基于递归法的最接近点对问题

基于递归法的最接近点对问题
基于递归法的最接近点对问题

基于递归法的最接近点对问题

姓名:杨意

学号:309040102009

学院:数学信息学院

专业:计算机辅助教育

目录

1、问题综述2

2、用递归法解决2

2.1 一维情形下的分析2

2.2 二维情形下的分析3

2.3 算法优化6

2.4 算法实现6

3、结论9

基于递归法的最接近点对问题

摘要:在计算机应用中,常用诸如点、圆等简单的几何对象表现现实世界中的实体。在涉及几何对象的问题中,常需要了解其邻域中其他几何对象的信息。例如,在空中交通控制问题中,若将飞机作为空间中移动的一个点来处理,则具有最大碰撞危险的两架飞机就是这个空间中最近的一点。这类问题是计算机几何学中研究的基本问题之一。本文就运用递归法对一维和二维的情况加以讨论。

关键词:最接近点对递归法

问题综述

最接近点对问题的提法是:给定平面上n个点,找其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。

实际情况下,最接近点对可能多于一对,为简单起见,我们只找其中的一对作为问题的解。有一个最直观的方法就是将每一点与其他n-1个点的距离算出,找出达到最小距离的两点即可。然而,这样做效率太低,我们想到用递归法来解决这个问题。

2、用递归法解决

将所给的平面上n个点的集合S分成两个子集S1和S2 ,每个子集中约有n/2个点。然后在每个子集中递归地求其最接近的点对。在这里,一个关键的问题是如何实现递归法中的合并步骤,即由S1 和S2的最接近点对,如何求得原集合S中的最接近点对。如果组成S 的最接近点对的两个点都在S1中或都在S2中,则问题很明显就可以找到答案。可是还存在另外一种可能,就是这两给点分别在S1和S2 中的时候。下面主要讨论这种情况。

2.1 一维情形下的分析

为使问题易于理解和分析,我们先来考虑一维的情形。此时,S中的n各点退化为x轴上的n个实数x1,x2,x3…xn。最接近点对即为这n个实数中相差最小的两个实数。我们尝试用递归法来求解,并希望推广到二维的情形。

假设我们用x轴上的某个点m将S划分为两个集合S1和S2 ,使得S1={x∈S | x≤m} ;

S2 ={ x∈S | x>m }。这样一来,对于所有p∈和q∈S2 有p<q。

递归地在S1和S2 上找出其最接近点对{p1,p2}和{q1,q2},并设

d=min{| p1- p2|,| q1- q2|}

由此易知,S中的最接近进点对或者是{ p1 ,p2},或者是{ q1 ,q2},或者是某个{p3,q3},其中,p3∈S1且q3∈S2 。如图2-1-1所示。

图2-1-1 一维情形的递归法

我们注意到,如果S的最接近点对是{p3,q3},即|p3-q3|<d,则p3和q3两者与m的距离不超过d,即| p3-m|<d,| q3 -m|<d。也就是说,p3∈(m-d,m],q3∈(m,m+d]。由于每个长度为d的半闭区间至多包含S1中的一个点,并且m是S1和S2 的分割点,由图2-1-1可以看出,如果(m-d,m]中有S中点,则此点就是S1中最大点。同理,如果(m,m+d]中有S中点,则此点就是S2 中最小点。因此,我们用线性时间就能找到区间(m-d,m]和(m,m+d]中所有点,即p3和q3。从而我们用线性时间就可以将S1的解和S2 的解合并成为S 的解。

但是,还有一个问题需要认真考虑,即分割点m的选取,即S1和S2 的划分。选取分割点m的一个基本要求是由此将S进行分割,使得S= S1∪S2 ,S1≠Φ,S2 ≠Φ,且S1∈{x|x ≤m },S2 ∈{x| x>m }。容易看出,如果选取m={max(S)+min(S)}/2,可以满足分割要求。然而,这样选取分割点,有可能造成划分出的子集S1和S2 的不平衡。例如在最坏情况下,| S1|=1,| S2 |=n-1,这样的计算效率与分割前相比提高幅度不明显。这种现象可以通过递归法中“平衡子问题”的方法加以解决。我们可以适当选择分割点m,使S1和S2 中有个数大致相等的点。我们会想到用S中各点坐标的中位数来作为分割点。

由此,我们设计出一个求一维点集S的最接近点对的算法Cpair 1如下:

---------------------------------------------------------------

Bool Cpair 1(S,d)

{

N=|S|;

if(n<2){

d=∞;

return false;

}

m=S中各点坐标的中位数;

//构造S1和S2 ;

S1={x∈S | x≤m} ;

S2 ={ x∈S | x>m };

Cpair 1(S1,d1);

Cpair 1(S2 ,d2);

p=max(S1);

q=min(S2 );

d=min(d1,d2,q-p);

return true

}

------------------------------------------------------------------

2.2 二维情形下的分析

以上一维算法可以推广到二维的情形。

设S中的点为平面上的点,它们都有两个坐标值x和y。为了将平面上点集S线性分割为大小大致相等的两个子集S1和S2 ,我们选取一垂直线L:x=m来作为分割直线。其中,m为S中各点x坐标的中位数。由此将S分割为S1={p∈S | x (p) ≤m }和S2 ={p∈S | x (p) >m }。从而使S1和S2 分别位于直线L的左侧和右侧,且S=S1∪S2 。由于m是S 中各x坐标的中位数,因此S1和S2 中得点数大致相等。

递归地在S1和S2 上解最接近点对问题,我们分别得到S1和S2 中的最小距离d1和d2。现设d=min{d1,d2}。若S的最接近点对(p,q)之间的距离小于d,则p和q必分属于S1和S2 。不妨设p∈S1,q∈S2 。那么p和q距直线L的距离均小于d。因此,若我们用P1和P2分别表示直线L的左边和右边的宽为d的两个垂直长条区域,则p∈P1且q∈P2,如图2-2-1所示。

图2-2-1 距直线L的距离小于d的所有点

在一维情形下,距分割点距离为d的两个区间(m-d,m]和(m,m+d]中最多各有S中一个点。因而这两点成为唯一的未检查过的最接近点对候选者。二维的情形则要复杂些。此时,P1中所有点和P2中所有点构成的点对均为最接近点对的候选者。在最坏的情况下有n2/4对这样的候选者。考虑P1中任意一点p,它若与P2中的点q构成最接近点对的候选者,则必有distance(p,q) <d。满足这个条件的P2中的点有多少个呢?容易看出这样的点一定落在一个d*2d的矩形R中,如图2-2-2所示。

