3.2.函数模型及其应用
函数模型的应用实例(二)
诚西郊市崇武区沿街学校课题:
§3.2.2函数模型的应用实例〔第2
课时〕
教学目的:
知识与技能:可以利用给定的函数模型或者者建立确定性函数模型解决实际问题.
过程与方法:感受运用函数概念建立模型的过程和方法,对给定的函数模型进展简单的分析评价.
情感、态度、价值观:体会数学在实际问题中的应用价值.
教学重点:利用给定的函数模型或者者建立确定性函数模型解决实际问题.
教学难点:利用给定的函数模型或者者建立确定性函数模型解决实际问题,并对给定的函数模型进展简单的分析评价.
教学过程:。
(新)高一数学函数模型及其应用复习例题讲解
3.2 函数模型及其应用 3.2.1 几类不同增长的函数模型一、点击考点1.数学模型为一次函数的问题一次函数也是最常见的一种函数模型,在初中就已经接触过。
[例]某人开汽车以60km/h 的速度从A 地到150km 远的B 地,在B 地停留1h 后,再以50km/h 的速度返回A 地,把汽车离开A 地的距离x (km)表示为时间t (h)(从A 地出发时开始)的函数,并画出函数的图象;再把车速v (km/h)表示为时间t (h)的函数,并画出函数的图象.[解]汽车离开A 地的距离x km 与时间t h 之间的关系是:⎪⎩⎪⎨⎧--=),5.3(50150,150,60t t x ].5.6,5.3(],5.3,5.2(],5.2,0[∈∈∈t t t它的图象右如图所示.速度v km/h 与时间t h 的函数关系是:⎪⎩⎪⎨⎧-,50,0,60x ).5.6,5.3[),5.3,5.2[),5.2,0[∈∈t t它的图象如右图所示2.数学模型为二次函数的问题二次函数为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故常常最优、最省等最值问题是二次函数的模型。
[例]渔场中鱼群的最大养殖量为m 吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留下适当的空闲量,已知鱼群的年增长量y 吨和实际养殖量x 吨与空闲率的乘积成正党组织,比例系数为).0(>k k(1)写出y 关于x 的函数关系式,并指出这个函数的定义域;(2)求鱼群年增长量的最大值;(3)当鱼群的年增长量达到最大值时,求k 的取值范围. [例](1))0)(1(m x m x kx y <<-=;(2)∵.4)2()(22km m x m k mx x m k y +--=--= ∴当2m x =时,y 取得最大值.4km (3)依题意,为保证鱼群留有一定的生长空间,则有实际养殖量与年增长量的和小于最大养殖量,即.0m y x <+<因为当2m x =时,4km y =最大,所以联想到“a y x f y x f <⇔),(),(max ”这一等价转化命题,则有m km m <+<420,解得.22<<-k 但0>k ,从而得.20<<k 思考:本题中空闲养殖量与实际养殖率的关系如何?而实际养殖率与实际养殖量、最大养殖量的关系又是如何?3.数学模型为指数函数的问题一般地,形如)10(≠>=a a a y x 且的函数叫做指数函数,而在生产、生活实际中,以函数k a b y x +•=作为模型的应用问题很常见.[例]某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少31,问至少应过滤几次才能使产品达到市场要求?(已知:4771.03lg ,3010.02lg ==) [分析]每次过滤杂质含量降为原来的32,过滤n 次后杂质含量为n )32(1002•,结合按市场要求杂质含量不能超过0.1%,即可建立数学模型. [解析]依题意,得10001)32(1002≤•n ,即201)32(≤n .则)2lg 1()3lg 2(lg +-≤-n ,故,4.72lg 3lg 2lg 1≈-+≥n 考虑到N ∈n ,即至少要过滤8次才能达到市场要求。
高中数学新人教A版必修1第三章函数的应用3.2函数模型及其应用3.2.2函数模型的应用实例
由题意:v2-v1=1,
2
1
1
− log3 1 = 1.
2
100 2
100
1
log3 2 = 1, ∴ 2 = 9, 即Q2=9Q 1.
2
1
1
即 log3
∴
故鲑鱼要想把游速提高 1 m/s,其耗氧量单位数应变为原来的 9 倍.
收集数据,画图提出假设;
依托图表,理顺数量关系;
抓住关键,建立函数模型;
精确计算,求解数学问题;
回到实际,检验问题结果.
