度较高,从而影响精度。

总结最小二乘法曲线拟合原理指用曲线来拟合已知数据点的一种优化算法,它的基本原理是构造一个最适合拟合给定数据点的函数,使拟合后函数拟合数据点和真实数据点之间的均方误差最小。

最小二乘法曲线数据拟合

最小二乘法曲线数据拟合

最小二乘法曲线数据拟合
首先,最小二乘法的基本原理是通过最小化拟合曲线与实际数
据之间的误差平方和来确定最佳拟合曲线的参数。

这意味着拟合曲
线的参数将被调整,以使拟合曲线上的点与实际数据点的残差之和
最小化。

其次,最小二乘法可以用于拟合各种类型的曲线,例如线性曲线、多项式曲线、指数曲线等。

对于线性曲线拟合,最小二乘法可
以得到最佳拟合直线的斜率和截距;对于多项式曲线拟合,最小二
乘法可以确定最佳拟合多项式的系数;对于指数曲线拟合,最小二
乘法可以找到最佳拟合曲线的底数和指数。

此外,最小二乘法还可以通过添加约束条件来进行拟合。

例如,可以通过添加正则化项来控制拟合曲线的复杂度,以避免过拟合问题。

常见的正则化方法包括岭回归和Lasso回归。

在实际应用中,最小二乘法曲线数据拟合可以用于许多领域,
如经济学、统计学、物理学等。

它可以用于分析趋势、预测未来值、估计参数等。

例如,在经济学中,最小二乘法可以用于拟合经济模型,以评估不同因素对经济指标的影响。

最后,最小二乘法的计算通常可以通过数值方法来实现,例如
使用最小二乘法的矩阵形式求解线性方程组,或者使用迭代算法来
拟合非线性曲线。

总结起来,最小二乘法是一种常用的数据拟合方法,通过最小
化拟合曲线与实际数据之间的误差平方和来确定最佳拟合曲线的参数。

它可以适用于各种类型的曲线拟合,并可以通过添加约束条件
来进行拟合。

在实际应用中,最小二乘法可以用于分析趋势、预测
未来值、估计参数等。

最小二乘法的计算可以通过数值方法来实现。

曲线拟合算法在数据分析中的应用

曲线拟合算法在数据分析中的应用

曲线拟合算法在数据分析中的应用一、引言在当今大数据时代,数据处理和分析成为了各个领域的必需。

而曲线拟合算法作为一种数据分析的重要方法,在研究数据间关系、预测未来走势等方面有着重要的应用。

本文将介绍曲线拟合算法的分类和原理,以及其在数据分析中的应用。

二、曲线拟合算法分类及原理曲线拟合算法可以按照所使用的模型分为线性和非线性两种。

其中,线性模型中最常用的是最小二乘法拟合,而非线性模型中则包含了最小二乘法拟合、插值法、样条法、小波分析等方法。

1. 最小二乘法拟合最小二乘法拟合是一种基于误差平方和最小的线性拟合方法,其基本思想是通过已知数据点使得误差平方和最小,从而得到最佳拟合曲线。

以二次函数 y = ax2+ bx + c 为例,若已知n个点(xi,yi),则二次函数的拟合可以表示为以下的最小二乘法方程:$\begin{bmatrix} \sum x_ i^4 & \sum x_ i^3 & \sum x_ i^2\\\ \sum x_ i^3 & \sum x_ i^2 & \sum x_ i\\\ \sum x_ i^2 & \sum x_ i & n\end{bmatrix}$ $\begin{bmatrix} a\\b\\c \end{bmatrix}$ =$\begin{bmatrix} \sum x_ i^2y_ i\\\ \sum x_ i y_ i\\\ \sum y_ i\end{bmatrix}$通过求解该方程组,便可得到最佳拟合曲线的参数。

2. 插值法插值法适用于已知若干个离散点,需要根据这些点建立起连续的函数值的情况。

假设已知n个点(xi,yi),其中i=1,2,……,n,插值函数f(x)可表示为:f(x) = $\sum\limits_{i=1}^n y_iL_i(x)$其中Li表示拉格朗日插值基函数,其公式为:Li(x) = $\frac{(x-x_1)…(x-x_{i-1})(x-x_{i+1})…(x-x_n)}{(x_i-x_1)…(x_i-x_{i-1})(x_i-x_{i+1})…(x_i-x_n)}(1\leq i \leq n)$插值法的优点在于可以保证插值函数在已知数据点上经过所有点,而其缺点则在于可能会在函数区间边界处出现极端效应或振荡现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法在曲线拟合中比较普遍。

拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。

在Matlab 中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。

2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)];para=X\y3.多重回归(乘积回归)设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。

设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等!para=X\ypolyfit函数polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。

