SPSS概览--大数据分析报告实例详解
SPSS概览--大数据分析报告实例详解
第一章 SPSS概览--数据分析实例详解1.1 数据的输入和保存1.1.1 SPSS的界面1.1.2 定义变量1.1.3 输入数据1.1.4 保存数据1.2 数据的预分析1.2.1 数据的简单描述1.2.2 绘制直方图1.3 按题目要求进行统计分析1.4 保存和导出分析结果1.4.1 保存文件1.4.2 导出分析结果欢迎加入SPSS使用者的行列,首先祝贺你选择了权威统计软件中界面最为友好,使用最为方便的SPSS来完成自己的工作。
由于该软件极为易学易用(当然还至少要有不太高的英语水平),我们准备在课程安排上做一个新的尝试,即不急于介绍它的界面,而是先从一个数据分析实例入手:当你将这个例题做完,SPSS的基本使用方法也就已经被你掌握了。
从下一章开始,我们再详细介绍SPSS 各个模块的精确用法。
例1.1 某克山病区测得11例克山病患者与13名健康人的血磷值(mmol/L)如下, 问该地急性克山病患者与健康人的血磷值是否不同?患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87让我们把要做的事情理理顺:首先要做的肯定是打开计算机(废话),然后进入瘟98或瘟2000(还是废话,以下省去废话2万字),在进入SPSS后,具体工作流程如下:1.将数据输入SPSS,并存盘以防断电。
2.进行必要的预分析(分布图、均数标准差的描述等),以确定应采用的检验方法。
3.按题目要求进行统计分析。
4.保存和导出分析结果。
下面就按这几步依次讲解。
§1.1 数据的输入和保存1.1.1 SPSS的界面当打开SPSS后,展现在我们面前的界面如下:请将鼠标在上图中的各处停留,很快就会弹出相应部位的名称。
请注意窗口顶部显示为“SPSS for Windows Data Editor”,表明现在所看到的是SPSS的数据管理窗口。
spss的数据分析报告范例
spss的数据分析报告范例一、引言数据分析是科学研究过程中不可或缺的一部分。
针对一项研究项目,本报告将借助SPSS软件对收集的数据进行详尽分析,并提供相关结果和结论。
本报告的目的是帮助读者更好地理解数据,提供决策和制定战略所需的支持。
二、研究方法本研究的数据来源于一份问卷调查,共收集了500份有效问卷。
在问卷设计中,我们采用了随机抽样的方法,以保证样本的代表性。
该问卷包括了参与者的基本背景信息、满意度评价等方面的问题。
三、数据分析1. 受访者基本背景首先,我们对受访者的基本背景信息进行了统计分析。
其中包括性别、年龄、教育水平和职业等因素。
以下是相关结果的总结:(1)性别分布:男性占65%,女性占35%。
(2)年龄分布:年龄在18-24岁的受访者占40%;25-34岁的占30%;35-44岁的占20%;45岁及以上的占10%。
(3)教育水平:高中或以下占20%;本科占50%;研究生及以上占30%。
(4)职业:学生占25%;职员占40%;自由职业者占20%;其他占15%。
2. 满意度评价为了了解受访者对某产品的满意度,我们设计了一套评价体系。
通过SPSS软件进行数据分析,得到以下结果:(1)整体满意度:根据赋分制度,平均满意度得分为4.2(满分为5),表明受访者对该产品整体上持较高满意度。
(2)各项指标:通过因子分析,我们得到了几个影响满意度的关键因素。
其中,产品质量、价格和售后服务被认为是受访者最关注的方面。
3. 相关性分析在数据分析过程中,我们还进行了一些相关性分析,以探究不同变量之间的关系。
以下是一些值得关注的相关性结果:(1)性别与满意度之间的关系:经过卡方检验,我们发现性别与满意度之间存在一定的相关性(p < 0.05),女性对产品的满意度略高于男性。
(2)年龄与满意度之间的关系:通过相关系数分析,我们发现年龄与满意度呈现出弱相关关系(r = 0.15,p < 0.05),年龄越小,满意度越高。
SPSS概览数据分析实例详解
SPSS概览数据分析实例详解SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,被广泛应用于各个领域的数据分析。
在SPSS中,数据分析可以通过不同的统计方法、图表和输出来进行。
下面是一个关于如何使用SPSS进行数据分析的实例详解。
假设我们有一个关于一所大学学生的调查数据集,包括以下信息:性别、年龄、所在学院、GPA(平均绩点)、社交媒体使用时间和每周学习时间等变量。
我们想要使用SPSS对这些数据进行一些分析,以了解学生的特征与他们的学习表现之间是否存在关联。
首先,我们需要导入数据集到SPSS中。
在SPSS中,你可以点击“File”菜单,选择“Open”选项来导入数据集(通常是一个Excel或CSV文件)。
导入后,你将在SPSS的“Data Editor”窗口中看到你的数据。
然后,我们可以开始进行数据的概览。
在SPSS中,你可以使用“Frequencies”命令来查看变量的分布情况。
点击“Analyze”菜单,选择“Descriptive Statistics”选项,然后点击“Frequencies”选项。
在弹出的对话框中,你需要选择你想要分析的变量。
比如,你可以选择年龄、GPA和每周学习时间这三个变量。
点击“OK”按钮后,SPSS会生成一个报告,展示这些变量的频数、百分比和其他统计信息。
接下来,我们可以使用SPSS的图表功能来可视化数据。
在SPSS中,你可以点击“Graphs”菜单,选择“Chart Builder”选项来创建图表。
在“Chart Builder”窗口中,你可以选择不同的图表类型,例如柱状图、散点图或箱线图。
比如,你可以选择创建一个散点图来展示GPA与每周学习时间之间的关系。
然后,你需要将变量拖动到图表的相应位置上。
比如,你可以将GPA拖动到纵坐标(Y轴)上,将每周学习时间拖动到横坐标(X轴)上。
点击“OK”按钮后,SPSS会生成一个散点图,展示这两个变量之间的关系。
spss数据分析报告(共7篇)
spss数据分析报告(共7篇):分析报告数据s pss spss数据报告怎么写spss数据分析实例说明 spss有哪些数据分析篇一:spss数据分析报告关于某班级2012年度考试成绩、获奖情况统计分析报告一、数据介绍:本次分析的数据为某班级学号排列最前的15个人在2012年度学习、获奖统计表,其中共包含七个变量,分别是:专业、学号、姓名、性别、第一学期的成绩、第二学期的成绩、考级考证数量,通过运用spss统计软件,对变量进行频数分析、描述分析、探索分析、交叉列联表分析,以了解该班级部分同学的综合状况,并分析各变量的分布特点及相互间的关系。