【做一做1】 一辆汽车的行驶路程s关于时间t变化的图象如图所
示,那么图象所对应的函数模型是(
)
A.一次函数模型
B.二次函数模型
C.指数函数模型
D.对数函数模型
答案:A
【做一做 2】 已知大气压强 p(单位:百帕)与海拔高度 h(单位:
反比例函数模型
f(x) = (k 为常数,k≠0)
一次函数模型
f(x)=kx+b(k,b 为常数,k≠0)
二次函数模型
f(x)=ax2+bx+c(a,b,c 为常数,a≠0)
指数函数模型
f(x)=a·bx+c(a,b,c 为常数,a≠0,b>0,b≠1)
对数函数模型
f(x)=mlogax+n(m,n,a 为常数,m≠0,
M(单位:亿元)和 N(单位:亿元),它们与投资额 t(单位:亿元)的关系有
经验公式:M=
1
3
1
6
,N= . 今该公司将用3 亿元投资这两个项目,若
设甲项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1
当该顾客购买茶杯 40 个时,采用优惠办法 (1) 应付款 y1 =
5×40+60=260元;采用优惠办法(2)应付款y2=4.6×40+73.6 =257.6元,由于y2<y1,因此应选择优惠办法(2).
2
2
二次函数模型问题与函数的图象
西部山区的某种特产由于运输原因,长期只能
在当地销售,当地政府对该项特产的销售投资收益为:每年投 1 入 x 万元,可获得利润 P=-160(x-40)2+100(万元).当地政 府拟在新的十年发展规划中加快发展此特产的销售,其规划方 案为: 在规划前后对该项目每年都投入 60 万元的销售投资, 在 未来 10 年的前 5 年中, 每年都从 60 万元中拨出 30 万元用于修 建一条公路,5 年修成,通车前该特产只能在当地销售;
●温故知新
旧知再现 1.常见的函数模型 kx k为常数,k≠0); (1)正比例函数模型:f(x)=____(
k (2)反比例函数模型:f(x)=____( x k为常数,k≠0);
(3)一次函数模型:f(x)=________( kx+b k,b为常数,k≠0); ax2+bx+c a , b , c 为常数, (4) 二次函数模型: f(x) = ____________(
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式; (2)请帮助用户计算,在一个月内使用哪种卡便宜.
[分析]
由题目可获取以下主要信息: (1)通过图象给出函
数关系, (2) 函数模型为直线型, (3) 比较两种函数的增长差 异.解答本题可先用待定系数法求出解析式,然后再进行函数 值大小的比较.
1 又由题设 P=-160(x-40)2+100 知, 每年投入 30 万元时, 795 利润 P= 8 (万元). 前 5 年的利润和为 795 2 775 8 ×5-150= 8 (万元).
3.2函数模型及其应用
解:借助计算器或计算机作出函数y=0.25x, y=log7x+1,y=1.002x的图象(图3.2-2)
y 8 7 6 5 4 3 2 1 O
y=0.25x y=1.002x y=5 y=log7x+1
200
400 600
800 1000
x
观察图象发现,在区间[10,1000]上,模型 y=0.25x,y=1.002x的图象都有一部分在直线y=5的 上方,只有模型y=log7x+1的图象始终在y=5的下方, 这说明只有按模型y=log7x+1进行奖励时才符合公司 的要求. 下面通过计算确认上述判断.
假设你有一笔资金用于投资,现有三种投 资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天 比前一天多回报10元; 方案三:第一天回报0.4元,以后每天 的回报比前一天翻一番. 请问,你会选择哪种投资方案?