图2-2-2 包含点q的d*2d矩形R

由d的意义可知,P2中任何两个S中的点的距离都不小于d。由此可以推出矩形R中最多只有6个S中的点。下面我们来证明这个结论。

我们可以将矩形R的长为2d的边3等分,将它的长为d的边2等分,由此导出6个(d

/2)*(2d/3)的矩形。如图2-2-3(a) 所示。

如图2-2-3 矩形R中点的稀疏性

若矩形R中有多于6个S中的点,则由鸽舍原理易知至少有一个(d/2)*(2d/3)的小矩形中有2个以上S中的点。设u,v是这样2个点,它们位于同一小矩形中,则

(x(u)-x(v))2+(y(u)-y(v))2 ≤(d/2)2+(2d/3)2=25/36d2

因此,distance(u,v) ≤5d/6<d。这与d的意义相矛盾。也就是说矩形R中最多只有6个S中的点。

图2-2-3(b)是矩形中恰有6个S中点的极端情形。由于这种稀疏性质,对于P1中任意一点p,P2中最多只有6个点与它构成最接近点对的候选者。因此,在递归法的合并步骤中,我们最多只需要检查6*n/2=3n个候选者,而不是n2/4个候选者。

我们将p和P2中所有S2 的点投影到垂直线L上。由于能与p点一起构成最接近点对候选者的S2 中点一定在矩形R中,所以它们在直线L上的投影点距p在L上投影点的距离小于d。由上面的分析可知,这种投影点最多只有6个。因此,若将P1和P2中所有S中点按其y坐标排好序,则对P1中所有点,对排好序的点列做一次扫描,就可以找出所有最接近点对的候选者。对P1中每一点最多只要检查P2中排好序的相继6个点。

至此,我们给出用递归法求二维点集最接近点对的算法Cpair 2 如下:

------------------------------------------------------------------------------------------------

bool Cpair 2(S,d)

{

N=|S|;

If(n<2)

{d=∞;

Return false;

}

1. m=S中各点x间坐标的中位数;

构造S1和S2 ;

//S1={p∈S| x(p)<=m},S2 ={ p∈S| x(p)>m }

2. Cpair 2(S1,d1);

Cpair 2(S2 ,d2);

3. dm=min(d1,d2);

4. 设P1是S1中距垂直分割线L的距离在dm之内的所有点组成的集合;

P2是S2 中距分割线L的距离在dm之内所有点组成的集合;

将P1和P2中点依其y坐标值排序;

并设X和Y是相应的已经排好序的点列;

5. 通过扫描X以及对于X中每个点检查Y中与其距离在dm内的所有点(最多6个)可以完成合并;

当X中的扫描指针逐次向上移动时,Y中的扫描指针可在宽为2dm的一个区间内移动;

设dl是按这种扫描方式找到的点对间的最小距离;

6. d=min(dm,dl);

return true;

}

------------------------------------------------------------------------------------------------------

2.3 算法优化

在以上二维情形下的算法中,在每次执行第4步时都要进行排序,这将花费较多的时间,从而增加算法的复杂度。因此,在这里我们要作一个技术处理。我们采用设计算法时常用的预排序技术,在使用递归法之前,预先将S中n个点依其y坐标值排好序,设排好序的点列为P*。在执行递归法的第4步时,只要对P*作一次线性扫描,即可抽取出我们所需要的排好序的点列X和Y。然后,在第5步时再对X作一次线性扫描,即可求得dl。

2.4 算法实现

在具体实现算法Cpair 2时,我们分别用类Point X和Point Y表示依x坐标和依y坐标排序的点。

-----------------------------------------------------------------------------------------

Class Point X{

Public:

Int operator<=(Point X a) const

{return (x<=a.x);}

Private:

Int ID; //点编号

Float x,y; //点坐标

};

Class Point Y{

Public:

int operator<=(Point Y a) const

{return (y<=a.y)}

Private:

Int p; //同一点在数组X中的坐标

Float x,y; //点坐标

};

--------------------------------------------------------------------------------------------

平面上任意两点u和v之间的距离可计算如下:

---------------------------------------------------------------------------------------------

Template

Inline float distance(const Type & u,const Type & v)

{

Float dx=u.x-v.x;

Float dy=u.y-v.y;

Return sqrt(dx * dx + dy * dy);

}

------------------------------------------------------------------------------------------------

在算法Cpair 2中,用数组X存储输入的点集。在算法的预处理阶段,将数组X中的点依x坐标和依y坐标排序,排好序的点集分别存储在数组X和数组Y中。事实上,我们只要取m=(L+r)/2,则X[L:m]和X[m+1:r]就是满足要求的分割。依y坐标排好序的数组Y用于在算法的合并步中快速检查d矩形条内最接近点对的候选者。

--------------------------------------------------------------------------------------------------

Bool Cpair 2(Point X X[],int n,Point X&a,Point X&b,float&d)

{

If(n<2) return false;

MergeSort(X,n);

Point Y * Y =new Point Y [n];

For (int i = 0; i < n ; i++)

//将数组X中的点复制到数组Y中

{

Y[i].p = i ;

Y[i].x =X[i].x ;

Y[i].y =X[i].y ;

}

MergeSort (Y,n);

Point Y * Z = new Point Y [n];

Closest (X,Y,Z,0,n-1,a,b,d);

delete [] Y;

delete [] Z;

return true;

}

算法Cpair 2中,具体计算最接近点对的工作由函数closest完成。

------------------------------------------------------------------------------------------------

Viod closest (Point X X[], Point Y Y[], Point Y Z[],int L,int r,Point X&a,Point X&b,float&d)

{

If (r –1 = = 1) //2点的情形

{

a = X[L];

b =X[r];

d =distance(X[L],X[r]);

return;

If(r –1 = = 2) //3点的情形

{

Float d1 = distance (X[L],X[L+1]);

Folat d2 = distance (X[L+1],X[r]);

Float d3 = distance (X[L],X[r]);

If (dL<= d2 && dL<=d3)

{

a = X[L];

b =X[L+1];

d =dL;

return;

}

If (d2<=d3)

{

a = X[L+1];

b = X[r];

d = X[d2];