二、原始数据:三、数据分析1、频数分析(1)第一学期考试成绩的频数分析进行频数分析后将输出两个主要的表格,分别为样本的基本统计量与频数分析的结果1)样本的基本统计量,如图1所示。
样本中共有样本数15个,第一学期的考试成绩平均分为627.00,中位数为628.00,众数为630,标准差为32.859,最小值为568,最大值为675。
“第一学期的考试成绩”的第一四分位数是602,第二四分位数为628,第三四分位数为657。
2)“第一学期考试成绩”频数统计表如图2所示。
3) “第一学期考试成绩”Histogram图统计如图3所示。
(2)、第二个学期考试成绩的频数分析1)样本的基本统计量,如图4所示。
第二学期的考试成绩平均分为463.47,中位数为452.00,众数为419,标准差为33.588,最小值为419,最大值为522。
“第二学期的考试成绩”的第一四分位数是435,第二四分位数为452,第三四分位数为496。
3)”第二学期考试成绩”频数统计表如图5所示。
3) “第二学期考试成绩”饼图统计如图6所2、描述分析描述分析与频数分析在相当一部分中是相重的,这里采用描述分析对15位同学的考级考证情况进行分析。
输出的统计结果如图7所示。
从图中我们可以看到样本数15,最小值1,最大值4,标准差0.941等统计信息。
spss地大数据分析资料报告案例
spss地大数据分析资料报告案例spss 的大数据分析资料报告案例在当今数字化时代,数据已成为企业和组织决策的重要依据。
SPSS (Statistical Product and Service Solutions)作为一款功能强大的统计分析软件,在处理和分析大数据方面发挥着重要作用。
本文将通过一个实际的案例,展示如何运用 SPSS 进行大数据分析,并从中得出有价值的结论。
一、案例背景假设我们是一家电商公司,拥有大量的用户交易数据。
我们希望通过对这些数据的分析,了解用户的购买行为、偏好以及市场趋势,以便优化产品推荐、营销策略和供应链管理。
二、数据收集与整理首先,我们从数据库中提取了相关的数据,包括用户的基本信息(如年龄、性别、地域等)、购买记录(产品类别、购买时间、购买金额等)以及浏览行为等。
这些数据量庞大,可能达到数百万甚至数千万条记录。
在将数据导入 SPSS 之前,我们需要对数据进行预处理,包括数据清洗、缺失值处理和异常值检测。
例如,删除重复的记录、填充缺失的关键信息,并剔除明显不符合常理的异常值。
三、数据分析方法1、描述性统计分析通过计算均值、中位数、标准差等统计量,对用户的年龄、购买金额等变量进行概括性描述,了解数据的集中趋势和离散程度。
2、相关性分析分析不同变量之间的相关性,例如用户年龄与购买金额之间、购买频率与产品类别之间的关系。
3、分类分析使用聚类分析将用户分为不同的群体,以便针对不同群体制定个性化的营销策略。
4、时间序列分析对于购买时间等变量,运用时间序列分析方法预测未来的销售趋势。
四、SPSS 操作与结果解读1、描述性统计分析结果例如,我们发现用户的平均年龄为 30 岁,购买金额的中位数为 500 元,标准差为 200 元。
这表明大部分用户年龄较为年轻,购买金额分布相对较为集中。
2、相关性分析结果发现用户年龄与购买金额之间存在较弱的正相关关系,即年龄较大的用户可能购买金额相对较高。
SPS统计概览数据分析详解(doc 175页)
SPS统计概览数据分析详解(doc 175页)第一章 SPSS概览--数据分析实例详解1.1 数据的输入和保存1.1.1 SPSS的界面1.1.2 定义变量1.1.3 输入数据1.1.4 保存数据1.2 数据的预分析1.2.1 数据的简单描述1.2.2 绘制直方图1.3 按题目要求进行统计分析1.4 保存和导出分析结果1.4.1 保存文件1.4.2 导出分析结果欢迎加入SPSS使用者的行列,首先祝贺你选择了权威统计软件中界面最为友好,使用最为方便的SPSS来完成自己的工作。
由于该软件极为易学易用(当然还至少要有不太高的英语水平),我们准备在课程安排上做一个新的尝试,即不急于介绍它的界面,而是先从一个数据分析实例入手:当你将这个例题做完,SPSS的基本使用方法也就已经被你掌握了。
从下一章开始,我们再详细介绍SPSS各个模块的精确用法。
我们教学时是以SPSS 10.0版为蓝本讲述的--什么?你还在用7.0版!那好,由于10.0版在数据管理的界面操作上和以前版本有较大区别,本章我们将特别照顾一下老版本,在数据管理界面操作上将按9.0及以前版本的情况讲述,但具体的统计分析功能则按10.0版本讲述。
没关系,基本操作是完全一样的。
好,说了这么多废话,等急了吧,就让我们开始吧!希望了解SPSS 10.0版具体情况的朋友请参见本网站的SPSS 10.0版抢鲜报道。
例1.1 某克山病区测得11例克山病患者与13名健康人的血磷值(mmol/L)如下, 问该地急性克山病患者与健康人的血磷值是否不同(卫统第三版例4.8)?患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87让我们把要做的事情理理顺:首先要做的肯定是打开计算机(废话),然后进入瘟98或瘟2000(还是废话,以下省去废话2万字),在进入SPSS后,具体工作流程如下:1.将数据输入SPSS,并存盘以防断电。
spss的数据分析报告范例
关于某地区361个人旅游情况统计分析报告一、数据介绍:本次分析的数据为某地区361个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0代表没走通道,1代表走通道);旅游的积极性,为三类变量(0代表积极性差,1代表积极性一般,2代表积极性比较好,3代表积极性好 4代表积极性非常好);额外收入,一类变量。
通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析,以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系。
二、数据分析1、频数分析。
基本的统计分析往往从频数分析开始。
通过频数分地区359个人旅游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性情况的基本分布。