解:
设第x天所得回报是y元,则 方案一:y=40(x∈N*);
20 1.05E+06
30 40 1.07E+09 1.10E+12
400
70 1.18E+21 4900
900
80 1.21E+24 6400
1600
„ „ „
y=2x 1.13E+15 y=x2 2500
再在同一平面直角坐标系内 画出这两个函数的图象(图2)
y
y=2x
1.13E+15
1.10E+12 y=x2
0.953
0.877
0.817
y log1 x
2
3.322 1.737
1
3.2.2(1)函数模型的应用举例(教学设计)
3.2.2(1)函数模型的应用实例(教学设计)教学目标:知识与技能能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性.情感、态度、价值观体会运用函数思想和处理现实生活和社会中的简单问题的实用价值.教学重点难点:重点运用一次函数、二次函数模型的处理实际问题.难点运用函数思想理解和处理现实生活和社会中的简单问题.一、新课引入:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?原来孙子提出了大胆的设想。
分析解答:介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”。
这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23。
激发学生学习兴趣,增强其求知欲望.用方程的思想解答“鸡兔同笼”问题.二、师生互动,新课讲解:例1(课本P102例3).一辆汽车在某段路程中的行驶速度与时间的关系如图所示.1)写出速度v关于时间t的函数解析式;2)写出汽车行驶路程y关于时间t的函数关系式,并作图象;3)求图中阴影部分的面积,关说明所求面积的实际含义;4)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象.h)探索:1)将图中的阴影部分隐去,得到的图象什么意义?2)图中每一个矩形的面积的意义是什么?3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系?本例所涉及的数学模型是确定的,需要我们利用问题中的数据及其蕴含的关系建立数学模型.此题的主要意图是让学生用函数模型(分段函数)刻画实际问题.(1)获得路程关于时间变化的函数解析式:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤+-<≤+-<≤+-<≤+-<≤+=.54,2299)4(6543,2224)3(7532,2134)2(9021,2054)1(8010,200450t t t t t t t t t t s(2)根据解析式画出汽车行驶路程关于时间变化的图象.例2(课本P103例4).人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:rt e y y 0=其中t 表示经过的时间,0y 表示t =0时的人口数,r 表示人口的年平均增长率.下表是1950~19591)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?探索:1) 本例中所涉及的数量有哪些?2) 描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?3) 根据表中数据如何确定函数模型?4) 对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应作出如何评价?如何根据所确定函数模型具体预测我国某个时期的人口数,实质是何种计算方法?本例中,数学模型n e y y 0=是指数型函数模型,它由0y 与r 两个参数决定,而0y 与r 的值不难得到.本题意在让学生验证问题中的数据与所提供的数学模型是否吻合,并用数学模型解释实际问题,并利用模型进行预测,这也是此题的难点.借助计算器做出函数图象,比较与实际的吻合度.课堂练习(课本P104练习 NO :1;2)例3:某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量. (1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)分析 由题目可获取以下主要信息:①总成本=固定成本+100x ;②收益函数为一分段函数.解答本题可由已知总收益=总成本+利润,总利润=总收益-总成本.由于R (x )为分段函数,所以f (x )也要分段求出,将问题转化为分段函数求最值问题.解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400). (2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000, ∴当x =300时,有最大值25 000; 当x >400时,f (x )=60 000-100x 是减函数,f (x )<60 000-100×400<25 000.∴当x =300时,f (x )的最大值为25 000.∴每月生产300台仪器时,利润最大,最大利润为25 000元.点评 在函数应用题中,已知的等量关系是解题的依据,像此题中的利润=总收益-总成本,又如“销售额=销售价格×销售数量”等.像几何中的面积、体积公式,物理学中的一些公式等,也常用来构造函数关系.三、课堂小结,巩固反思:四、布置作业:A 组:1.一个高为H ,盛水量为V0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h时水的体积为V ,则函数V=f(h)的图象大致是( )答案 D解析 考察相同的Δh 内ΔV 的大小比较.2用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是( ) A .3 B .4 C .5 D .6答案 B解析 设至少要洗x 次,则⎝⎛⎭⎫1-34x ≤1100, ∴x ≥1lg 2≈3.32,因此至少要洗4次. 3(课本P107习题3.2 A 组 NO :2)4(课本P107习题3.2 A 组 NO :3)5(课本P107习题3.2 A 组 NO :4)(只列出总造价的表达式,并化简即可)6燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?分析 由题目可获取以下主要信息:①已知飞行速度是耗氧量的函数;②第(1)问知v ,求Q ;第(2)问知Q ,求v .解答本题的关键是给变量赋值.解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q 10,解得Q =10. 即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15 (m/s). 即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.点评 直接以对数函数为模型的应用问题不是很多.此类问题一般是先给出对数函数模型,利用对数运算性质求解.B 组:1、(课本P107习题3.2 B 组 NO :2)。
3.2函数模型及其应用2
x
x
令f(x)=log7x+1-0.25x,x∈[10,1000]. 利用计算器或计算机作出函数f(x)的图象(图3.2-3)
y
O -50 -100 -150 -200 -250 -300
200 400 600 800 1000 1200 x
由图象可知它是递减的,因此 f(x)<f(10)≈-0.3167<0
画出这两个函数的图象(图2)
y
y=2x
1.13E+15
1.10E+12 y=x2
O 50 100 x
从表2和图2可以看出,当自变量x越来越大时, y=2x的图象就像与x轴垂直一样,2x的值快速增 长,x2比起2x来,几乎有些微不足道.
2.探究y=x2,y=log2x两个函数的增长速度.