}else

{

a = X[L];

b =X[r];

d =d3;}

return; }

//多于3点的情形,用递归法

Int m = (L+r)/2;

Int f = L, g = m + 1;

For ( int i = 1;i<=r; i++)

If (Y[i].p>m)

Z[g++] = Y[i];

Else

Z[f++] = Y[i] ;

Closest (X,Z,Y,L,m,a,b,d);

Float dr;

Point X ar ,br;

Closest (X,Y,Z,m+L,r,ar,br,dr);

If (dr

{

a = ar;

b = br;

d =dr;

}

Merge(Z,Y,L,m,r); //重构数组Y

//d矩形条内的点置于Z中

For (int i = L, i<= r, i++)

If(fabs(Y[m].x – Y[i].x)

Z[k++]=Y[i]; //搜索Z[L:k-1]

For(int i = L;i<=k;i++)

{

For (int j =i+1;j

{

Float dp = distance (Z[i],Z[j]);

If (dp < p)

{

d = dp;

a =X[Z[i].p];

b =X[Z[j].p];

}

}

}

3、结论

3.1.对于一类问题,如果该问题规模为n,但是可以分解为k个互相独立且与原问题相同的规模较小的子问题的话,我们就可以运用递归法,递归的解决这些子问题,然后将各子问题的解合并得到原问题的解。

3.2 通过对最接近点对问题的解决,熟悉了解决问题的基本步骤和方法:首先对问题进行分类,然后运用该类问题的处理思路进行算法的设计,最后还要考察所设计算法的复杂性,进一步进行优化处理。

递归下降语法分析程序设计

编译方法实验报告实验名称:简单的语法分析程序设计

实验要求 1.功能:对简单的赋值语句进行语法分析 随机输入赋值语句,输出所输入的赋值语句与相应的四元式 2.采用递归下降分析程序完成(自上而下的分析) 3.确定各个子程序的功能并画出流程图 4.文法如下:

5.编码、调试通过 采用标准输入输出方式。输入输出的样例如下: 【样例输入】 x:=a+b*c/d-(e+f) 【样例输出】(说明,语句和四元式之间用5个空格隔开) T1:=b*c (*,b,c,T1) T2:=T1/d (/,T1,d,T2) T3:=a+T2 (+,a,T2,T3) T4:=e+f (+,e,f,T4) T5:=T3-T4 (-,T3,T4,T5) x:=T5 (:=,T5,-,x) 【样例说明】程序除能够正确输出四元式外,当输入的表达式错误时,还应能检测出语法错误,给出相应错误提示。 6.设计3-5个赋值语句测试实例,检验程序能否输出正确的四元式;当输入错误 的句子时,检验程序能够给出语法错误的相应提示信息。 7.报告内容包括: 递归程序的调用过程,各子程序的流程图和总控流程图,详细设计,3-5个测试用例的程序运行截图及相关说明,有详细注释的程序代码清单等。

目录 1.语法分析递归下降分析算法............................... 错误!未定义书签。 背景知识............................................. 错误!未定义书签。 消除左递归........................................... 错误!未定义书签。 2.详细设计及流程图....................................... 错误!未定义书签。 函数void V( ) .|z ................................. 错误!未定义书签。 函数void A( ) 错误!未指定书签。错误!未指定书签。错误!未指定书签。错误!未指定书签。错误!未指定书签。试用例及截图........................ 错误!未定义书签。 测试用例1及截图..................................... 错误!未定义书签。 测试用例2及截图..................................... 错误!未定义书签。 测试用例3及截图..................................... 错误!未定义书签。 代码清单................................................. 错误!未定义书签。

编译原理-编写递归下降语法分析器

学号107 成绩 编译原理上机报告 名称:编写递归下降语法分析器 学院:信息与控制工程学院 专业:计算机科学与技术 班级:计算机1401班 姓名:叶达成 2016年10月31日

一、上机目的 通过设计、编制、调试一个递归下降语法分析程序,实现对词法分析程序所提供的单词序列进行语法检查和结构分析,掌握常用的语法分析方法。通过本实验,应达到以下目标: 1、掌握从源程序文件中读取有效字符的方法和产生源程序的内部表示文件的方法。 2、掌握词法分析的实现方法。 3、上机调试编出的词法分析程序。 二、基本原理和上机步骤 递归下降分析程序实现思想简单易懂。程序结构和语法产生式有直接的对应关系。因为每个过程表示一个非终结符号的处理,添加语义加工工作比较方便。 递归下降分析程序的实现思想是:识别程序由一组子程序组成。每个子程序对应于一个非终结符号。 每一个子程序的功能是:选择正确的右部,扫描完相应的字。在右部中有非终结符号时,调用该非终结符号对应的子程序来完成。 自上向下分析过程中,如果带回溯,则分析过程是穷举所有可能的推导,看是否能推导出待检查的符号串。分析速度慢。而无回溯的自上向下分析技术,当选择某非终结符的产生时,可根据输入串的当前符号以及各产生式右部首符号而进行,效率高,且不易出错。 无回溯的自上向下分析技术可用的先决条件是:无左递归和无回溯。 无左递归:既没有直接左递归,也没有间接左递归。 无回溯:对于任一非终结符号U的产生式右部x1|x2|…|x n,其对应的字的首终结符号两两不相交。 如果一个文法不含回路(形如P?+ P的推导),也不含以ε为右部的产生式,那么可以通过执行消除文法左递归的算法消除文法的一切左递归(改写后的文法可能含有以ε为右部的产生式)。 三、上机结果 测试数据: (1)输入一以#结束的符号串(包括+—*/()i#):在此位置输入符号串例如:i+i*i# (2)输出结果:i+i*i#为合法符号串 (3)输入一符号串如i+i*#,要求输出为“非法的符号串”。 程序清单: #include #include char str[50]; int index=0; void E(); //E->TX; void X(); //X->+TX | e void T(); //T->FY void Y(); //Y->*FY | e void F(); //F->(E) | i int main() /*递归分析*/ { int len; int m;