1.假设要拟合的多项式是:y=a+b*x+c*x^2p=polyfit(x,y,2)然后可以使用polyval在t处预测:y_hat=polyval(p,t)polyfit函数可以给出置信区间。

[p S]=polyfit(x,y,2) %S中包含了标准差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2)p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数。

LS问题的基本思想就是残差的平方和(一种范数,由此,LS产生了许多应用)最小,因此可以利用fminsearch函数进行曲线拟合。

假设要拟合:y = a+b*exp(x)+c*exp(x.?2)首先建立函数,可以通过m文件或函数句柄建立:x=[......]';y=[......]';f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.?2) %注意向量化:p(1)=a;p(2)=b;p(3)=c;%可以根据需要选择是否优化参数%opt=options()p0=ones(3,1);%初值para=fminsearch(@(p) (y-f(p,x)).^2,p0) %可以输出Hessian矩阵res=y-f(para,x)%拟合残差曲线拟合工具箱提供了很多拟合函数,对大样本场合比较有效!非线性拟合nlinfit函数clear all;x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]';x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]';x=[x1 x2];y=[0.517 0.509 0.44 0.466 0.479 0.309]';f=@(p,x)2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5) .*x(:,2);p0=[8 0.5]';opt=optimset('T olFun',1e-3,'T olX',1e-3);%[p R]=nlinfit(x,y,f,p0,opt)例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子直线型例子2.多项式型的一个例子1900-2000年的总人口情况的曲线拟合clear all;close all;%cftool提供了可视化的曲线拟合!t=[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]';y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.4220]';%t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依。

变换为[-1 1]上s=(t-1950)/50;%plot(s,y,'ro');%回归线:y=a+bxmx=mean(s);my=mean(y);sx=std(s);sy=std(y);r=corr(s,y);b=r*sy/sx;a=my-b*mx;rline=a+b.*s;figure;subplot(3,2,[1 2])plot(s,y,'ro',s,rline,'k');%title('多项式拟合');set(gca,'XTick',s,'XTickLabel',sprintf('%d|',t));%hold on;n=4;PreYear=[2010 2015 2020];%预测年份tPreYear=(PreYear-1950)/50;Y=zeros(length(t),n);res=zeros(size(Y));delta=zeros(size(Y));PrePo=zeros(length(PreYear),n);Predelta=zeros(size(PrePo));for i=1:n[p S(i)]=polyfit(s,y,i);[Y(:,i) delta(:,i)]=polyval(p,s,S(i));%拟合的Y[PrePo(:,i) Predelta(:,i)]=polyval(p,tPreYear,S(i));%预测res(:,i)=y-Y(:,i);%残差end% plot(s,Y);%2009a自动添加不同颜色% legend('data','regression line','1st poly','2nd poly','3rd poly','4th poly',2) % plot(tPreYear,PrePo,'>');% hold off% plot(Y,res,'o');%残差图r=corr(s,Y).^2 %R^2%拟合误差估计CIYearAdd=[t;PreYear'];tYearAdd=[s;tPreYear'];CFtit={'一阶拟合','二阶拟合','三阶拟合','四阶拟合'};for col=1:nsubplot(3,2,col+2);plot(s,y,'ro',s,Y(:,col),'g-');%原始数据和拟合数据legend('Original','Fitted',2);hold on;plot(s,Y(:,col)+2*delta(:,col),'r:');%95% CIplot(s,Y(:,col)-2*delta(:,col),'r:');plot(tPreYear,PrePo(:,col),'>');%预测值plot(tPreYear,PrePo(:,col)+2*Predelta(:,col));%预测95% CIplot(tPreYear,PrePo(:,col)-2*Predelta(:,col));axis([-1.2 1.8 0 400]);set(gca,'XTick',tYearAdd,'XTickLabel',sprintf('%d|',YearAdd));title(CFtit{col});hold off;endfigure;%残差图for col=1:nsubplot(2,2,col);plot(Y(:,i),res(:,i),'o');end一个非线性的应用例子(多元情况)在百度知道中,要拟合y=a*x1^n1+b*x2^n2+c*x3^n3%注:只是作为应用,模型不一定正确!!!%x2=x3!!!y=[1080.94 1083.03 1162.80 1155.61 1092.82 1099.26 1161.06 1258.05 1299.03 1298.30 1440.22 1641.30 1672.21 1612.73 1658.64 1752.42 1837.99 2099.29 2675.47 2786.33 2881.07]';x1=[1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2]';x2=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]';x3=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]';x=[x1 x2 x3];f=@(p,x) p(1)*x(:,1).^p(2)+p(3)*x(:,2).^p(4)+p(5)*x(:,3).^p(6);p0=ones(6,1);p=fminsearch(@(p)sum(y-f(p,x)).^2,p0) res=y-f(p,x);res2=res.^2 %失败的模型。

相关文档
最新文档