利用计算器或计算机,先列出自变量与函数值的 对应值表(表3).
y
1
x2
x 2
log 1
2
x
最后探究y ax (0 a 1), y xn (n 0), y loga x(0 a 1) 在区间(0,)上的衰减情况.
在区间(0,+∞)上,总存在一个x0,当x>x0时,总有 xn>ax>logax(n<0,0<a<1).
x
0
y=2x
1
10 1024
20
பைடு நூலகம்
30
40
1.05E+06 1.07E+09 1.10E+12
y=x2
0
100
400
900
1600
x
50
【红对勾】高中数学 3.2.2函数模型的应用举例课件 新人教版必修1
(2)设最大利润为Q(x),
1 2 则Q(x)=1.6x-y=1.6x-10x -3x+40
(2)函数关系未知的应用题 其解题步骤可归纳为以下几步: ①阅读理解题意 摆脱对实际问题陌生的心理障碍,按题目的有关规定 去领悟其中的数学本质,理顺题目中的数与形、形与形的 数量关系和位置关系,看一看可以用什么样的函数模型, 初步拟定函数类型.
②抽象函数模型 在理解问题的基础上,把实际问题抽象为函数模型. ③研究函数模型的性质 根据函数模型,结合题目的要求,讨论函数模型的有 关性质,获得函数模型的解. ④得出问题的结论 根据函数模型的解,结合实际问题的实际意义和题目 的要求,给出实际问题的解.
(1)求y与x之间的函数关系式,并在保证商家不亏本的 前提下,写出x的取值范围; (2)假设这种汽车平均每周的销售利润为z万元,试写出 z与x之间的函数关系式; (3)当每辆汽车的销售单价为多少万元时,平均每周的 销售利润最大?最大利润是多少?
【解析】
解决本题需弄清楚:每辆车的销售利润=
销售单价-进货单价;先求出每辆车的销售利润,再乘以 售出辆数可得每周销售利润.通过二次函数求最值,可得 汽车合适的销售单价.
预习篇01
新知导学
解函数模型应用题的一般步骤
1.函数模型应用的两个方面 (1)利用已知函数模型解决问题; (2)建立恰当的函数模型,并利用所得函数模型解 释有关现象,对某些发展趋势进行预测.
2.解函数应用题的一般步骤 (1)审题:弄清题意,分清条件和结论,理顺数理关 系. (2)建模:将文字语言转化为数学语言,用数学知识建 立相应的数学模型. (3)求模:求解数学模型,得到数学结论. (4)还原:将用数学方法得到的结论还原为实际问题的 意义.
1.常见的函数模型有哪些? 提示:(1)正比例函数模型:f(x)=kx(k为常数,k≠0); k (2)反比例函数模型:f(x)= (k为常数,k≠0); x (3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);
§3.2.2 函数模型的应用举例
第三章函数的应用3.2 函数模型及其应用§3.2.2 函数模型的应用举例【学习目标】1.能够运用函数性质,解决某些简单的实际问题。
2.能够根据实际问题构建适当的函数模型,体会函数模型的广泛应用。
【预习提纲】1.函数模型的分类及其建立与应用根据实际应用问题提供的两个变量的数量关系是否确定,可把构建的函数模型分为两大类:第一类是确定函数模型,这类应用题提供的变量关系是确定的,是以现实生活为原型设计的;第二类是近似函数模型,或称拟合函数模型,这类应用题提供的变量关系是不确定的,只是给出了两个变量的几组对应值(是搜集或用实验方法测定的).根据函数自身的种类,常见函数模型可分为一次函数模型、、、、、等.2.解答应用问题的程序概括为以下几点:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符合语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意义.【例题精讲】例1.如图表示一位骑自行车者和一位骑摩托车者在相距80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②例2. 一辆汽车在某段路程中的行驶速率与时间的关系如图所示。
(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数关系式,并作出相应的图象。
h例3.一种药在病人血液中得量保持在1500 mg 以上,才有疗效;而低于500mg ,病人就有危险。
人教A版高中数学必修1第三章 函数的应用3.2 函数模型及其应用教案(2)
Modeling and Problem Solving——函数模型及其应用教案学情分析:澳方MathB每次的Paper Test都分为两部分,其中Knowledge and Procedures(知识与过程)这个和普通高中数学相似,学生A/B率比较高,但是另外一部分Modeling and Problem Solving(建模与实际问题的解决)学生的A/B率不高。