利用递归思想解决计数问题

利用递归思想解决计数问题 福建省永定第一中学 简绍煌 我们常会遇到一些看似排列组合应用题的计数问题,但其复杂的情形有时令人无从下手,若是利用递归思想建立递归方程加以求解,则往往能够迎刃而解. 【例1】有一楼梯共10级,如果规定每步只能跨上一级或二级,要上10级,共有多少种走法? 解 设上n 级楼梯共有n a 种走法,当1n =时,11a =;当2n =时,22a =. 当有(2)n n >级楼梯时,其走法分两类. 第一类:走完前面1n -级楼梯有1n a -种走法,走第n 级只有1种走法; 第二类:走完前面2n -级楼梯有2n a -种走法,走第1n -级与第n 级楼梯时一步走,也是1种走法. 由分类计数原理,知n 级楼梯的走法为21(2)n n n a a a n N n --=+∈>且,. 由此可以算出1089a =. 点评 其通项公式可用换元法转化为一阶线性递归数列求解. 令11n n n c a x a +=-,使数列{}n c 是以2x 为公比的等比数列(12x x 、待定). 即211211()n n n n a x a x a x a +++-=-,∴212112()n n n a x x a x x a ++=+-.对照已给递归式, 有12121 1x x x x +==-,,即12x x 、是方程210x x --=的两个根. 从而121211112222x x x x += === ∴211111(222n n n n a a a a +++-=-) ① 或211111(222n n n n a a a +++-=-) ② 由式①得1 1131(222n n n a a -++-=; 由式②得1 1131(222 n n n a a -++--=. 消去 1n a +,得11n n n a --? =?? . 【例2】将数字123n ,,,,填入标号为123n ,,,,的n 个方格内,每格一个数字,则 标号与所填数字均不同的填法共有多少种? 解 设这n 个自然数的错排数为n a . 当1n =时,10a =;当2n =时,21a =. 当3n ≥时,n 个自然数的错排数可以分两类情况计算. 第一类:自然数(11)k k n ≤≤-与n 互换,这时错排数为2n a -; 第二类:自然数n 在第k 位上,但自然数不在第n 位上.这时就把第n 位看做第k 位,相当于将n 以外的1n -个自然数进行错排,错排数为1n a -. 所以,自然数n 在第k 位上的错排数共有21n n a a --+种,由于k 可以是121n - ,,,共 1n -种可能,故n 个自然数的错排数为21(1)()(3)n n n a n a a n --=-+≥.① 由①式得,112[(1)]n n n n a a a n a ----=---,∴112 (1)[]!!!! n n n n a na a n a n n n n -----=--,

实验三-递归下降法的语法分析器

魏陈强 204168 实验3 递归下降法的语法分析器 一、实验目的 学习用递归下降法构造语法分析器的原理,掌握递归下降法的编程方法。 二、实验内容 用递归下降法编写一个语法分析程序,使之与词法分析器结合,能够根据语言的上下文无关文法,识别输入的单词序列是否文法的句子。 这里只要求实现部分产生式,文法的开始符号为program。(完整的源语言的文法定义见教材附录,p394) program→ block block→{stmts } stmts→stmt stmts | 。 stmt→id=expr; | if(bool)stmt | if( bool)stmt else stmt | while(bool)stmt | do stmt while(bool ) ; | break ; | block bool →expr < expr | expr <= expr | expr > expr | expr >= expr & | expr expr→ expr + term

| expr - term | term term→ term * factor | term / factor | factor factor→ ( e xpr ) | id| num 三、实验要求 1.个人完成,提交实验报告。 ( 2.实验报告中给出采用测试源代码片断,及其对应的最左推导过程(形式可以自行考虑)。 测试程序片断: { i = 2; while (i <=100) { sum = sum + i; i = i + 2; } } 对应的推导过程为: # program block {stmts } {stmt stmts} {id=expr;stmts } {id=num;stmts } {id=num;stmt stmts } {id=num;while(bool)stmt stmts } {id=num;while(e xpr<= expr)stmt stmts } {id=num;while(id<= expr)stmt stmts } {id=num;while(id<= num)stmt stmts } {id=num;while(id<= num)block stmts } , {id=num;while(id<= num){stmts }stmts } .......

《递归算法与递归程序》教学设计

递归算法与递归程序 岳西中学:崔世义一、教学目标 1知识与技能 (1) ?认识递归现象。 (2) ?使用递归算法解决冋题往往能使算法的描述乘法而易于表达 (3) ?理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4) ?认识递归算法往往不是咼效的算法。 (5) ? 了解递归现象的规律。 (6) ?能够设计递归程序解决适用于递归解决的问题。 (7) ?能够根据算法写出递归程序。 (8) ? 了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2) 和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1) 了解递归现象和递归算法的特点。 (2) 能够根据问题设计出恰当的递归程序。 2、教学难点 (1) 递归过程思路的建立。 (2) 判断冋题是否适于递归解法。 (3) 正确写出递归程序。 三、教学环境 1、教材处理 教材选自《浙江省普通高中信息技术选修:算法与程序设计》第五章,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自 定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习⑵ 和练习

实验三 递归下降分析程序实现

实验三递归下降分析法 一、实验目的: 根据某一文法编制调试递归下降分析程序,以便对任意输入的符号串进行分析。本次实验的目的主要是加深对递归下降分析法的理解。 程序比较复杂,需要利用到程序设计语言的知识和大量编程技巧,递归下降分析法是一种较实用的分析法,通过这个练习可大大提高软件开发能力。通过练习,掌握函数间相互调 用的方法。 二、实验要求 1.模块设计:将程序分成合理的多个模块(函数),每个模块做具体的同一事情。 2.写出(画出)设计方案:模块关系简图、流程图、全局变量、函数接口等。 3.编程时注意编程风格:空行的使用、注释的使用、缩进的使用等。 三、实验内容 程序输入/输出示例: 对下列文法,用递归下降分析法对任意输入的符号串进行分析: (1)E-TG (2)G-+TG|—TG (3)G-ε (4)T-FS (5)S-*FS|/FS (6)S-ε (7)F-(E) (8)F-i 输出的格式如下: (1)递归下降分析程序,编制人:姓名,学号,班级 (2)输入一以#结束的符号串(包括+—*/()i#):在此位置输入符号串例如:i+i*i# (3)输出结果:i+i*i#为合法符号串 备注:输入一符号串如i+i*#,要求输出为“非法的符号串”。 引用也要改变)。 注意:1.表达式中允许使用运算符(+-*/)、分割符(括号)、字符I,结束符#; 2.如果遇到错误的表达式,应输出错误提示信息(该信息越详细越好); 3.对学有余力的同学,可以详细的输出推导的过程,即详细列出每一步使用的产生式。 四、实验学时 4学时 五、实验步骤 (一)准备:

1.阅读课本有关章节, 2.考虑好设计方案; 3.设计出模块结构、测试数据,初步编制好程序。 (二)上课上机: 将源代码拷贝到机上调试,发现错误,再修改完善。第二次上机调试通过。 (三)程序思路(仅供参考): 0.定义部分:定义常量、变量、数据结构。 1.初始化:从文件将输入符号串输入到字符缓冲区中。 2.利用递归下降分析法分析,对每个非终结符编写函数,在主函数中调用文法开始符号的函数。 六、实验预习提示 1、递归下降分析法的功能 词法分析器的功能是利用函数之间的递归调用模拟语法树自上而下的构造过程。 2、递归下降分析法的前提 改造文法:消除二义性、消除左递归、提取左因子,判断是否为LL(1)文法, 3、递归下降分析法实验设计思想及算法 为G的每个非终结符号U构造一个递归过程,不妨命名为U。 U的产生式的右边指出这个过程的代码结构: (1)若是终结符号,则和向前看符号对照, 若匹配则向前进一个符号;否则出错。 (2)若是非终结符号,则调用与此非终结符对应的过程。当A的右部有多个产生式时,可用选择结构实现。 具体为: (1)对于每个非终结符号U-u1|u2|…|un处理的方法如下: U( ) { ch=当前符号; if(ch可能是u1字的开头) 处理u1的程序部分; else if(ch可能是u2字的开头)处理u2的程序部分; … else error() } (2)对于每个右部u1-x1x2…xn的处理架构如下: 处理x1的程序; 处理x2的程序; … 处理xn的程序; (3)如果右部为空,则不处理。

递归下降分析法

《编译原理》课程实验报告 实验名称:递归下降分析法 一.实验目的 1.理解递归下降语法分析方法的主要原理 2.理解递归下降分析法对文法的要求 3.熟练掌握Predict集合的求法 4.熟练掌握文法变换算法(消除左递归和消除公共前缀) 二.实验内容 #include char token[20]; char sym; int p; void S(); void T(); void U(); void Scanner(); void Error(); void S() { if (sym == 'a' || sym == '^') Scanner(); else if (sym == '(') { Scanner(); T(); if (sym == ')') Scanner(); else Error(); } else Error();

} void T() { S(); U(); } void U() { if (sym == ',') { Scanner(); S(); U(); } else if(sym != ')') Error(); } void Scanner() { sym = token[p++]; } void Error() { //exit(0); } int main() { printf("输入: "); gets(token); p = 0; Scanner(); S(); if (sym == '$') printf("Success!"); else printf("Fail!"); return 0; } 三.实验步骤 调试程序的结果:

实验三_递归下降法的语法分析器

魏陈强 23020092204168 实验3 递归下降法的语法分析器 一、实验目的 学习用递归下降法构造语法分析器的原理,掌握递归下降法的编程方法。 二、实验内容 用递归下降法编写一个语法分析程序,使之与词法分析器结合,能够根据语言的上下文无关文法,识别输入的单词序列是否文法的句子。 这里只要求实现部分产生式,文法的开始符号为program。(完整的源语言的文法定义见教材附录 A.1,p394) program→ block block→{stmts } stmts→stmt stmts | stmt→id=expr; | if(bool)stmt | if( bool)stmt else stmt | while(bool)stmt | do stmt while(bool ) ; | break ; | block bool →expr < expr | expr <= expr | expr > expr | expr >= expr | expr expr→ expr + term | expr - term | term

term→ term * factor | term / factor | factor factor→ ( e xpr ) | id| num 三、实验要求 1.个人完成,提交实验报告。 2.实验报告中给出采用测试源代码片断,及其对应的最左推导过程(形式可以自行考虑)。 测试程序片断: { i = 2; while (i <=100) { sum = sum + i; i = i + 2; } } 对应的推导过程为: program?block ?{stmts } ?{stmt stmts} ?{id=expr;stmts } ?{id=num;stmts } ?{id=num;stmt stmts } ?{id=num;while(bool)stmt stmts } ?{id=num;while(e xpr<= expr)stmt stmts } ?{id=num;while(id<= expr)stmt stmts } ?{id=num;while(id<= num)stmt stmts } ?{id=num;while(id<= num)block stmts } ?{id=num;while(id<= num){stmts }stmts } ?....... 四、实验思路 之前编写的词法分析器,能够将语句中的每一个词素都识别出来,因此,在此基础上,定义一个二维字符串数组finaltable[100][20],用于存放由词法分析器提取出来的每个词素,比如,i=2,则finaltable[0]=”id”,

递归下降分析法

编译原理课程实验报告 班级学号:姓名: 实验名称:递归下降分析法 一、实验目的: 根据某一文法编制调试递归下降分析程序,以便对任意输入的符号串进行分析。本次实验的目的主要是加深对递归下降分析法的理解。 二、实验要求: 对下列文法,用递归下降分析法对任意输入的符号串进行分析: (1)E->TG (2)G->+TG|—TG (3)G->ε (4)T->FS (5)S->*FS|/FS (6)S->ε (7)F->(E) (8)F->i 输出的格式如下: (1)递归下降分析程序,编制人:姓名,学号,班级 (2)输入一以#结束的符号串(包括+—*/()i#):在此位置输入符号串例如:i+i*i# (3)输出结果:i+i*i#为合法符号串 备注:输入一符号串如i+i*#,要求输出为“非法的符号串”。 注意: 1.表达式中允许使用运算符(+-*/)、分割符(括号)、字符i,结束符#; 2.如果遇到错误的表达式,应输出错误提示信息(该信息越详细越好); 三、实验过程: 程序设计: 1.模块设计:将程序分成合理的多个模块(函数),每个模块做具体的同一事情。 2.写出(画出)设计方案:模块关系简图、流程图、全局变量、函数接口等。 程序编写: 1.定义部分:定义常量、变量、数据结构。 2.初始化:从文件将输入符号串输入到字符缓冲区中。 3.利用递归下降分析法,对每个非终结符编写函数,在主函数中调用文法开始符号的函数。 四、实验结果