统计量积极性性别N有效359359缺失00首先,对该地区的男女性别分布进行频数分析,结果如下性别频率百分比有效百分比累积百分比有效女19855.255.255.2男16144.844.8100.0合计359100.0100.0表说明,在该地区被调查的359个人中,有198名女性,161名男性,男女比例分别为44.8%和55.2%,该公司职工男女数量差距不大,女性略多于男性。
其次对原有数据中的旅游的积极性进行频数分析,结果如下表:积极性频率百分比有效百分比累积百分比有效差17147.647.647.6一般7922.022.069.6比较好7922.022.091.6好24 6.7 6.798.3非常好 6 1.7 1.7 100.0合计359100.0 100.0其次对原有数据中的积极性进行频数分析,结果如下表 :其次对原有数据中的是否进通道进行频数分析,结果如下表 :Statistics通道 NValid359Statistics通道N Valid359Missing这说明,在该地区被调查的359个人中,有没走通道的占81.6%,占绝大多数。
spss数据分析报告案例
SPSS数据分析报告案例1. 研究背景本研究旨在调查大学生是否存在晚睡现象,并探究晚睡与健康问题之间的关系。
通过采集大学生的睡眠时间、就寝时间以及健康状况等数据,利用SPSS软件进行数据分析,进一步了解大学生的睡眠状况与健康问题的关联。
2. 数据概况本研究共收集了200名大学生的数据,其中包括性别、年级、每晚睡眠时间、平均就寝时间、是否存在健康问题等变量。
下面是对数据的描述统计分析结果:•性别分布:男性占50%,女性占50%。
•年级分布:大一占25%,大二占30%,大三占25%,大四占20%。
•每晚睡眠时间:平均睡眠时间为7.8小时,标准差为1.2小时。
最小值为5小时,最大值为10小时。
•平均就寝时间:平均就寝时间为23:30,标准差为0.5小时。
最早就寝时间为22:00,最晚就寝时间为01:00。
•健康问题:共有45%的大学生存在健康问题。
3. 数据分析结果3.1 性别与睡眠时间的关系首先,我们探究性别与睡眠时间之间的关系。
利用独立样本T检验,得出以下的结果:•假设检验:男性和女性的睡眠时间是否存在显著差异?•结果:独立样本T检验显示,男性平均睡眠时间为7.6小时,女性平均睡眠时间为8.0小时。
T值为-2.14,P值为0.034,意味着男性和女性的睡眠时间存在显著差异。
3.2 年级与睡眠时间的关系我们进一步探究年级与睡眠时间的关系。
使用单因素方差分析(ANOVA),得出以下结果:•假设检验:各年级的睡眠时间是否存在显著差异?•结果:单因素方差分析显示,大一、大二、大三和大四的平均睡眠时间分别为7.7小时、7.9小时、8.1小时和7.6小时。
F值为2.75,P值为0.043,说明各年级之间的睡眠时间存在显著差异。
3.3 睡眠时间与健康问题的关系最后,我们分析睡眠时间与健康问题之间的关系。
利用相关分析,得出以下结果:•假设检验:睡眠时间与健康问题之间是否存在相关性?•结果:相关分析结果显示,睡眠时间和健康问题之间存在显著负相关(r = -0.25,P值 = 0.001),即睡眠时间越少,存在健康问题的可能性越大。
spss的数据分析报告范例
关于某地区361个人旅游情况统计分析报告一、数据介绍:本次分析的数据为某地区361个人旅游情况状况统计表,其中共包含七变量,分别是:年龄,为三类变量;性别,为二类变量(0代表女,1代表男);收入,为一类变量;旅游花费,为一类变量;通道,为二类变量(0代表没走通道,1代表走通道);旅游的积极性,为三类变量(0代表积极性差,1代表积极性一般,2代表积极性比较好,3代表积极性好 4代表积极性非常好);额外收入,一类变量。
通过运用spss统计软件,对变量进行频数分析、描述性统计、方差分析、相关分析,以了解该地区上述方面的综合状况,并分析个变量的分布特点及相互间的关系。
二、数据分析1、频数分析。
基本的统计分析往往从频数分析开始。
通过频数分地区359个人旅游基本状况的统计数据表,在性别、旅游的积极性不同的状况下的频数分析,从而了解该地区的男女职工数量、不同积极性情况的基本分布。
统计量积极性性别N 有效359 359缺失0 0首先,对该地区的男女性别分布进行频数分析,结果如下性别频率百分比有效百分比累积百分比有效女198 55.2 55.2 55.2 男161 44.8 44.8 100.0性别频率百分比有效百分比累积百分比有效女198 55.2 55.2 55.2男161 44.8 44.8 100.0合计359 100.0 100.0表说明,在该地区被调查的359个人中,有198名女性,161名男性,男女比例分别为44.8%和55.2%,该公司职工男女数量差距不大,女性略多于男性。
其次对原有数据中的旅游的积极性进行频数分析,结果如下表:积极性频率百分比有效百分比累积百分比有效差171 47.6 47.6 47.6一般79 22.0 22.0 69.6比较好79 22.0 22.0 91.6好24 6.7 6.7 98.3非常好6 1.7 1.7 100.0合计359 100.0 100.0其次对原有数据中的积极性进行频数分析,结果如下表:其次对原有数据中的是否进通道进行频数分析,结果如下表:Statistics通道N Valid 359Missing 0通道Frequency Percent Valid Percent Cumulative PercentValid 没走通道293 81.6 81.6 81.6通道66 18.4 18.4 100.0Total 359 100.0 100.0这说明,在该地区被调查的359个人中,有没走通道的占81.6%,占绝大多数。
spss案例大数据分析报告
spss案例大数据分析报告SPSS 案例大数据分析报告在当今数字化时代,数据已成为企业和组织决策的重要依据。
通过对大量数据的分析,可以揭示隐藏在其中的规律和趋势,为决策提供有力支持。
本报告将以一个具体的案例为例,展示如何使用 SPSS 进行大数据分析。
一、案例背景本次分析的对象是一家电商企业的销售数据。
该企业在过去一年中积累了大量的销售记录,包括商品信息、客户信息、订单金额、购买时间等。
企业希望通过对这些数据的分析,了解客户的购买行为和偏好,优化商品推荐和营销策略,提高销售业绩。
二、数据收集与整理首先,从企业的数据库中提取了相关数据,并进行了初步的清理和整理。
删除了重复记录和缺失值较多的字段,对数据进行了标准化处理,使其具有统一的格式和单位。
在整理数据的过程中,发现了一些问题。
例如,部分客户的地址信息不完整,部分商品的分类存在错误。
通过与相关部门沟通和核实,对这些问题进行了修正和补充。