这一部分内容题目普遍很长、生词量较多,并且都是将数学知识应用于实际生活中,所以大多数学生遇到此类题目都是放弃不做。
MathB这门课又特别注重实际生活问题的解决,而我们的学生这方面意识比较薄弱,抽象概括能力较弱。
所以,我们的教学任务是提高学生的考试成绩等级,提高OP成绩。
但是另一方面,12年级的学生大多数能灵活的使用图形计算器,具有一定的英语语言基础。
教学目标:1.了解函数模型在现实生活中的运用。
2.能够建立恰当的函数模型,并对函数模型进行简单的分析。
3.利用所得函数模型解释有关现象,对某些发展趋势进行预测。
教学重难点:1.建立合适的函数模型2.利用得到的函数模型解决实际问题教学过程一、引入案例、探索新知(如何确定最合适的函数模型)(18分钟)案例:根据《Daily Mail》报道,上个月一名中国留学生将自己车速飙到180公里/小时的录像传到了Instagram个人网页上,并以配以中文:“从Albany开回Perth,一路180公里/小时,将4.5小时的车程缩短到3.5小时。
”目前,他正在接受警方调查。
警察表示,视频显示这名男子在限速110公里/小时的高速公路开到了180公里/小时,他将面临巨额罚款、吊销驾照以及拘留。
Example1:The table below shows the relationship between the velocity of a car and thea. Use the calculator to find the relationship between the velocity of a car and the distance after it braking.b. What’s the minimum safe following distance for a car travelling at 110 km/h on the motor way?澳洲法律常识(设计意图:从生活案例引入新知,激发学生的学习兴趣。
3.2函数模型的应用
2.依据这个模型进行奖励时,奖金总数不超过5万元, 所以奖金y可用不等式表示为__________. 0≤y≤5 3.依据这个模型进行奖励时,奖金不超过利润的25%, 所以奖金y可用不等式表示为______________. 0≤y≤25%x
依据这两个约束条件对奖励模型 进行选择的实质是要怎么样呢?
y= =-40x2+520x-200(0<x<13)
易知:当且仅当x=6.5时,y有最大值即将单价定 为11.5元时,可获利最大
22
比较三个函数的增长情况!
尝试作函数:
y=0.25x, y=log7x+1, y=1.002x,及y=5的图象.并思考:
1.如何利用它们的图象作出选择呢?
2.这三种增长有什么不同呢?
不妨试一试!
9
y
8 7 6 5 4 3 2 1 0
▲ 借助计算机作出它们的图象。通过观察图象,你认 为哪个模型符合公司的奖励方案?
请根据以上题目是通过表格的形式给出的, 要求利润必须首先找到单价与销售量的关系,列出函数 关系式,再求函数最大值。
21
二次函数
解:从表格上易知销售单价每增加1元,销售量就减 少40桶,设在进价基础上增加x元后,日均销售利润 为y元,则
50t+2004, 80(t-1)+2054, 0≤t<1 1≤t<2 2≤t<3 3≤t<4 4≤t≤5
16
(2)据图有:S=
90(t-2)+2134, 75(t-3)+2224, 65(t-4)+2299,
函数图象如图所示:
17
例4 人口问题是当今世界普遍关注的问题。认识人口数量的 变化规律,可以为有效控制人口增长提供依据。早在1798年, 英国经济学家马尔萨斯就提出自然状态下的人口增长模型:
函数模型及其应用
必修1 第3章 函数的应用
3.2函数模型及其应用
函数模型 概念:函数模型就是用函数知识对日常生活中普
遍存在的成本最低、利润最高、产量最大、效益最 好、用料最省等实际问题进行归纳加工,建立相应 的目标函数,确定变量的取值范围,运用函数的方 法进行求解,最后用其解决实际问题。
数学建模: 数学建模就是通过建立实际问题的 ____________ 数学模型 来解决问题的方法.
D
2.某商品进货单价为40元,若销售价为50元,可卖 出50个,如果销售单价每涨1元,销售量就减少1个, 为了获得最大利润,则此商品的最佳售价应为多少 元?
解:设此商品的最佳售价应为x元,获得利润为y元. 由题意得y=(x-40)[50-(x-50)] =(x-40)(100-x) =-x2+140x-4 000 =-(x-70)2+900, ∴当x=70时,ymax=900, 即此商品的最佳售价应为70元时获得的利润最大,最大利润为900 元.
