一元对称多项式的相关问题

一元对称多项式的相关问题
一元对称多项式的相关问题

前言

“对称”,原来是几何中的概念。意思是說两个几何图形相对而相称。从一定的角度看去,这两个图形所处的地位是相同的。建筑图案以及某些艺术品往往由于具有一定的对称性而更觉美观。在解决几何問題时,对称性也往往起重要作用。代数中也有对称。一元n次方程的每一个根所处的地位也都彼此相同,把这个根或那个根叫做x_1是无关重要的。我們从这里得到了启发,要研究一元n次方程,就不能不考虑到它的根的对称性。这样,就很自然地产生了对称多項式的理論。以下我們将要初步地接触到这些理論,和它的簡单应用。

对称多項式两个变量x_1,x_2的多項式F(x_1,x_2),如果把換作x_1以x_1換做x_2,如果得出多项式和原来的完全一样,也就是說,如果F(x_1,x_2)=F(x_2,x_1),就把F(x_1,x_2)称为对称多项式。

对称多项式是多元多项式中常见的一种,下面介绍关于对称多项式的基本事实。一个多元多项式,如果把其中任何两个元互换,所得的结果都与原式相同,则称此多项式是关于这些元的对称多项式。如x2+y2+z2 xy+yz+zx 1*X 2*B+4都是关于元x、y、z的对称多项式。根据对称多项式基本定理,任意一个n元对称多项式。x;,x。,…,x。)都可以用基本对称多项式表出,本文运用对称多项式基本定理解决下面问题:若已知一元n次方程/+a;/-…十一,q/+q一0的根之间的关系,可导出方程的系数a1,a:,…,~之间应满足的关系。

【摘要】:研究了一元对称多项式的相关问题及对称多项式基本定理,解决了一元对称多项式的根与系数的关系,一元多项式的判别式等问题。研究的主要方法是将从一元多项式的根与系数关系解释“对称”的意思,引出对称多项式的概念,从而定义初等对称多项式,讨论对称多项式的基本定理,在证明过程中友容易看出一元多项式的判别式。

【引言】文献通过研究一元多项式的根与系数的关系,引出n

对称元多项式,称为初等对称多项式,找到表对称多项式为初等对称多项式的多项式的方法,并发现对称多项式基本定理以及一元多项式的判别式。

目录

前言

摘要

引言

一~一元多项式的根与系数的关系 (1)

二~ n元多项式的介绍 (2)

三~一元多项式的判别式 (10)

四~总结 (11)

五~参考文献 (11)

姓名:黄光红专业及班级:数学2班学号:031201210

四总结

对于对称多项式的研究,还有许多需要深入学习的知识,比如对称多项式在建筑方面的应用,轮换对称多项式,以及其在初等代数中的应用,对称多项式的构造,对称多项式的因式分解都是很重要的概念。

五参考文献:北京大学,高等代数(第三版),王萼芳,石生明修订;北京大学,高等代数(第四版),张禾瑞修订;复旦大学,高等代数(第二版)。

一元多项式加减乘除运算

中国计量学院实验报告 实验课程:算法与数据结构实验名称:一元二项式班级:学号: 姓名:实验日期: 2013-5-7 一.实验题目: ①创建2个一元多项式 ②实现2个多项式相加 ③实现2个多项式相减 ④实现2个多项式相乘 ⑤实现2个多项式相除 ⑥销毁一元多项式 实验成绩:指导教师:

二.算法说明 ①存储结构:一元多项式的表示在计算机内可以用链表来表示,为了节省存储 空间,只存储多项式中系数非零的项。链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数、指数以及指向下一个多项式项结点的指针。创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加、相减操作。 ②加法算法

三.测试结果 四.分析与探讨 实验数据正确,部分代码过于赘余,可以精简。 五.附录:源代码#include<> #include<> #include<> typedef struct Polynomial { float coef; int expn; struct Polynomial *next; }*Polyn,Polynomial; 出多项式a和b\n\t2.多项式相加a+b\n\t3.多项式相减a-b\n"); printf("\t4.多项式相除a*b\n\t5.多项式相除a/b\n\t6.销毁多项式\n"); printf("\t7.退出