三、数据分析方法本次分析主要采用了以下几种方法:1、描述性统计分析计算了数据的均值、中位数、标准差、最大值、最小值等统计指标,以了解数据的集中趋势和离散程度。
2、相关性分析分析了不同变量之间的相关性,例如商品价格与销量之间的关系,客户年龄与购买金额之间的关系。
3、聚类分析将客户按照购买行为和偏好进行聚类,以便更好地了解客户群体的特征。
4、因子分析提取了影响客户购买行为的主要因素,为进一步的分析和建模提供基础。
四、数据分析结果1、描述性统计分析结果商品的平均价格为_____元,中位数为_____元,标准差为_____元。
销量的最大值为_____件,最小值为_____件,均值为_____件。
客户的平均年龄为_____岁,中位数为_____岁,标准差为_____岁。
购买金额的最大值为_____元,最小值为_____元,均值为_____元。
2、相关性分析结果商品价格与销量之间呈现负相关关系,相关系数为_____。
这表明价格越高,销量越低。
spss的数据分析报告范文
spss的数据分析报告范文1. 引言本报告旨在通过使用SPSS软件对特定数据集进行分析,探讨数据分布、相关系数、回归分析等统计指标,旨在为决策者提供有关数据的深入洞察和建议。
本报告将按照如下顺序进行数据分析并给出相应结论:数据描述、相关性分析、回归分析和结论。
2. 数据描述本节将对所分析的数据进行描述性统计。
数据集包含了学生的年龄、性别、成绩等多个变量。
以下是给定数据集的一些核心统计指标:- 年龄(Age):样本人数:100平均年龄:20.5岁最小年龄:18岁最大年龄:25岁- 性别(Gender):男性:50人女性:50人- 成绩(Score):样本人数:100平均成绩:85最低成绩:60最高成绩:993. 相关性分析本节将探讨不同变量之间的相关性。
我们将使用Pearson相关系数来测量变量之间的线性相关性。
以下是所分析变量之间的相关系数:- 年龄与成绩:r = -0.25,p < 0.05结论:年龄与成绩之间存在轻微的负相关。
年龄增长时,学生成绩略有下降。
- 性别与成绩:无显著相关性结论:性别和成绩之间没有明显的相关性。
- 年龄与性别:无显著相关性结论:年龄和性别之间没有明显的相关性。
4. 回归分析本节将进行线性回归分析,以探讨年龄对成绩的预测能力。
我们将使用成绩作为因变量,年龄作为自变量。
以下是回归分析的结果:- 回归方程:成绩 = 87.5 - 1.2 * 年龄- 表达式解读:年龄每增加1岁,成绩平均下降1.2分。
5. 结论通过对数据的分析,我们得出以下结论:- 年龄与成绩呈现轻微的负相关,随着年龄增长,学生成绩略有下降。
- 性别与成绩之间没有明显的相关性。
- 年龄和性别之间没有明显的相关性。
- 我们建立了一个回归方程,成绩= 87.5 - 1.2 * 年龄,该方程可以用于预测学生的成绩。
本报告的分析结果仅限于给定的数据集,并不能推广到整个人群。
希望本报告的分析结果对您的决策和研究有所帮助。
spss案例大数据分析报告
Spss期末作业关于我国城镇居民消费结构及趋势的数据分析本次分析采用的数据来源于《中国统计年鉴—2011》,我选用的是其中的第十篇章—人民生活下的城镇居民家庭基本情况的相关数据,用以研究城镇居民消费结构及其趋势。
(附数据部分截图)(A)下面是我对该数据做的相关分析。
表一给出的是基本的描述性统计图,表中显示各个变量的全部观测量的均值、标准差和观测值总数N,表2给出的是相关系数矩阵表,其中显示4个变量两两之间的pearson相关系数,以及关于相关关系等于零的假设的单侧显著性检验概率。
描述性统计量均值标准差N表1 描述性统计表相关性食品衣着居住家庭设备用品及服务食品Pearson 相关性 1 .998**.991**.995**显著性(单侧).000 .001 .000平方与叉积的和 1.300E7 4000739.197 4039135.855 2468266.142协方差3250108.892 1000184.799 1009783.964 617066.535N 5 5 5 5 衣着Pearson 相关性.998** 1 .985**.994**显著性(单侧).000 .001 .000平方与叉积的和4000739.197 1235103.975 1238672.922 760246.419协方差1000184.799 308775.994 309668.230 190061.605N 5 5 5 5 居住Pearson 相关性.991**.985** 1 .996**显著性(单侧).001 .001 .000平方与叉积的和4039135.855 1238672.922 1279080.565 775005.410协方差1009783.964 309668.230 319770.141 193751.352N 5 5 5 5 家庭设备用品及服务Pearson 相关性.995**.994**.996** 1 显著性(单侧).000 .000 .000平方与叉积的和2468266.142 760246.419 775005.410 473179.063协方差617066.535 190061.605 193751.352 118294.766N 5 5 5 5相关性食品衣着居住家庭设备用品及服务食品Pearson 相关性 1 .998**.991**.995**显著性(单侧).000 .001 .000平方与叉积的和 1.300E7 4000739.197 4039135.855 2468266.142协方差3250108.892 1000184.799 1009783.964 617066.535N 5 5 5 5 衣着Pearson 相关性.998** 1 .985**.994**显著性(单侧).000 .001 .000平方与叉积的和4000739.197 1235103.975 1238672.922 760246.419协方差1000184.799 308775.994 309668.230 190061.605N 5 5 5 5 居住Pearson 相关性.991**.985** 1 .996**显著性(单侧).001 .001 .000平方与叉积的和4039135.855 1238672.922 1279080.565 775005.410协方差1009783.964 309668.230 319770.141 193751.352N 5 5 5 5 家庭设备用品及服务Pearson 相关性.995**.994**.996** 1 显著性(单侧).000 .000 .000平方与叉积的和2468266.142 760246.419 775005.410 473179.063协方差617066.535 190061.605 193751.352 118294.766N 5 5 5 5 **. 在 .01 水平(单侧)上显著相关。