分析:由已知利润=总收入-总成本.由于R(x)是分段
函数,所以f(x)也要分段求出,分别求出f(x)在各段中的 最大值,通过比较Βιβλιοθήκη 就能确定f(x)的最大值.•
[解析] (1)设月产量为 x 台,则总成本为 20 000+100x, 1 2 - x +300x-20 0000≤x≤400 ∴f(x)= 2 . 60 000-100xx>400
3. 某公司生产一种电子仪器的固定成本为20 000元, 每生产一台仪器需增加投入100元,已知总收入满足 函数:
1 2 400x- x 0≤x≤400 2 R(x)= , 80 000x>400 其中 x 是仪器的月产量. (1)将利润表示为月产量的函数 f(x); (2)当月产量为何值时,公司所获利润最大?最大利润为多 少元?
线性函数、指数函数
3.2.1 几类不同增长的函数模型
第一课时 线性函数、指数函数和 对数函数模型
可编辑ppt
1
问题提出
1. 函数来源于实际又服务于实际,客观 世界的变化规律,常需要不同的数学模 型来描述,这涉及到函数的应用问题.
2. 所谓“模型”,通俗的解释就是一种
固定的模式或类型,在现代社会中,我们
y=ax2+bx+c或y=a·bx+c.已知4月份该产品的产 量为1.37万件,试选用一个适当的模拟函数.
可编辑ppt
12
小结作业
P98练习: 2. P107习题3.2A组:1,2.
可编辑ppt
13
60
40
100
50
150
60
210
70
280
80
360
90
450
100
550
110
660
可编辑ppt
…
…
方案三 当天回 报 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4 204.8 409.6 …
累计回 报 0.4 1.2 2.8 6.0 12.4 25.2 50.8 102.0 204.4 409.2 818.8
ylog7 x10.25是否成立?
x
x
思考8:综上分析,模型 ylog7 x 符合公
司要求.如果某人的销售利润是343万元,则
所获奖金为多少?
可编辑ppt
11
理论迁移
例 某工厂今年1月,2月,3月生产某种产 品分别为1万件,1.2万件,1.3万件,为了估 计以后每个月的产量,以这三个月的产品数 量为依据,用一个函数模拟该产品的月产量y 与月份数x的关系.模拟函数可以选用
高中数学 3.2.2函数模型的应用实例教学设计 新人教A版必修1-新人教A版高中必修1数学教案
《函数模型的应用实例〔二〕》教学设计一、教学内容分析:本节课选自人民教育A版的普通高中课程标准实验教科书·数学必修1中3.2.2函数模型的应用实例〔第二课时〕.函数基本模型的应用是本章的重点内容之一,函数模型本身就来源于现实,并用于解决实际问题.本节课的内容是在《几类不同增长的函数模型》和《函数模型的应用实例〔一〕》内容之后,对于纯数学知识的几类函数及其性质和给定的函数模型应用有了一定的学习,本节课是对以上两节内容的延续与拓展,研究没有给定函数模型或没有确定性函数模型的实际问题进行建模和应用.这节课的内容继续通过一些实例来感受函数模型的建立和应用,逐步体会实际问题中构建函数模型的过程,本节课的函数模型的应用实例主要包括建立确定性函数模型解决问题及选择或建立拟合函数模型解决问题.例5所给的问题的特点是表中数学的变化是有特定规律的,运用表中的数据规律建立数学模型,注意变化X围和检验结果的合理性,同时使用这种有规律的简单数据实例提供了建立数学模型的方法.例6与例5有所区别,表中数据的变化规律特点不是和明显,需要自己根据对数据的理解选择模型,这反映一个较为完整的建立函数模型解决问题的过程,让学生逐步感受和明确这一点.整节课要求学生分析数据,比较各个函数模型的优劣,选择接近实际的函数模型,并应用函数模型解决实际问题.强化读图、读表能力;优化学生思维,提高学生探究和解决问题的能力;强化学生数学应用意识,感受数学的实用性;锻炼学生的吃苦精神,提高学生的团队合作能力.二、教学目标:知识与技能:1.会分析所给出数据,画出散点图.2.会利用选择或建立的函数模型.3.会运用函数模型解决实际问题.过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据或计算机的拟合功能得出具体的满意的函数解析式,并应用模型解决实际问题.情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服务生活,体会数学的应用价值.2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度.3.提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度.三、学生学情分析:1.已掌握了一些基本初等函数的相关知识,有相应的数学基础知识储备.2.在前面的学习中,初步体会了利用给定函数模型解决实际问题的经历,为本节课积累解决问题的经验.3.学生从文字语言向图像语言和符号语言转化较弱;应用意识和应用能力不强;抽象概括和局部处理能力薄弱.四、教学重点、难点重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.难点:怎样合理分析数据选择函数模型和建立具体的函数解析式.五、教学策略分析:基于新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者的教学理念和最近发展区理论,结合本节课的教学目标,采用如下教学方法:1.问题教学法.在例1的教学中,提出如何能更为直观的发现函数模型,引导学生思考,发现选择函数模型的重要方法,即散点图图像,从而让学生有收获,有成就感.在例2的解决过程中,提出一系列的问题串,学会对问题的剖析,直达问题的核心.使学生的学习过程成为在教师引导下的“再创造〞过程,并使学生从中体会学习的兴趣.这样可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力.2.分组讨论法.在例2的教学中,遇到难以选择模型时,通过小组讨论,拓展思维,加强合作,解决问题;在获得函数模型后和课堂总结中,组织小组讨论,相互交流成果,扩大成果影响力.这样不仅能够培养学生对数学知识的探索精神和团队协作精神,更能让学生体验成功的乐趣,培养其学习的主动性.3.多媒体辅助教学法:在教学过程中,采用多媒体教学工具,通过动态演示有利于引起学生的学习兴趣,激发学生的学习热情,增大信息的容量,使内容充实、形象、直观,提高教学效率和教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
②对于模型y=1.002x,它在区间[10,1000]上递增, 观察
图象并结合计算可知,当x>806时,y>5,因此该模型不符
合要求.