\n*********************************** ***********\n"); printf("执行:"); scanf("%d",&flag); switch(flag) { case(1): printf("多项式a:");PrintPolyn(pa); printf("多项式b:");PrintPolyn(pb);break; case(2): pc=AddPolyn(pa,pb); printf("多项式a+b:");PrintPolyn(pc); DestroyPolyn(pc);break; case(3): pd=SubtractPolyn(pa,pb); printf("多项式a-b:");PrintPolyn(pd); DestroyPolyn(pd);break; case(4): pf=MultiplyPolyn(pa,pb); printf("多项式a*b:");PrintPolyn(pf); DestroyPolyn(pf);break; case(5): DevicePolyn(pa,pb); break; case(6): DestroyPolyn(pa); DestroyPolyn(pb); printf("成功销毁2个一元二项式\n"); printf("\n接下来要执行的操作:\n1 重新创建2个一元二项式 \n2 退出程序\n"); printf("执行:"); scanf("%d",&i); if(i==1) { // Polyn pa=0,pb=0,pc,pd,pf;//定义各式的头指针,pa与pb在使用前付初值NULL printf("请输入a的项数:"); scanf("%d",&m); pa=CreatePolyn(pa,m);// 建立多项式a printf("请输入b的项

一元稀疏多项式计算器实验(报告+程序)

一元稀疏多项式计数器预习报告 :刘茂学号0062 一、实验要求 (1)输入并建立多项式; (2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。序列按指数降序排列; (3)多项式a和b相加,建立多项式a+b; (4)多项式a和b相减,建立多项式a-b。 (5)多项式求值; (6)多项式求导; (7)求多项式的乘积。 二、测试数据: 1、(2x+5x^8-3.1x^11)+(7-5x^8+11x^9)=(-3.1x^11+11x^9+2x+7); 2、(6x^-3-x+4.4x^2-1.2x^9+1.2x^9)-(-6x^-3+5.4x^2-x^2+7.8x^15 )=(-7.8x^15-1.2x^9+12x^-3-x); 3、(1+x+x^2+x^3+x^4+x^5)+(-x^3-x^4)=(1+x+x^2+x^5); 4、(x+x^3)+(-x-x^3)=0; 5、(x+x^100)+(x^100+x^200)=(x+2x^100+x^200); 6、(x+x^2+x^3)+0=x+x^2+x^3. 7、互换上述测试数据中的前后两个多项式。

三、思路分析 用带表头结点的单链表存储多项式。 本程序要求输入并建立多项式,能够降幂显示出多项式,实现多项式相加相减的计算问题,输出结果。 采用链表的方式存储链表,定义结点结构体。运用尾差法建立两条单链表,以单链表polyn p和polyn h分别表示两个一元多项式a和b。 为实现处理,设p、q分别指向单链表polya和polyb的当前项,比较p、q 结点的指数项。 ①若p->expnexpn,则结点p所指的结点应是“和多项式”中的一项,令指针p后移。 ②若p->expn=q->expn,则将两个结点中的系数相加,当和不为0时修改结点p的系数。 ③若p->expn>q->expn,则结点q所指的结点应是“和多项式”中的一项,将结点q插入在结点p之前,且令指针q在原来的链表上后移。 四、实验程序 //头文件 #include #include #include //定义多项式的项 typedef struct Polynomial{ float coef; int expn; struct Polynomial *next; }*Polyn,Polynomial;

对称分量法(零序-正序-负序)的理解与计算

对称分量法(零序,正序,负序)的理解与计算 1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。 2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C 相顺时针转120度,因此得到新的向量图。按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。这就得出 了正序分量。 3)求负序分量:注意原向量图的处理方法与求正序时不一样。A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。下面的方法就与正序时一样了。 对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立; 当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流; 对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立; 因此,零序电流通常作为漏电故障判断的参数。 负序电流则不同,其主要应用于三相三线的电机回路; 在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流; 负序电流常作为电机故障判断; 注意了: Ia+Ib+Ic=0与三相对称不是一回事; Ia+Ib+Ic=0时,三相仍可能不对称。 注意了: 三相不平衡与零序电流不可混淆呀! 三相不平衡时,不一定会有零序电流的; 同样有零序电流时,三相仍可能为对称的。(这句话对吗?) 前面好几位把两者混淆了吧!