spss的数据分析报告范例
spss的数据分析报告范例SPSS数据分析报告范例一、引言数据分析是现代科学研究的重要环节,在统计学中,SPSS作为一种广泛应用的数据分析软件,为研究人员提供了丰富的功能和工具。
本报告旨在使用SPSS对某项研究的数据进行分析,并整理并呈现结果,以帮助读者深入了解数据的含义,并得出有关数据的结论。
二、研究背景与目的在这一部分,我们将简要介绍研究的背景和目的。
本次研究旨在调查大学生的学习焦虑水平与其学业成绩之间的关系。
通过收集相关数据并使用SPSS进行分析,我们希望能够揭示大学生学习焦虑对学业成绩的影响程度,并为教育管理者和辅导员提供数据支持。
三、研究设计与方法在这一部分,我们将介绍研究的设计和采用的方法。
本研究采用问卷调查的形式,使用了由专家设计的学习焦虑量表和学业成绩评估表。
我们在某大学的三个院系中选取了500名大学生作为样本,并通过邮件方式发送问卷,并以匿名方式收集数据。
四、数据分析与结果本节将展示SPSS分析后的数据结果。
首先,我们将进行数据清洗和描述性统计分析。
然后,我们将使用相关性分析和回归分析来探究学习焦虑与学业成绩之间的关系。
1.数据清洗和描述性统计针对收集到的数据,我们进行了数据清洗,包括去除不完整或无效数据。
然后,我们进行了描述性统计分析,包括计算样本量、均值、标准差和分布情况。
2.相关性分析为了探究学习焦虑与学业成绩之间的关系,我们进行了相关性分析。
根据SPSS的输出结果,我们发现学习焦虑与学业成绩之间存在显著的负相关关系(r=-0.35, p<0.05),表明学习焦虑水平越高,学业成绩越低。
3.回归分析为了更深入地了解学习焦虑对学业成绩的影响程度,我们进行了回归分析。
回归分析结果显示,学习焦虑是预测学业成绩的显著因素(β=-0.25, p<0.05)。
这表明学习焦虑对学业成绩有着一定的负向影响。
五、讨论与结论根据数据分析的结果,我们得出以下结论:1.学习焦虑与学业成绩之间存在显著的负相关关系,即学习焦虑水平越高,学业成绩越低。
spss的数据分析报告
spss的数据分析报告1. 引言数据分析是当今科学研究和实践中不可或缺的一部分。
它能够通过数理统计方法来发现数据之间的关系、趋势和模式,为决策制定提供依据。
而SPSS软件作为一种功能强大且广泛使用的数据分析工具,被广泛应用于各个领域。
本报告将使用SPSS软件对某个具体问题进行数据分析,以展示SPSS在实际应用中的功能和效果。
2. 问题描述在某家电商品公司的市场调研中,收集到了1000份消费者的问卷调查数据,调查内容包括消费者的年龄、性别、收入、购买意愿以及对产品特征的评价等。
现在需要通过对这些数据的分析,探究消费者年龄、性别、收入与购买意愿之间的关系,以及不同购买意愿的消费者对产品特征的评价。
3. 数据收集与整理通过合理的调查设计,我们获得了1000份有效的问卷调查数据。
在SPSS软件中,我们将这些数据导入并进行适当的整理和清理,包括删除无效数据、处理缺失值、纠正错误数据等。
经过整理后,得到了可用的数据集。
4. 描述性统计分析在进行进一步的数据分析之前,我们首先对数据进行描述性统计分析。
通过SPSS软件中的相应功能,我们可以得到年龄、性别、收入和购买意愿等变量的频数、均值、标准差和分布情况等。
以下是部分结果:- 年龄:平均年龄为35岁,标准差为10岁,最小年龄为20岁,最大年龄为60岁。
- 性别:男性占45%,女性占55%。
- 收入:平均收入为50000元,标准差为20000元,最低收入为10000元,最高收入为100000元。
- 购买意愿:有购买意愿的消费者占65%。
5. 相关性分析接下来,我们将通过相关性分析来探究年龄、性别和收入与购买意愿之间是否存在相关性。
通过SPSS软件中的相关性分析功能,我们得到了以下结果:- 年龄与购买意愿之间的相关系数为0.25,表明年龄与购买意愿之间存在低度正相关关系。
- 性别与购买意愿之间的相关系数为0.12,表明性别对购买意愿的影响较小。
- 收入与购买意愿之间的相关系数为0.50,表明收入与购买意愿之间存在中度正相关关系。
spss案例大数据分析报告
spss案例大数据分析报告目录1. 内容概要 (2)1.1 案例背景 (2)1.2 研究目的和重要性 (4)1.3 报告结构 (5)2. 数据分析方法 (5)2.1 数据收集与处理 (7)2.2 分析工具介绍 (8)2.3 变量定义和描述性统计分析 (9)3. 数据集概述 (11)3.1 数据来源 (11)3.2 数据特征描述 (12)3.3 数据清洗与处理 (13)4. 数据分析结果 (15)4.1 描述性统计分析结果 (16)4.2 推断性统计分析结果 (18)4.3 回归分析结果 (19)4.4 多变量分析结果 (20)5. 案例分析 (21)5.1 问题识别 (22)5.2 数据揭示的趋势和模式 (23)5.3 具体案例分析 (24)5.3.1 案例一 (26)5.3.2 案例二 (28)5.3.3 案例三 (29)6. 结论和建议 (30)6.1 数据分析总结 (31)6.2 战略和操作建议 (33)6.3 研究的局限性 (33)1. 内容概要本次SPSS案例大数据分析报告旨在通过对某一特定领域的大规模数据集进行深入分析和挖掘,揭示数据背后的规律、趋势以及潜在价值。
报告首先介绍了研究背景和研究目的,阐述了在当前时代背景下大数据的重要性和价值。
概述了数据来源、数据规模以及数据预处理过程,包括数据清洗、数据整合和数据转换等步骤。
报告重点介绍了运用SPSS软件进行数据分析的方法和过程,包括数据描述性分析、相关性分析、回归分析、聚类分析等多种统计分析方法的运用。
通过一系列严谨的统计分析,报告揭示了数据中的模式、关联以及预测趋势。
报告总结了分析结果,并指出了分析结果对于决策制定、业务发展以及学术研究等方面的重要性和意义。
报告内容全面深入,具有针对性和实用性,为企业决策者、研究人员和学者提供了重要参考依据。
1.1 案例背景本报告旨在通过对大数据技术的应用,为特定行业中的决策者提供深入的分析见解。
在当前数据驱动的时代,企业可以参考这一解析来优化其战略方向、业务流程及终极客户体验。
SPSS大数据案例分析报告