2021/2/4
20
探究司四的奖通励过方观案察?图y象,你认为哪个模型符合公
8 y=0.25x
7 6
y log7 x 1 y=5
5
4
3
y 1.002x
20 1000 1200
请同学们对函数增长情况进行分析,方法是 列表观察或作出图象观察.
方法1:我们来计算三种方案所得回报的增长 情况:
2021/2/4
7
三种方案每天回报表
x/天
方案一
方案二
方案三
y/元 增加量/元 y/元 增加量根/元据表y格/元中所提增加量/元
1
40
0
10 供的数据,你0对.4三种方0.4
2
40
0
20 案分10别表现出0.8的回报 0.8
30
思考4:根据图象,不等式log2x<2x<x2和 log2x<x2<2x成立的x的取值范围分别如何?
y
y=2x y=x2
y=log2x
1
11.56 …
y=log2x -2.322 -0.737 0 0.485 0.848 1.138 1.379 1.585 1.766 …
2021/2/4
28
思考2:在同一坐标系中这三个函数图象的相 对位置关系如何?请画出其大致图象.
y
y=2x y=x2
y=log2x
2021/2/4
1 o 12 4
x
xx
即奖金不会超过利润的25%.
综上按对数函数模型奖励符合公司提出
的要求.
2021/2/4
23
变式训练
【2】某种计算机病毒是通过电子邮件进 行传播的,如果某台计算机感染上这种病毒, 那么每轮病毒发作时,这台计算机都可能感 染没被感染的20台计算机.现在10台计算机在 第1轮病毒发作时被感染,问在第5轮病毒发 作时可能有多少台计算机被感染?(练习P.982)
3.2.函数模型及其应用
2.1几类不同增长的函数模
2021/2/4
2
在理想环境中,种群数量呈指数增长;在有限 制的环境中,种群数量的增长将由指数增长转变 为对数增长,并逐渐趋于稳定.那么,应如何选择 不同的函数模型描述这些现象呢?
2021/2/4
3
材料:澳大利亚兔子数“爆炸”
1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,
x
③对于模型y=log7x+1,它在区间[10,1000]上递增,
观察图象并结合计算可知,当x=1000时,
y=log71000+1≈4.55<5,
所以它符合奖金总数不超过5万元的要求.
2021/2/4
21
探究五
按模型y=log7x+1奖励时,奖金是否不超过 利润的25%呢?
解:当x∈[10,1000]时, 要使y≤0.25x成立,
x
29
思考3:对于函数模型y=2x和y=x2,观察下列 自变量与函数值对应表:
x 0123 4 56 7 8
y=2x 1 2 4 8 16 32 64 128 256
y=x2 0 1 4 9 16 25 36 49 64
当x>0时,你估计函数y=2x和y=x2的图象共 有几个交点?
2021/2/4
变化剧烈。
2021/2/4
4
【例1】假设你有一笔资金用于投资,现有三种
投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天 多回报10元; 方案三:第一天回报0.4元,以后每天的回报比 前一天翻一番.请问,你会选择哪种投资方案?
探究一
在本问题中涉及哪些数量关系?如何用函数 描述这些数量关系?
26
问题提出
1.指数函数y=ax (a>1),对数函数 y=logax(a>1)和幂函数y=x n (n>0)在区 间(0,+∞)上的单调性如何?