数据结构中实现一元多项式简单计算

数据结构中实现一元多项式简单计算: 设计一个一元多项式简单的计算器。 基本要求: 一元多项式简单计算器的基本功能为: (1)输入并建立多项式; (2)输出多项式; (3)两个多项式相加,建立并输出和多项式; (4)两个多项式相减,建立并输出差多项式; #include #include #define MAX 20 //多项式最多项数 typedef struct//定义存放多项式的数组类型 { float coef; //系数 int exp; //指数 } PolyArray[MAX]; typedef struct pnode//定义单链表结点类型 { float coef; //系数 int exp; //指数 struct pnode *next; } PolyNode; void DispPoly(PolyNode *L) //输出多项式 { PolyNode *p=L->next; while (p!=NULL) { printf("%gX^%d ",p->coef,p->exp); p=p->next; } printf("\n"); } void CreateListR(PolyNode *&L,PolyArray a,int n) //尾插法建表 { PolyNode *s,*r;int i; L=(PolyNode *)malloc(sizeof(PolyNode)); //创建头结点 L->next=NULL; r=L; //r始终指向终端结点,开始时指向头结点for (i=0;i

数据结构一元多项式的计算

课程设计成果 学院: 计算机工程学院班级: 13计科一班 学生姓名: 学号: 设计地点(单位): 设计题目:一元多项式的计算 完成日期:年月日 成绩(五级记分制): _________________ 教师签名:_________________________ 目录 1 需求分析 ......................................................................... 错误!未定义书签。 2 概要设计 ......................................................................... 错误!未定义书签。 2.1一元多项式的建立 ............................................................... 错误!未定义书签。 2.2显示一元多项式 ................................................................... 错误!未定义书签。 2.3一元多项式减法运算 ........................................................... 错误!未定义书签。 2.4一元多项式加法运算 ........................................................... 错误!未定义书签。 2.5 设计优缺点.......................................................................... 错误!未定义书签。3详细设计 .......................................................................... 错误!未定义书签。 3.1一元多项式的输入输出流程图........................................... 错误!未定义书签。 3.2一元多项式的加法流程图................................................... 错误!未定义书签。 3.3一元多项式的减法流程图.................................................. 错误!未定义书签。 3.4用户操作函数....................................................................... 错误!未定义书签。4编码 .................................................................................. 错误!未定义书签。5调试分析 .......................................................................... 错误!未定义书签。4测试结果及运行效果...................................................... 错误!未定义书签。5系统开发所用到的技术.................................................. 错误!未定义书签。参考文献 ............................................................................. 错误!未定义书签。附录全部代码................................................................... 错误!未定义书签。

一元多项式求和

一元多项式求和——链表编程 一.实验名称:一元多项式求和——链表编程。 二.实验环境:Windows Xp ,Vc++6.0。 三.实验目的: 1.掌握一元多项式的链表式存储算法; 2.掌握链表的结构定义; 3.采用尾插法生成单链表。 四.实验内容: 1.一元多项式的表示: 一元多项式可按升幂的形式表示为 12012()n e e e n n P x p p x p x p x =++++…… 其中:i e 为第i 项的指数,i p 是指数i e 的项的系数,且 121i n e e e e <=<=<=<=<=<=……。 则多项式()n P x 可以用一个线性表P 来表示:01(,)m P p p p =, ;同理,多项式 ()n Q x 可表示为01(,,)n Q q q q =…(mcodf=c;

对称分量法基本概念和简单计算[1]

对称分量法基本概念和简单计算 正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。 图1:正常运行的电力系统电压电流矢量图 对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。 图2:正序相量、负序相量和零序相量(以电流为例) 当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为: IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1 IB=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0――――――――――○2 IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3 对于正序分量:Ib1=α2 Ia1,Ic1=αIa1 对于负序分量:Ib2=αIa2,Ic2=α2Ia2