spssa据案例分析目录TOC438655006一.手机APP广告点击意愿的模型构建 (2)1.1构建研究模型 (2)1.2研究变虽及定义 (2)1.3研究假设 (3)1.4变虽操作化定义 (3)1.5问卷设计 (3) (5)2.1基础数据分析 (5)2.2频数分布及相关统计虽 (6)2.3相关分析 (7)2.4回归分析 (8)2.5假设检验 (10).手机APP广告点击意愿的模型构建1.1构建研究模型我们知道效用期望、努力期望、社会影响对行为意愿会产生一定的影响,在模型中的性别、年龄、经验与自愿性等四个控制变量,通常都是作为控制变量来观察他们对采用因素与使用意向之间的关系的影响。
因此,目前手机APP广告的使用人群年龄相对比较年轻,而且年龄特征分布高度集中,年龄在30岁以下的人群占到70%以上,因此本研究考虑性别了这一变量,同时根据手机APP广告用户的特性,加入了手机流量作为控制变量,去观察它们对外部变量与点击意愿之间的关系是否有显著影响。
在本研究中,主要把调节变量和控制变量作为两个不同的研究变量,对丁调节变量感知风险来说,它是直接影响了感知风险与手机APP广告点击意愿二者的关系;而控制变量性别、手机流量这些变量是对广告效用期望、APP效用期望和社会影响与点击意愿直接的关系是否有显著影响。
最后,本文根据手机APP广告的特点对UTAUT模型进行扩展,构建了手机APP广告点击意愿的影响因素研究模型。
1.2研究变虽及定义(1) 广告效用期望、APP效用期望、社会影响与手机APP点击意向的关系H1:用户的广告效用期望与点击手机APP广告意愿正相关。
H2:用户的APP效用期望与点击手机APP广告意愿正相关H3:社会影响与手机APP广告点击意愿正相关(2)感知风险与点击手机APP广告意愿的关系H4:感知风险与手机APP广告点击意愿负相关H5:性别,手机流量对手机APP广告点击意愿没有显著影响1.4变虽操作化定义广告效用期望:广告对我了解某品牌来说很有用APP效用期望:使用APP能够让我了解到多方面的信息社会影响:身边的人都在使用手机APP广告,所以我也要使用感知风险:在点击手机APP广告时,我担心我的个人隐私安全得不到保护感知隐私安全重要性:确保点击手机APP广告是安全的,对我来说是很重要的使用意向:我愿意把手机APP广告推荐给我周围的人1.5问卷设计必答题]1.使用APP能够让我了解到多方面的信息[单选题][必答题]2.广告对我了解某品牌来说很有用[单选题][8.您每月的手机上网流量[单选题][必答题]O够用O不够用[单选题][必答题][单选题][必答题]4.在点击手机APP广告时,我担心我的个人隐私安全得不到保护5.确保点击手机APP广告是安全的,对我来说是很重要的6.我愿意把手机APP广告推荐给我周围的人[单选题][必答题]7.您的性别是[单选题][必答题]O男O女9.您的年龄是[单选题][必答题]O 18 岁以下O 18-24 O 25-30O 30岁以上二.实证研究2.1基础数据分析样本的调查情况显示男女比例的基本上都差不多,男性占63.3%,女性占36.7 %,在年龄的分布上,18岁到24岁之间的比例占了90%;2.2频数分布及相关统计基BH Frequennes使用APP花幡LE既.广吉对我T棒畏蹄专边的A摩在俚用平.也点右辛展APPL... 谴琨由击手MAPP .ae«iE#-yiApp 您您月的手玩上同沆. 离的年瓢是[把|山?142利用频数分布可以很方便地观察变量的取值情况,括。
spss的数据分析报告范文 (2)优选全文
下载温馨提示:该文档是学者精心编制而成,希望能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,我们为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!spss的数据分析报告范文二、数据分析1、频数分析。
基本的统计分析往往从频数分析开始。
通过频数分析能够了解变量的取值状况,对把握数据的分布特征非常有用。
此次分析利用了某公司474名职工基本状况的统计数据表,在gender(性别)、edcu(受教育水平程度)、不同的状况下的频数分析,从而了解该公司职工的男女职工数量、受教育状况的基本分布。
StatiticGenderEducationalLevel(year)NValid474474Miing00首先,对该公司的男女性别分布进行频数分析,结果如下:GenderFrequencyPercentValidPercentCumulativePercentValidFe male21645.645.645.6Male25854.454.4100.0Total474100.0100.0上表,在该公司的474名职工中,有216名女性,258名男性,男女比例分别为45.6%和54.4%,该公司职工男女数量差距不大,男性略多于女性。
其次对原有数据中的受教育程度进行频数分析,结果如下表:EducationalLevel(year)FrequencyPercentValidPercentCumulati vePercentValid85311.211.211.21219040.140.151.31461.31.352.515116 24.524.577.0165912.412.489.517112.32.391.81891.91.993.719275.75. 799.4202.4.499.8211.2.2100.0Total474100.0100.0上表及其直方图说明,被调查的474名职工中,受过12年教育的职工是该组频数最高的,为190人,占总人数的40.1%,其次为15年,共有116人,占中人数的24.5%。
spss-数据分析实例详解图文
优化策略
根据数据分析结果调整销售策略 ,如定价、促销方式等。
预测模型
利用时间序列分析、神经网络等 模型预测未来销售趋势。
相关性分析
探究销售量与价格、促销活动等 因素的关系。
实例三:人力资源数据分析
总结词
通过SPSS进行人力资源数据分析,可以优化人员 配置和提高员工满意度。
数据收集
收集员工信息,包括年龄、性别、学历、绩效等。
01
描述性统计分析是对数据进行初步处理和分析的过程,包括计 算数据的均值、中位数、众数、标准差等统计指标。
02
在SPSS中,可以通过选择“分析”菜单中的“描述统计”选项
来进行描述性统计分析。
描述性统计分析可以帮助我们了解数据的分布情况、异常值和
03
数据的中心趋势等。
数据可视化
数据可视化是将数据以图形或图表的形式呈现的过程,可以帮助我们更好地理解数 据和发现数据中的规律和趋势。
大数据处理
云端化服务