2.利用这三类函数模型解决实际问 题,其增长速度是有差异的,我们怎样 认识这种差异呢?
2021/2/4
27
探究(一):特殊幂、指、对函数模型的差异
对于函数模型 :y=2x, y=x2, y=log2x 其中x>0.
x
2021/2/4
10
☞累计回报表:
方案一
方案二 方案三
1 回报 天数 2 3 4 5 6 7 8 9 10 11 方案 方案一 40 80 120 160 200 240 280 320 360 400 440 方案二 10 30 60 100 150 210 280 360 450 550 660 方案三 0.4 1.2 2.8 6 12.4 25.2 50.8 102 204.4 409.2 818.8
…
…
…
…
…
0
300
10
214748364.8 1073741882.4
y
y0.42x1
140 120
100
y 10x
80
60
40 20
y 40
o
2
4
6
8
10 12 x
2021/2/4
9
方法2:我们来作出三种方案的三个函数的图象:
y
225500
220000
115500
你能通
过图象描述
110000一下三种方
数学化 (列)
寻找解题思路
解答数学问题
(解)
构建数学模型
2021/2/4
12
练习:
1、四个变量 y1,y2,y3,y4随变量 x变化的数据如下表:
x0 5
10
15
20
25
30
y1 5 130
505 1130
y 2 5 94.478 1758.2 33733
y 3 5 30
55
80
y 4 5 2.3107 1.4295 1.1407
案的特点吗?
5500
底数为2
的指数函数模
型比线性函数
方方案案一一 方方案案二二 方方案案三三
模型增长速度 要快得多.从中 你对“指数爆
炸”的函数有
什么新的理解?
O00 11 22 33 44 55 66 77 88 99 1010111112121313141415151616171718181919202021212222
结论: ①投资1~6天,应选择方案一;
②投资7天,应选择方案一或二;
③投资8~10天,应选择方案二;
④投资11天(含11天)以上,则应选择方案三.
2021/2/4
11
★ 解答例1的过程实际上就是建立函数模型的 过程,建立函数模型的程序大概如下:
实际应用问题
审题 (设)
分析、联想 抽象、转化
还原 (答)
_0_≤_y_≤_5____. ③依据这个模型进行奖励时,奖金不超过
利 润 的 25%,所 以 奖 金 y可 用 不 等 式 表 示 为
_0_≤_y_≤_2_5_%_x___.
2021/2/4
16
探究三
你能根据问题中的数据,判定所给的奖励 模型是否符合公司要求吗?
奖励模型符合公司要求就是依据这个模型 进行奖励时,符合条件:
2021/2/4
24
2.答案:第5轮病毒发作时最多会有160万台被 感染.
f(n)1020n1(n N )
f(5 ) 1 0 2 0 5 1 16 0 00 0 0 .
2021/2/4
25
确定函数模型
利用数据表格、函数图象讨论模型
体会直线上升、指数爆炸、对数增长 等不同函数类型的增长含义
2021/2/4
气.
生态故事:“一群兔子引发的危机”
一般而言,在理想条件(食物或养料充足,空间条件充裕,气候
适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型
曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,
种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述
一个种群的前期增长,用对数函数描述后期增长的,感知指数函数
2021/2/4
14
探究一
本问题涉及了哪几类函数模型?本问题的 实质是什么?
y=0.25x ·············一次函数模型
y=log7 x +1,·············对数函数模型 y=1.002x ············· 指数函数模型
实质:分析三种函数的不同增长情况对 于奖励模型的影响,就是比较三个函数的增 长情况.
思考1:观察三个函数的自变量与函数值对应 表, 这三个函数增长的快慢情况如何?
x
0.2 0.6
1 1.4 1.8 2.2 2.6 3.0 3.4
…
y=2x 1.149 1.516 2 2.639 3.482 4.595 6.063 8
10.556 …
y=x2 0.04 0.36 1 1.96 3.24 4.84 6.76 9
关于x呈指数型函数变化的变量是
2005 3130 4505
6.37105 1.2107 2.28108
105 130 155
1.0461 1.0151 1.005
y2
。
2021/2/4
13
【例2】某公司为了实现1000万元利润的目标, 准备制定一个激励销售部门的奖励方案:在销售 利润达到10万元时,按销售利润进行奖励,且奖 金y(单位:万元)随销售利润x(单位:万元)的增加 而增加,但奖金总数不超过5万元,同时奖金不超 过 利 润 的 25%. 现 有 三 个 奖 励 模 型 : y=0.25x,y=log7x+1,y=1.002x, 其 中 哪 个 模 型 能 符合公司的要求?