对于零序分量:Ia0= Ib0 = Ic0 式中,α为运算子,α=1∠120°, 有α2=1∠240°, α3=1, α+α2+1=0 由各相电流求电流序分量: I1=Ia1= 1/3(IA +αIB +α2 IC) I2=Ia2= 1/3(IA +α2 IB +αIC) I0=Ia0= 1/3(IA +IB +IC) 以上3个等式可以通过代数方法或物理意义(方法)求解。 以求解正序电流为例,对物理意义简单说明,以便于记忆: 求解正序电流,应过滤负序分量和零序分量。参考图2,将IB逆时针旋转120°、IC逆时针旋转240°后,3相电流相加后得到3倍正序电流,同时,负序电流、零序电流被过滤,均为0。故Ia1= 1/3(IA +αIB +α2 IC) 对应代数方法:○1式+α○2式+α2○3式易得:Ia1= 1/3(IA +αIB +α2 IC)。 实例说明: 例1、对PMC-6510仅施加A相电压60V∠0°,则装置应显示的电压序分量为: U1=U2=U0=1/3UA=20V∠0° 例2、对PMC-6510施加正常电压,UA=60V∠0°,UB=60V∠240°,UC=60V∠120°,当C相断线时,U1=?U2=?U0=? 解:U1=Ua1= 1/3(UA +α2UB + αUC)= 1/3(60V∠0°+ 1∠240°*60V∠240°) =20∠60°;(当C相断线时,接入装置的UC=0。) U2=Ua2= 1/3(UA +α UB +α2UC)= 1/3(60V∠0°+ 1∠120°*60V∠240°) =40∠0°; U0=Ua0= 1/3(UA + UB +UC)=1/3(60V∠0°+ 60V∠240°) =20∠300°。 郑顺桥 2008-12-20 如果接地阻抗为Zn的话,那么Zn表现 为3Zn~ 原因是接地电流为3倍I1 a=1∠120°= -0.5+j0.866 => 1+a^2+a = 0 Ia = Ia0 + Ia1 + Ia2

二项式定理和多项式定理

二项式定理和多项式定理 1.固定分组问题 例1 将12本不同的书分给甲、乙、丙、丁4位学生,求分别满足下列条件的分配方法各有多少种: (1)4位学生每人3本; (2)甲、乙各得4本,丙、丁各得2本; (3)甲得5本,乙得4本,丙得2本,丁得1本. 解 (1)先从12本书中选取3本分给甲,有3 12C 种方法;当甲分得3本书后, 从剩下的9本书中选取3本分给乙,有3 9C 种方法;类似可得,丙、丁的分法分别 有36C 、33C 种,由乘法原理得所求分法共有312C 39C 36C 33 C =4 )!3(! 12=369600种; (2)与(1)的解法类似可得所求分配方法种数为 484 12C C 2224 C C =! 2!2!4!4! 12???=207900; (3)与(1)的解法类似可得所求分配方法种数为 47512C C 1 1 23C C =! 1!2!4!5! 12???=83160. 在例1中是将不同的书分给不同的学生,并且指定了每人分得的本数,我们称之为固定分组问题.我们将这个问题总结成如下一般定理: 定理1 将n 个不同的元素分成带有编号从1,2,…,r 的r 个组:1A ,,, 2A r A ,使得1A 有n 1个元素,2A 有2n 个元素,…,r A 有r n 个元素,n n n n r =+++ 21,则不同的分组方法共有 ! !!! 21r n n n n ??? 种. 证明 先从n 个不同的元素中选取n 1个分给1A ,这一步有1 n n C 种方法;再从 剩下的1n n -个元素中选取2n 个分给2A ,这一步有2 1n n n C -种方法;如此继续下去,最后剩下的r n 个元素分给r A ,有r r n n C 种方法,由乘法原理得这样的固定分组方法共有1n n C 21n n n C -…r r n n C = ! !!! 21r n n n n 种.证毕.

C语言一元多项式计算

C语言一元多项式计算集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

#include <> #include <> #include <> #define LEN sizeof(node) //结点构造 typedef struct polynode { int coef; //系数 int exp; //指数 struct polynode *next; }node; node * create(void) { node *h,*r,*s; int c,e; h=(node *)malloc(LEN); r=h; printf("系数:"); scanf("%d",&c); printf("指数:"); scanf("%d",&e); while(c!=0) { s=(node *)malloc(LEN); s->coef=c; s->exp=e; r->next=s; r=s; printf("系数:"); scanf("%d",&c); printf("指数:"); scanf("%d",&e); } r->next=NULL; return(h);

} void polyadd(node *polya, node *polyb) { node *p,*q,*pre,*temp; int sum; p=polya->next; q=polyb->next; pre=polya; while(p!=NULL&&q!=NULL) { if(p->exp>q->exp) { pre->next=p; pre=pre->next; p=p->next; } else if(p->exp==q->exp) { sum=p->coef+q->coef; if(sum!=0) { p->coef=sum; pre->next=p;pre=pre->next;p=p->next; temp=q;q=q->next;free(temp); } else { temp=p->next;free(p);p=temp; temp=q->next;free(q);q=temp; } } else { pre->next=q; pre=pre->next; q=q->next; } } if(p!=NULL) pre->next=p; else pre->next=q; } void print(node * p) {