为了更好地满足用户的灵活性和可扩 展性需求,SPSS可能会推出基于云端 的服务模式,提供更加便捷和高效的 数据分析服务。
随着大数据时代的来临,SPSS可能会 加强在大数据处理和分析方面的能力, 以应对大规模数据集的处理需求。
THANKS FOR WATCHING
感谢您的观看
探索性统计
进行因子分析、主成分分析等,深入挖掘数据背后的结构。
可视化问题
图表选择
根据分析目的选择合适的图表类型,如柱状 图、折线图、饼图等。
图表组合
将多个图表组合在一起,形成综合性的可视 化报告。
图表定制
调整图表样式、颜色、字体等,提高图表的 可读性和美观度。
动态可视化
spss数据分析报告带原始数据
SPSS数据分析报告1. 引言本报告旨在对于一组原始数据进行SPSS数据分析,以得出相关结论和解释数据背后的意义。
数据收集自某公司的销售记录,包含销售额、销售人员、客户类型等信息,总计100个样本。
本报告将分析不同变量之间的关系,探究可能的影响因素,并提供相应的解释和建议。
2. 方法在进行数据分析之前,我们首先进行了数据的导入和清洗。
清洗过程包括去除缺失值、异常值和重复值等,以确保数据的准确性和一致性。
首先,我们对数据进行了描述性统计,包括计算各个变量的均值、标准差、最小值、最大值等指标,以了解数据的整体概况。
接下来,我们进行了相关性分析,通过计算不同变量之间的相关系数来衡量它们之间的相关性。
相关系数的范围在-1到1之间,接近1表示两个变量呈正相关,接近-1表示两个变量呈负相关,接近0表示无相关性。
这将有助于我们确定哪些变量可能对销售额有重要影响。
然后,我们进行了多元线性回归分析,以确定哪些变量对销售额的影响最显著。
线性回归可以帮助我们建立一个可靠的模型,用于预测销售额并解释其背后的影响因素。
最后,我们根据线性回归模型的结果,提出了一些结论和建议,并对模型的稳定性和准确性进行了评估。
3. 数据分析结果3.1 描述性统计在进行描述性统计之前,我们首先对数据进行了数据类型的确认和必要的格式转换。
下表给出了销售额、销售人员数和客户类型的描述性统计结果。
变量名称均值标准差最小值最大值销售额18000 5000 10000 30000销售人员数 3 1 2 5客户类型 1.5 0.5 1 23.2 相关性分析通过计算不同变量之间的相关系数,我们得出了以下结果:•销售额和销售人员数的相关系数为0.75,呈正相关;•销售额和客户类型的相关系数为0.45,呈正相关;•销售人员数和客户类型的相关系数为0.55,呈正相关。
根据相关系数的结果,我们可以初步推断销售人员数和客户类型对销售额的影响较为显著,而销售人员数和客户类型之间也存在一定的相关性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 SPSS概览--数据分析实例详解1.1 数据的输入和保存1.1.1 SPSS的界面1.1.2 定义变量1.1.3 输入数据1.1.4 保存数据1.2 数据的预分析1.2.1 数据的简单描述1.2.2 绘制直方图1.3 按题目要求进行统计分析1.4 保存和导出分析结果1.4.1 保存文件1.4.2 导出分析结果欢迎加入SPSS使用者的行列,首先祝贺你选择了权威统计软件中界面最为友好,使用最为方便的SPSS来完成自己的工作。
由于该软件极为易学易用(当然还至少要有不太高的英语水平),我们准备在课程安排上做一个新的尝试,即不急于介绍它的界面,而是先从一个数据分析实例入手:当你将这个例题做完,SPSS的基本使用方法也就已经被你掌握了。
从下一章开始,我们再详细介绍SPSS 各个模块的精确用法。
例1.1 某克山病区测得11例克山病患者与13名健康人的血磷值(mmol/L)如下, 问该地急性克山病患者与健康人的血磷值是否不同?患者: 0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11健康人: 0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87让我们把要做的事情理理顺:首先要做的肯定是打开计算机(废话),然后进入瘟98或瘟2000(还是废话,以下省去废话2万字),在进入SPSS后,具体工作流程如下:1.将数据输入SPSS,并存盘以防断电。
2.进行必要的预分析(分布图、均数标准差的描述等),以确定应采用的检验方法。
3.按题目要求进行统计分析。
4.保存和导出分析结果。
下面就按这几步依次讲解。
§1.1 数据的输入和保存1.1.1 SPSS的界面当打开SPSS后,展现在我们面前的界面如下:请将鼠标在上图中的各处停留,很快就会弹出相应部位的名称。
请注意窗口顶部显示为“SPSS for Windows Data Editor”,表明现在所看到的是SPSS的数据管理窗口。
这是一个典型的Windows软件界面,有菜单栏、工具栏。
特别的,工具栏下方的是数据栏,数据栏下方则是数据管理窗口的主界面。
该界面和EXCEL极为相似,由若干行和列组成,每行对应了一条记录,每列则对应了一个变量。
由于现在我们没有输入任何数据,所以行、列的标号都是灰色的。
请注意第一行第一列的单元格边框为深色,表明该数据单元格为当前单元格。
有的SPSS系统打开时会出现一个导航对话框,请单击右下方的Cancer按钮,即可进入上面的主界面。
1.1.2 定义变量该资料是定量资料,设计为成组设计,因此我们需要建立两个变量,一个变量代表血磷值,习惯上取名为X,另一个变量代表观察对象是健康人还是克山病人,习惯上取名为GROUP。
选择菜单Data==>Define Variable。
好,先来建立分组变量GROUP。
请将变量名改为GROUP。
有没有搞错?!折腾了半天就改个名字!难道连变量格式、标签等都不改?是这样的,在SPSS中所有的数据均以最大位数保存(好象是双精度),也就是说,上面虽然默认只有两位小数,但那指的是计算精度,实际保存的数据位数是非常长的(可以输入Pi值试一下)。
在绝大多数情况下,SPSS给出的默认数据类型和数据精度完全可以满足需要,只是不太好看而已。
至于标签等比较花哨的选项,反正我也很少用。
现在我们才刚刚入门,一切从简。
以后我会详细介绍各种设置的用法。
在第一列灰色的“var”上双击,同样会弹出定义变量对话框。
现在SPSS的数据管理窗口如下所示:第一列的名称已经改为了“group”,这就是我们所定义的新变量“group”。
现在我们来建立变量X。
单击第一行第二列的单元格,然后选择菜单Data==>Define Variable,同样,将变量名改为X,然后确认。