(1)程序流程图 主函数main( )流程图 E( )过程流程图 T( )过程流程图

G( )过程流程图 F( )过程流程图

编译原理-实验报告2-递归下降分析法

计算机硬件实验室实验报告 一、实验目的: 根据某一文法编制调试递归下降分析程序,以便对任意输入的符号串进行分析。本次实验的目的主要是加深对递归下降分析法的理解。 二、实验要求: 对下列文法,用递归下降分析法对任意输入的符号串进行分析: (1)E->TG (2)G->+TG|—TG (3)G->ε (4)T->FS (5)S->*FS|/FS (6)S->ε (7)F->(E) (8)F->i 输出的格式如下: (1)递归下降分析程序,编制人:姓名,学号,班级 (2)输入一以#结束的符号串(包括+—*/()i#):在此位置输入符号串例如:i+i*i# (3)输出结果:i+i*i#为合法符号串 备注:输入一符号串如i+i*#,要求输出为“非法的符号串”。 注意: 1.表达式中允许使用运算符(+-*/)、分割符(括号)、字符i,结束符#; 2.如果遇到错误的表达式,应输出错误提示信息(该信息越详细越好); 三、实验过程:

程序设计: 1.模块设计:将程序分成合理的多个模块(函数),每个模块做具体的同一事情。 2.写出(画出)设计方案:模块关系简图、流程图、全局变量、函数接口等。 程序编写: 1.定义部分:定义常量、变量、数据结构。 2.初始化:从文件将输入符号串输入到字符缓冲区中。 3.利用递归下降分析法,对每个非终结符编写函数,在主函数中调用文法开始符号的函数。 四、实验结果 (1)程序流程图 (2)运行结果 示例程序: #include <> #include<> #include<> #include<> char a[50] ,b[50],d[500],e[10]; char ch; int n1,i1=0,flag=1,n=5; int E(); int E1(); int T(); int G();

编译原理-实验二-递归下降分析程序构造

集美大学计算机工程学院实验报告 课程名称:编译原理 指导教师:付永钢 实验成绩: 实验编号: 实验二 实验名称:递归下降分析程序构造 班级:计算12 姓名: 学号: 上机实践日期:2014.11 上机实践时间: 4学时 一、实验目的 通过设计、编制、调试一个递归下降语法分析程序,实现对词法分析程序所提供的单词序列进行语法检查和结构分析,掌握常用的语法分析方法。通过本实验,应达到以下目标: (1) 掌握从源程序文件中读取有效字符的方法和产生源程序内部表示文件的方法; (2)掌握语法分析的实现方法; (3)上机调试编出的语法分析程序。 二、实验环境 Windows7 x64、VC6.0 三、实验原理 递归下降法是语法分析中最易懂的一种方法。它的主要原理是,对每个非终结符按其产生式结构构造相应语法分析子程序,其中终结符产生匹配命令,而非终结符则产生过程调用命令。因为文法递归相应子程序也递归,所以称这种方法为递归子程序下降法或递归下降法。其中子程序的结构与产生式结构几乎是一致的。 递归下降分析程序的实现思想是:识别程序由一组子程序组成。每个子程序对应于一个非终结符号。每一个子程序的功能是:选择正确的右部,扫描完相应的字。在右部中有非终结符号时,调用该非终结符号对应的子程序来完成。 自上向下分析过程中,如果带回溯,则分析过程是穷举所有可能的推导,看是否能推导出待检查的符号串。分析速度慢。而无回溯的自上向下分析技术,可根据输入串的当前符号以及各产生式右部首符,选择某非终结符的产生式,效率高,且不易出错。 无回溯的自上向下分析技术可用的先决条件是:无左递归和无回溯。即:假设A 的全部产生式为A →α1|α2|……|αn ,则必须满足如下条件才能保证可以唯一的选择合适的产生式 First(A →αi )∩First (A →αj )=Φ,当i≠j. 无左递归:既没有直接左递归,也没有间接左递归。 无回溯:对于人以非中介符号U 的产生式右部n x x x |...||21,其对应的字的首终结符号两两不相交。 如果一个文法不含回路(形如P P +?的推导),也不含以ε为右部的产生式,那么可以通过执行消除左递归的算法消除文法的一切左递归。 四、实验内容 完成以下描述算术表达式的LL(1)文法的递归下降分析程序构造 G[E]: E →TE ′ E ′→+TE ′|ε T →FT ′

利用递归解决实际问题

数据结构上机实验报告题目:用递归方法解决问题 学生姓名 学生学号 学院名称计算机学院 专业计算机科学与技术 时间

目录 第一章需求分析 (1) 1.1 原题表述 (1) 1.2 问题解决方案 (1) 第二章概要设计 (2) 2.1 主要算法描述 (2) 2.2 主要算法分析 (2) 第三章详细设计 (3) 3.1 程序代码 (3) 第四章调试分析 (4) 4.1 出现的问题及解决方法 (4) 第五章测试分析 (5) 5.1 测试样例 (5)

第一章需求分析 1.1 原题表述 日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子?请设计递归算法解决该问题。 1.2 问题解决方案 由于最后每个人分得的橘子一样多,所以最后每个人手里的橘子有2520/6 = 420个。因为每个人在拿到上一个人给的以后又分了一部分给下一个(老大不同,老大是最后得到的。根据题目关系,可以算出老大开始有橘子240个。)根据每个人得到与给出橘子的关系,可以用递归算法解决问题。

2.1 主要算法描述 解决此问题主要使用递归运算。 由题目可以看出原来手中的加上得到的满足关系式: StartNum = 420 * (n -2)/(n - 1) 分给下一个人的橘子数: GiveNum = AfterGetNum / n; 下一个人的橘子数: nextStartNum = 420*(n-1)/(n-2) - GiveNum; 下一个人加上之前得到的橘子的总数: afterGetNum = nextStartNum + GiveNum; 以此使用递归算法可以算出各个孩子原来手中的橘子数。 2.2 主要算法分析 此递归算法的时间复杂度为O(n)