一元多项式求和问题的研究与实现

一元多项式求和问题的研究与实现 学生姓名:指导老师: 摘要在数学上,一个一元多项式可按升幂表示为:A(x)=a0+a1x+a2x2+……+anxn,它由n+1个系数唯一确定,一元多项式求和实质上是合并同类项的过程。在实际应用中,多项式的指数可能很高且变化很大,在表示多项式的线性表中就会存在很多零元素。因此,采用单链表来存储一个一元多项式的每一个非零项的系数和指数,即每一个非零项对应单链表中的一个结点,且单链表按指数递增有序排列,就可实现两个一元多项式求和问题。程序通过调试运行,能基本达到设计要求,解决问题。 关键词数据结构;一元多项式;单链表;结点

1 引言 一个一元多项式可按升幂表示为:A(x)=a0+a1x+a2x2+……+a n x n,它由n+1个系数唯一确定。因此,可以用一个线性表(a0,a1,a2,……,an)来表示,每一项的指数i隐含在其系数ai的序号里。若有A(x)= a0+a1x+a2x2+……+a n x n和B(x)=b0+b1x+b2x2+……+b m x m,一元多项式求和也就是求A(x)=A(x)+B(x),这实质上是合并同类项的过程。 1.1 设计目的 设计合理数据结构表示一元多项式,并设计高效算法实现两个一元多项式相加。 1.2 设计要求 本课程设计要求用C++实现两个一元多项式的求和问题,用带头结点的单链表村存储多项式。基本功能要求如下: 1.输入并建立多项式,输入形式为整数序列n,x1,y1,x2,y2,……,x n,y n。其中n是多项式的项数,x i和y i分别是第i项的系数和指数。 2.输出多项式,按指数升序排列。 3.多项式A(x)和B(x)相加,建立多项式A(x)+B(x),输出相加的多项式,形式为类数学表达式。 2 需求分析 2.1 输入形式和输入值的范围 从键盘依次输入两个多项式的项数,系数和指数。系数为任意整数,项数和指数为大于等于0的整数。 2.2 输出形式 从屏幕输出,显示用户输入的多项式,并显示两多项式相加后的多项式和值。2.3 时间性能分析 所谓时间性能是指实现基于某种存储结构的基本操作(即算法)的时间复杂度。

一元多项式计算器

一元多项式计算器 目录 摘要 (1) 1绪论 (1) 2系统分析 (1) 2.1功能需求 (1) 2.2数据需求 (1) 2.3性能需求 (1) 3总体设计 (2) 3.1系统设计方案 (2) 3.2功能模块设计 (2) 4详细设计 (3) 4.1建立多项式 (4) 4.2多项式相加 (4) 4.3多项式相减 (5) 4.4多项式相乘 (5) 4.5计算器主函数 (6) 5调试与测试 (7) 5.1调试 (7) 5.2测试 (8) 6结论 (9) 结束语 (9) 参考文献 (9) 附录1-用户手册 (10) 附录2-源程序 (12)

摘要 随着生活水平的提高,现代科技也日益发达。日常生活中多位计算再所难免,因此设计一个简单计算器可解决许多不必要的麻烦。 开发这样一个程序主要运用了C的结点,链表等方面知识。系统主要实现了多项式的建立,多项式的输入输出,以及多项式加减乘等运算。 报告主要从计算器的程序段,对输入输出数据的要求,计算器的性能,以及总体的设计来介绍此计算器程序的实现过程。 关键词:多项式;链表;结点 1绪论 随着日益发达的科技,计算器已应用于各行各业。设计一个计算器需要运用C中多方面知识,更是以多项式的建立,输入输出,以及结点,链表为主。(扩充) 任务书。。。。。 2系统分析 2.1 功能需求 多项式的建立多项式输入输出多项式加减乘等运算 2.2数据需求 在输入过程中,首先要确定输入的数据,数据不能是字母,只能是数字。不能连续输入数据,必须按要求配以空格输入要计算的数据。 (1) 链节节点数字 (2) 数字 2.3 性能需求 系统必须安全可靠,不会出现无故死机状态,速度不宜过慢。