此时SPSS的数据管理窗口如下所示:现在,第一、第二列的名称均为深色显示,表明这两列已经被定义为变量,其余各列的名称仍为灰色的“var”,表示尚未使用。
同样地,各行的标号也为灰色,表明现在还未输入过数据,即该数据集内没有记录。
1.1.3 输入数据我们先来输入变量X的值,请确认一行二列单元格为当前单元格,弃鼠标而用键盘,输入第一个数据0.84,此时界面显示如图A所示:图A 图B请注意:在回车之前,你输入的数据在数据栏内显示,而不是在单元格内显示,现在回车,界面如图B所示:首先,当前单元格下移,变成了二行二列单元格,而一行二列单元格的内容则被替换成了0.84;其次,第一行的标号变黑,表明该行已输入了数据;第三,一行一列单元格因为没有输入过数据,显示为“.”,这代表该数据为缺失值。
用类似的输入方式,我们将患者的血磷值输入完毕,并将相应的变量GROUP均取值为1,此时数据管理窗口如下所示:从第12行开始输入健康人的数据,并将相应的GROUP变量取值为2。
最终该数据集应该有24条记录。
1.1.4 保存数据选择菜单File==>Save,由于该数据从来没有被保存过,所以弹出Save as 对话框如下:单击保存类型列表框,可以看到SPSS所支持的各种数据类型,有DBF、FoxPro、EXCEL、ACCESS等,这里我们仍然将其存为SPSS自己的数据格式(*.sav文件)。
在文件名框内键入Li1_1并回车,可以看到数据管理窗口左上角由Untitled变为了现在的变量名Li1_1。
§1.2 数据的预分析1.2.1 数据的简单描述首先我们需要知道数据的基本情况,如均数、标准差等。
选择Analyze==>Descriptive Statistics==>Descriptives菜单,系统弹出描述对话框如下:如果按SPSS标准的叫法,这里应该是调用了Descriptives过程,为了避免太生硬,我们称为调用对话框,等大家熟悉SPSS了以后,在统计分析各章中可能两种称呼会混用。
该对话框可分为左右两大部分,左侧为所有可用的侯选变量列表,右侧为选入变量列表。
我们只需要描述X,用鼠标选中X,单击中间的,变量X的标签就会移入右侧,注意这时OK按钮变黑,表明已经可以进行分析了,单击它,系统会弹出一个新的界面如下所示:该窗口上方的名称为SPSS for Windows Viewer,即(结果)浏览窗口,整个的结构和资源管理器类似,左侧为导航栏,右侧为具体的输出结果。
结果表格给出了样本数、最小值、最大值、均数和标准差这几个常用的统计量。
从中可以看到,24个数据总的均数为1.2846,标准差为0.4687。
我们以上的做法对吗?当然有问题!光看总的描述是不够的,还应当看看分组的描述情况。
这里要用到文件分割功能,请切换回数据管理窗口,选择Data==>Split File菜单,系统弹出文件分割对话框如下:选择单选按钮Organize output by groups,将变量GROUP选入右侧的选入变量框,单击OK钮,此时界面不会有任何改变,但请再做一次数据描述,你就可以看到现在数据是分Group=1和Group=2两种情况在描述了!从描述可知两组的均数和标准差分别为1.5209、1.0846和0.4218、0.4221。
如果定义了文件分割,则它会在以后的所有统计分析中起作用,直到你重新定义文件分割方式为止。
1.2.2 绘制直方图统计指标只能给出数据的大致情况,没有直方图那样直观,我们就来画个直方图瞧瞧!选择Graphs==>Histogram,系统会弹出绘制直方图对话框如下:将变量X选入Variable选择框内,单击OK按钮。
此时结果浏览窗口内会绘制出如下两个直方图:两组的数据没有特别偏的分布,也没有十分突出的离群值,因此无须变换,可以直接采用参数分析方法来分析。
综合设计类型,最终确定采用成组设计两样本均数比较的t检验来分析。
最后,我们还要取消变量分割,免得它影响以后的统计分析,再次调出变量分割对话框,选择单选按钮中的“Analyze all cases, do not creat group”,单击OK按钮就可以了。
§1.3 按题目要求进行统计分析下面我们要用SPSS来做成组设计两样本均数比较的t检验,选择Analyze==>Compare Means==>Independent-Samples T test,系统弹出两样本t 检验对话框如下:group选入grouping框内,注意这时下面的Define Groups按钮变黑,表示该按钮可用,单击它,系统弹出比较组定义对话框如右图所示:该对话框用于定义是哪两组相比,在两个group框内分别输入1和2,表明是变量group取值为1和2的两组相比。
然后单击Continue按钮,再单击OK按钮,系统经过计算后会弹出结果浏览窗口,首先给出的是两组的基本情况描述,如样本量、均数等(糟糕,刚才的半天工夫白费了),然后是t检验的结果如下:Independent Samples Test可见该结果分为两大部分:第一部分为Levene's方差齐性检验,用于判断两总体方差是否齐,这里的戒严结果为F = 0.032,p = 0.860,可见在本例中方差是齐的;第二部分则分别给出两组所在总体方差齐和方差不齐时的t检验结果,由于前面的方差齐性检验结果为方差齐,第二部分就应选用方差齐时的t检验结果,即上面一行列出的t= 2.524,ν=22,p=0.019。
从而最终的统计结论为按α=0.05水准,拒绝H0,认为克山病患者与健康人的血磷值不同,从样本均数来看,可认为克山病患者的血磷值较高。
§1.4 保存和导出分析结果1.4.1 保存结果文件前面我们已经做出了分析结果,但是,可是,可但是,但可是呢?再好的结果只要一断电就会全部消失(废话),对于这一问题人们早已想出了三种解决办法,他们分别是:∙需要结果的时候再运行一次分析程序。
∙用笔将结果抄在纸上。
∙直接保存结果文件。
显然,最方便快捷、最符合信息时代特征的就是第三种方法,在结果浏览窗口中(注意:一定要在结果浏览窗口中)选择菜单File==>Save,由于该结果也从来没有被保存过,所以弹出和前面保存数据时极为相似的一个Save as对话框,和前面相比,他唯一的区别就是文件的保存类型只有View Files(*.spo)一种。
好,闲言少叙,在文件名框中键入“Li1_1”并回车,该结果文件就会按文件名Li1_1.spo被存储。
不是文件保存类型还有一种“ALL Files(*.*)”吗?别费劲了,这种类型是SPSS公司放在那里哄人的,在该对话框里无论怎么折腾,都只能按SPO文件的格式来保存。