递归下降分析算术表达式

递归下降分析算术表达式 计算机092—07 邹芬芬 ●实验目的: (1)掌握自上而下语法分析的要求与特点。 (2)掌握递归下降语法分析的基本原理和方法。 (3)掌握相应数据结构的设计方法。 ●实验内容: 编程实现给定算术表达式的递归下降分析器。 算术表达式文法如下:E→E+T | T T→T*F | F F→(E) | i ●设计分析 题目所给的文法不为LL(1)文法,应改写成如下文法: E →TE2 E2→+TE2 |∑ T →FT2 T2→*FT2 | ∑ F →(E) | i 采用递归下降分析法时,需要求出E2和T2 的FOLLOW集: FOLLOW(E2)={),#} FOLLOW(T2)={+,),#} 递归下降分析法是确定的自上而下分析法,基本思想是,对文法中的每个非终结符编写一个函数,每个函数的功能是识别由该非终结符所表示的语法成分。因此需要分别构造E,E2,T,T2,F函数来执行自己的识别功能,根据文法的内容顺序决定函数的识别功能。advance函数用于字符串的推进,input函数用于字符串的输入。 ●程序代码 #include using namespace std; char a[80]; // 字符串的存入 char sym; // 单个的判断字符 int i=0; // 字符串下标 void E(); // 功能识别函数 void E2(); // 功能识别函数 void T(); // 功能识别函数 void T2(); // 功能识别函数 void F(); // 功能识别函数 void input(); // 输入函数

递归下降分析器设计与实现

实验二递归下降分析器设计与实现 1、实验目的: (1)掌握自上而下语法分析的要求与特点。 (2)掌握递归下降语法分析的基本原理和方法。 (3)掌握相应数据结构的设计方法。 2、实验内容: 编程实现给定算术表达式的递归下降分析器。 算术表达式文法如下: E-->E+T|T T-->T*F|F F-->(E)|i 3、设计说明: 首先改写文法为LL(1)文法;然后为每一个非终结符,构造相应的递归过程,过程的名字表示规则左部的非终结符;过程体按规则右部符号串的顺序编写。4、设计分析 这个题目属于比较典型的递归下降语法分析。需要先将原算术表达式方法改写为LL(1)文法为: E-->TE' E'-->+TE'|ε T-->FT' T'-->*FT'|ε F-->(E)|i 然后再为每个非终结符设计一个对应的函数,通过各函数之间的递归调用从而实现递归下降语法分析的功能。具体方法为: (1)当遇到终结符a时,则编写语句 If(当前读到的输入符号==a)读入下一个输入符号 (2)当遇到非终结符A时,则编写语句调用A()。 (3)当遇到A-->ε规则时,则编写语句 If(当前读到的输入符号不属于Follow(A))error() (4)当某个非终结符的规则有多个候选式时,按LL(1)文法的条件能唯一地选择一个候选式进行推导. 5、程序代码 #include void E(); void T(); void E1(); void T1(); void F();

char s[100]; int i, SIGN; int main() { printf("请输入一个语句,以#号结束语句(直接输入#号推出)\n"); while( 1 ) { SIGN = 0; i=0; scanf("%s",&s); if( s[0] == '#') return 0; E(); if(s[i]=='#') printf("正确语句!\n"); printf("请输入一个语句,以#号结束语句\n"); } return 1; } void E() { if(SIGN==0) { T(); E1(); } } void E1() { if(SIGN==0) {

编译原理课程设计---LL(1)递归下降分析器

编译原理课程设计课程设计题目:LL(1)递归下降分析器 姓名: 院(系): 专业班级: 学号: 指导教师: 设计日期:

目录 1、需求分析 (1) 2、概要设计 (2) 3、详细设计 (3) 4、测试分析 (8) 5、用户手册 (9) 6、课程总结 (9) 7、参考文献 (10)

题目:LL (1)递归下降分析器 1、需求分析 语法分析是编译过程的核心部分。语法分析器的任务是识别和处理比单词更大的语法单位。如:程序设计语言中的表达式,各种说明和语句乃至全部源程序,指出其中的语法错误;必要时,可生成内部形式,便于下一阶段处理。 我们知道,语言的语法结构是用上下文无关文法描述的。按照语法分析树的建立方法,我们可以粗略地把语法分析办法分成两类,一类是自上而下分析,另一类是自下而上分析法。而自上而下这种方法是带“回溯”的,且存在许多困难和缺点。 首先,是文法的左递归性问题。一个文法是含有左递归的,如果存在非终结符P 且αP P + ?,含有左递归的文法使上述的自上而下的分析过程陷入无限循环。即,当试图用P 去匹配输入串时,我们会发现,在没有识别任何输入符号的情况下,有得重新要求P 去进行新的匹配。因此,使用自上而下分析法必须消除文法的左递归性。 其次,由于回溯,就碰到一大堆麻烦问题。如果我们走了一大段错路,最后必须回头,那么,就应把已经做的一大堆语义工作(指中间代码产生工作和各种表格的簿记工作)推倒重来。这些事情既麻烦又费时间,所以,最好应设法消除回溯。 第三,在自上而下分析过程中,当一个非终结符用某一候选匹配成功时,这种成功可能仅是暂时的。 第四,当最终报告分析不成功时,我们难于知道输入串中出错的确切位置。 最后,由于带回溯的自上而下分析实际上采用了一种穷尽一切可能的试探法,因此,效率很低,代价极高。严重的低效使得这种分析法只有理论意义,而在实践上价值不大。 由于上述原因,我们需要把原算术表达式改写为LL(1)文法,LL(1)文法的文法条件如下: 文法不含左递归。 对于文法中每一个非终结符A 的各个产生式的候选首集符两两不相交。即,若n A ααα|||21 →,则()()φαα=?j i FIRST FIRST ()j i ≠ 对文法中的每个非终结符A ,若它存在某个候选首符集包含ε,则()()φ=?A F O L L O W A F I R S T LL(1)中的第一个L 表示从左到右扫描输入串,第二个L 表示最左推导,1表示分析时每

递归算法与递归程序

一、教学目标 1、知识与技能 (1).认识递归现象。 (2).使用递归算法解决问题往往能使算法的描述乘法而易于表达 (3).理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4).认识递归算法往往不是高效的算法。 (5).了解递归现象的规律。 (6).能够设计递归程序解决适用于递归解决的问题。 (7).能够根据算法写出递归程序。 (8).了解生活中的递归现象,领悟递归现象的既有重复,又有变化的 特点,并 且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1)了解递归现象和递归算法的特点。