对称分量法

第一节对称分量法 图4—1(a)、(b)、(c)表示三组对称的三相相量。第一组相量Fa(1)、相量F b(1). 相量Fc(1),幅值相等。相位为“a 超前b 120度,b超前c 120度,称为正序;第二组相量Fa(2). 相量F b(2)相量.Fc(2),幅值相等,相序与正序相反,称为负序;第三组相量Fa(0)、相量.F b(0)、相量Fc(0),幅值和相位均相同,称为零序。在图4—1(d)中将每一组的带下标a的三个相量合成为Fa,,带下标b的合成为Fb,,带下标c的合成为F是三个小对称的相量,即三组对称的相量合成得相量Fa、Fb、Fc是三个不对称的相量。写成数学表达式为: 由于每一组是对称的,固有下列关系: 将式(4-2)代入式(4-1)可得: 此式表示上述三个不对称相量和三个对称相量中a相量的关系。其矩阵形式为:

或简写为 式(4-4)和式(4-5)说明三相对称相量合成得三个不对称相量。其逆关系为: 或简写为 式(4—6)和(4—7)说明由三个不对称的相量可以唯一地分解成三组对称的相量(即对称分量);正序分量、负序分员和不序分量。实际上,式(4—4)和(4—6)表示三个对称相量Fa、Fb、Fc和另外三个相量Fa(1)、 Fa(2)、 Fa(0)之间的线性变换关系。 如果电力系统某处发生不对称短路,尽管除短路点外三相系统的元件参数都是对称的,三相电路的电流和电压的基频分量都变成不对称的相量。将式(4—6)的变换关系应用于基频电流(或电压),则有 即将三相不对称电流(以后略去“基频”二字)Ia、Ib、Ic经过线性变换后,可分解成三 组对称的电流。即a相电流Ia分解成Ia(1)、Ia(2)、Ia(0),b相电流Ib分解成Ib(1)、Ib(2)、Ib(0),c相电流Ic分解成Ic(1)、Ic(2)、Ic(0)。其中Ia(1)、Ib(1)、Ic(1)一组对称的相量,称为正序分量电流;Ia(2)、Ib(2)、Ic(2)也是一组对称的相量。但相序与正序相反,称为负序分量电流;Ia(0)、Ib(0)、Ic(0)也是一组对称的相量,三个相量完全相等,称为零序分量电流。 由式(4—8)知,只有当三相电流之和不等于零时才有零序分量。如果三相系统是三角形接法,或者是没有中性线(包括以地代中性线)的星形接法,三相线电流之和总为零,不可能有零序分量电流。只有在有中性线的星形接法中才有可能有Ia+Ib+Ic≠0,则中性线中的电流In=Ia+Ib+Ic=3Ia(0),即为三倍零序电流,如图4—2所示。可见,零序电流必须以中性线作为通路。 三相系统的线电压值和总为零,因此,三个不对称的线电压分解成对称分量时,其中总不会有零序分量。

二项式定理与多项式定理

《高中数学研究性学习案例》 分组问题 二项式定理 多项式定理 1.固定分组问题 例1 将12本不同的书分给甲、乙、丙、丁4位学生,求分别满足下列条件的分配方法各有多少种: (1)4位学生每人3本; (2)甲、乙各得4本,丙、丁各得2本; (3)甲得5本,乙得4本,丙得2本,丁得1本. 解 (1)先从12本书中选取3本分给甲,有种方法;当甲分得3本书后,从剩下的9本书中选取3本分给乙,有种方法;类似可得,丙、丁的分法分别有、种,由乘法原理得所求分法共有==369600种; (2)与(1)的解法类似可得所求分配方法种数为==207900; (3)与(1)的解法类似可得所求分配方法种数为==83160. 在例1中是将不同的书分给不同的学生,并且指定了每人分得的本数,我们称之为固定分组问题.我们将这个问题总结成如下一般定理:定理1 将n个不同的元素分成带有编号从1,2,…,r的r个组:,,使得有n1个元素,有个元素,…,有个元素,,则不同的分组方法共有种. 证明 先从n个不同的元素中选取n1个分给,这一步有种方法;再从剩下的个元素中选取个分给,这一步有种方法;如此继续下去,最后剩下的个元素分给,有种方法,由乘法原理得这样的固定分组方法共有…=种.证毕. 我们将定理1的分配问题简称为()固定分组问题. 2.不尽相异元素的全排列 多项式定理 固定分组数有多种组合学意义,除了表示固定分组的方法数外,它还有以下两种表示意义: (1)不尽相异元素的全排列种数

有r类元素,其中第k类元素有个(k=1,2,…,r),同类元素不加区分,不同类元素互不相同,。则这r类n个不尽相异元素的全排列种数等于固定分组数。. 例2 (06年高考江苏卷(理))今有2个红球、3个黄球、4个白球,同色球不加区分,将这9个球排成一列有 种不同的方法(用数字作答). 解 9个球排成一列要占9个位置,从9个位置中选取2个放红球,有种方法;再从其余7个位置中选取3个放黄球,有种方法;最后在剩下的4个位置上全放白球,有种方法,由乘法原理得所求的排列方法共 有==1260种. 评注:对于固定分组数,除了表示固定分组的方法数外,它还表示r 类共n个(不尽相异)元素的全排列数,其中第k类元素有个(k=1,2,…,r),同类元素不加区分,. (2)多项式定理的系数 在的展开式中,项的系数等于固定分组数。例如在的展开式中,项的系数为=,这正是我们所熟悉的二项式系数。有如下的多项式定理:多项式定理设n是正整数,则对一切实数x1,x2,……,x r有 (*) 其中求和是对满足方程 n1+n2+……n r = n 的一切非负整 数n1,n2,……,n t 来求。因为r元方程n1+n2+……n r = n的非负整数共有组,所以在的展开式中共有个不同的项。 多项式定理是对二项式定理的推广,在多项式定理中令r = 2 就得到了二项式定理 。 例3 写出的展开式中项与项的系数. 解 先求项的系数.是10个括号的连乘积,将这10个括号看成10个元素,从中先取出4个括号作为第一组,在每个括号中都取x;再从剩下的6个括号中取出3个作为第二组,在每个括号中都取y;再从剩下的3个括号中取出2个作为第三组,在每个括号中都取z;最后的剩下的1个括号

一元多项式相加完整实验报告

一元多项式相加实验报告 一元多项式的相加

一实验内容 根据所学的数据结构中线性结构(线性表)的逻辑特性和物理特性及相关算法,应用于求解一个具体的实际问题----------两个多项式相加 二需求分析 1掌握线性结构的逻辑特性和物理特性。 2建立一元多项式。 3将一元多项式输入,并存储在内存中,并按照指数降序排列输出多项式。 4能够完成两个多项式的加减运算,并输出结果。 三概要设计 1 本程序所用到的抽象数据类型: typedef OrderedLinkList polynomial; // 用带表头结点的有序链表表示多项式 结点的数据元素类型定义为: typedef struct { // 项的表示 float coef; // 系数 int expn; // 指数 term, ElemType; V oid AddPolyn(polynomail&Pa,polynomail&Pb) Position GetHead() Position NextPos(LinkList L,Link p) Elem GetCurElem(Link p) int cmp(term a term b) Status SetCurElem(Link&p, ElemType e) Status DelFirst(Link h, Link &q) Status ListEmpty(LinkList L) Status Append(LinkList&L, Link S) FreeNode() 2 存储结构

一元多项式的表示在计算机内用链表来实现,同时为了节省存储空间,只存储其中非零的项,链表中的每个节点存放多项式的系数非零项。它包含三个域,分别存放多项式的系数,指数,以及指向下一个项的指针。 创建一元多项式链表,对运算中可能出现的各种情况进行分析,实现一元多项式的相加相减操作。 3 模块划分 a) 主程序;2)初始化单链表;3)建立单链表; 4)相加多项式 4 主程序流程图 四详细设计 根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应系数相加,若其和不为零,则构成“和多项式”中的一项,对

对称分量法(正序、负序、零序)