(2)能够根据问题设计出恰当的递归程序。 2、教学难点 (1)递归过程思路的建立。 (2)判断问题是否适于递归解法。 (3)正确写出递归程序。 三、教学环境 1、教材处理 教材选自《广东省普通高中信息技术选修一:算法与程序设计》第四章第五节,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却都是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 教学方法采用讲解、探究、任务驱动和学生自主学习相结合 2、预备知识 学生已掌握了用计算机解决问题的过程,掌握了程序设计基础,掌握了解析法、穷举法、查找法、排序法设计程序的技巧。 3、硬件要求 建议本节课在多媒体电脑教室中完成,最好有广播教学系统或投影仪,为拓展学习,学生机应允许上互联网。 4、所需软件 学生机要安装VB6.0或以上版本。 5、所需课时 2课时(90分钟)

c++实现递归下降法的语法分析器

一、实习题目:递归下降分析 二、实习目的 根据某一文法编制调试递归下降分析程序,以便对任意输入的符号串进行分析。本次实验的目的主要是加深对递归下降分析法的理解。另:程序开始变得复杂起来,需要利用到程序设计语言的知识和大量编程技巧,递归下降分析法是一种较实用的分析法,通过这个练习可大大提高软件开发能力。通过练习,掌握函数间相互调用的方法。 三、程序算法描述 1.递归下降分析法功能 词法分析器的功能是利用函数之间的递归调用模拟语法树自上而下的构造过程。 2.递归下降分析法前提 改造文法:消除二义性、消除左递归、提取左因子,判断是否为LL(1)文法。 3.递归下降分析法算法 (1)若是终结符号,则和向前看符号对照,若匹配则向前进一个符号;否则出错。 (2)若是非终结符号,则调用与此非终结符对应的过程。当A的右部有多个产生式时,可用选择结构实现。 4.对下列文法,用递归下降分析法对任意输入的符号串进行分析: (1)E->TG (2)G->+TG|-TG|ε (3)T->FS (4)S->*F S|/FS|ε (5)F->(E)|i 四、核心程序代码 #include #include #include using namespace std; char str[10]; int index = 0; int flag = 0; void E(); //E->TX; void E1(); //X->+TX | e void T(); //T->FY void T1(); //Y->*FY | e void F(); //F->(E) | i void E() { T(); E1(); } void E1()

用递归法解决问题

用递归法解决问题 一、教材分析 “算法的程序实现”是高中信息技术教育出版社《算法与程序设计》选修模块第三单元的内容,本节课是“递归算法的程序实现”,前面学习了用解析法解决问题、穷举法解决问题、在数组中查找数据、对数进行排序以及本节的前一小节知识点“什么是自定义函数”的学习,,在学习自定义函数的基础上,学习递归算法的程序实现是自定义函数的具体应用,培养学生“自顶向下”、“逐步求精”的意识起着重要的作用。 课时安排:1课时 二、学情分析 教学对象是高中二年级学生,前面学习了程序设计的各种结构,在学习程序设计各种结构的应用过程中的培养了用计算机编程解决现实中的问题,特别的学习循环语句的过程中,应用了大量的“递推”算法。前一节课学习了如何自定义函数,在此基础上学习深入学习和体会自定义函数的应用。以递推算法的逆向思维进行求解问题,在学习过程中体会递归算法的思想过程。多维度的思考问题和解决问题是提高学生的学习兴趣关键。 三、教学目标 知识与技能: 1、理解什么是递归算法,学生用递归算法的思想分析问题 2、能够应用自定义函数方法实现递归算法的编程 过程与方法: 学生参与讨论,通过思考、动手操作,体验递归算法的方法 情感态度与价值: 结合数学中的实例,激发学生的数学建模的意识,培养学生多维度的思考问题和解决问题。 四、教学重点·难点 重点:理解什么是递归算法,学生用递归算法的思想分析问题 应用自定义函数方法实现递归算法的编程 难点:应用自定义函数方法实现递归算法的编程 五、教学过程

六、教学反思 从游戏的方式导入活动,充分的调动学生的思维,渐渐的走入了“递归的思维”模式,从而引出“猴子吃桃”,使用的前面活动(礼物是什么?)的思维,诱导学生进入了“递归”思想解题。学生阅读教材范例“裴波那契”,培养学生的自学能力、和知识迁移建构自我的知识体系。内化递归算法的实现,再由递归思维的逆向思维讨论“递推”的算法,进行比较计算机资源的耗费高,可读性差。为下一步导出结论做好了铺垫。 学好本节课的前提是:懂得自定义函数的使用方法,如果学生对自定义函数理解程度,是本节课效果是否得以完成的关键

递归下降语法分析设计原理与实现技术实验报告

递归下降语法分析设计原理与实现技术 实验报告 变更说明 日期版本变更位置变更说明作者2014/4/16 1、0 初稿生成房皓

一、实验目的: 本实验的目的在于在教师的引导下以问题回朔与思维启发的方式,使学生在不断的探究过程中掌握编译程序设计与构造的基本原理与实现技术,启迪学生的抽象思维、激发学生的学习兴趣、培养学生的探究精神与专业素养,从而提高学生发现问题、分析问题与解决问题的能力。 二、实验内容: [实验项目] 完成以下描述算术表达式的LL(1)文法的递归下降分析程序 G[E]: E→TE′ E′→ATE′|ε T→FT′ T′→MFT′|ε F→ (E)|i A→+|- M→*|/ [设计说明] 终结符号i 为用户定义的简单变量,即标识符的定义。 [设计要求] (1)输入串应就是词法分析的输出二元式序列,即某算术表达式“实验项目一”的输出结果,输出为输入串就是否为该文法定义的算术表达式的判断结果; (2)递归下降分析程序应能发现输入串出错; (3)设计两个测试用例(尽可能完备,正确与出错),并给出测试结果。 三、实验环境: 操作系统:Windows 7 软件: VC++6、0 四、程序功能描述: ●提供了两种输入方式:键盘与文件,有文件输入时需为二元式序列; ●能够对输入的字符串做出正确的递归下降分析判断,并给出判断结果; ●能发现输入串中的错误,包含非法字符,输入不匹配等; ●能够处理一些可预见性的错误,如文件不存在,用户输入非法等。

五、数据结构设计: 全局: 局部(main()中): 六、程序结构描述: ●设计方法: 本程序采用从键盘输入或文件读取两种输入方式,其中文件的内容需为二元式序列,然后按照递归下降分析的方法对输入的字符串进行分析判断,并输出判断结果,程序通过对输入串的检查能够发现输入串中的错误。程序规定的单词符号及其种别码见下表: 单词符号种别码单词符号种别码 ( 1 * 5 ) 2 / 6 + 3 i 7 - 4 # 8 ● advance():将下一个字符送入current;

相关文档
最新文档