对称分量法 正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。 负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。 零序:ABC三相相位相同,哪一相也不领先,也不落后。 三相短路故障和正常运行时,系统里面是正序。 单相接地故障时候,系统有正序、负序和零序分量。 两相短路故障时候,系统有正序和负序分量。 两相短路接地故障时,系统有正序、负序和零序分量 称分量法基本概念和简单计算 正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。 图1:正常运行的电力系统电压电流矢量图 对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例) 当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1 IB=Ib1+Ib2+Ib0=α2Ia1+αIa2 + Ia0――――――――――○2 IC=Ic1+Ic2+Ic0=α Ia1+α2Ia2+Ia0―――――――――――○3 对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1 对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2 对于零序分量:Ia0= Ib0 = Ic0 式中,α为运算子,α=1∠120° 有α2=1∠240°, α3=1, α+α2+1=0 由各相电流求电流序分量: I1=Ia1= 1/3(IA +αIB +α2 IC) I2=Ia2= 1/3(IA +α2IB +αIC) I0=Ia0= 1/3(IA +IB +IC) 以上3个等式可以通过代数方法或物理意义(方法)求解。 以求解正序电流为例,对物理意义简单说明,以便于记忆: 求解正序电流,应过滤负序分量和零序分量。将IB逆时针旋转120°、IC逆时针旋转240°后,3相电流相加后得到3倍正序电流,同时,负序电流、零序电流被过滤,均为0。故I a1= 1/3(I A+αI B+α2 I C) 对应代数方法:○1式+α○2式+α2 ○3式易得:Ia1= 1/3(IA +αIB +α2 IC)。 实例说明: 例1、对某微机型保护装置仅施加A相电压60V∠0°,则装置应显示的电压序分量为:U1=U2=U0=1/3U A=20V∠0° 例2、对该装置施加正常电压,UA=60V∠0°,UB=60V∠240°,UC=60V∠120°,当C相断线时,U1=?U2=?U0=? 解:U1=Ua1= 1/3(UA +αUB +α2UC)=1/3(60V∠0°+ 1∠120°*60V∠240°) =40∠0°;(当C相断线时,接入装置的UC=0。) U2=Ua2= 1/3(UA +α2UB +αUC)=1/3(60V∠0°+ 1∠240°*60V∠240°)=20∠60°; U0=Ua0= 1/3(UA + UB +UC)=1/3(60V∠0°+ 60V∠240°)=20∠300°。 正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上画图。 从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。 1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。同方法把C相的平移到B 相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就

一元多项式计算(数据结构课程设计)

一元多项式计算(数据结构课程设计)

一、系统设计 1、算法思想 根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应指数相加(减),若其和(差)不为零,则构成“和(差)多项式”中的一项;对于两个一元多项式中所有指数不相同的项,则分别写到“和(差)多项式”中去。 因为多项式指数最高项以及项数是不确定的,因此采用线性链表的存储结构便于实现一元多项式的运算。为了节省空间,我采用两个链表分别存放多项式a 和多项式b,对于最后计算所得的多项式则利用多项式a进行存储。主要用到了单链表的插入和删除操作。

(1)一元多项式加法运算 它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就应该相加;相加的和不为零的话,用头插法建立一个新的节点。P 的指数小于q的指数的话就应该复制q的节点到多项式中。P的指数大于q的指数的话,就应该复制p节点到多项式中。当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生。 (2)一元多项式的减法运算 它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就相减;相加的和不为零的话,用头插法建立一个新的节点。p的指数小于q的指数的话,就应该复制q的节点到多项式中。P的指数大于q的指数的话就应该复制p的节点到多项式中,并且建立的节点的系数为原来的相反数;当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生,并且建立的节点的系数为原来的相反数。 2、概要设计 (1)主函数流程图: (注:a代表第一个一元二次方程,b代表第二个一元二次方程)

一元多项式相家问题

一元多项式相加问题 # include typedef struct node{ float coef; int exp; int flg; struct node *next; }PolyNode,*PolyList; PolyNode *head_a,*head_b,*head_c; PolyList A,B,C; PolyNode *Creat_PolyNode() { PolyNode *s,*r; PolyList L; float x;int y; L=new PolyNode; L->next=NULL; r=L; cin>>x>>y; while(x||y) //输0的时候输入【0,另一个链表有的指数】{ s=new PolyNode; s->coef=x; s->exp=y; r->next=s; r=s; cin>>x>>y; } r->next=NULL; return L; } void Out_PolyNode(PolyNode *L,float a[100],int b[100]) { PolyNode *p;int i=0,j=0; p=L->next; if(p==NULL) cout<<"0"; while(p) { a[i]=p->coef; b[i]=p->exp; p=p->next; i++,j++; }

for(i=0;inext,q=B->next; while(p&&q) { if(p->exp==q->exp) { s=new PolyNode; s->coef=p->coef+q->coef; if(s->coef==0) { p=p->next; q->flg=1; } else { s->exp=p->exp; r->next=s; r=s; p->flg=1; q->flg=1; p=p->next; q=B->next; } } else if(p->exp!=q->exp&&q->next==NULL) { s=new PolyNode; s->coef=p->coef; s->exp=p->exp; r->next=s; r=s; p->flg=1; p=p->next; q=B->next; } else

相关文档
最新文档