浅谈无功补偿和混合滤波综合补偿系统

浅谈无功补偿和混合滤波综合补偿系统
浅谈无功补偿和混合滤波综合补偿系统

浅谈无功补偿和混合滤波综合补偿系统

发表时间:2016-07-01T10:58:38.830Z 来源:《电力设备》2016年第7期作者:王旭东

[导读] 由于建筑施工工地环境条件较为恶劣,安全隐患多,应由专业电工负责,加强日常巡查和维护。

王旭东

(中国核电工程有限公司郑州分公司河南郑州 450000)

摘要:并联电容器无功补偿装置是实际电网中无功补偿尤其是功率因数补偿的主流装置。本文主要针对无功补偿和混合滤波综合补偿系统结构及工作原理以及工程应用及现场运行结果进行简要分析。

关键词:无功补偿;混合滤波;综合补偿系统

1 无功补偿和混合滤波综合补偿系统结构及工作原理

本文提出的无功补偿和混合滤波综合补偿系统原理图如图1所示。

图1综合补偿系统结构原理图图2单相等效电路

综合补偿系统以电压型逆变器(VSI)作为其有源部分,以多组单调谐滤波器组成的无源滤波器作为其无源部分。考滤到谐波源为12脉波整流装置,其特征谐波为11次和13次,因此两条无源支路分别用来抑制11次和13次谐波电流。有源部分通过耦合变压器与基波串联谐振电路并联构成串联谐振注入式混合有源滤波器。整个补偿装置与电网并联。注入支路由电容C1、电感L1和电容CG构成,其中电容C1和电感

L1构成在基波频率谐振电路,而整体作为一条无源滤波支路。其中,电压型逆变器为基于自关断器件的脉宽调制PWM逆变器,直流端为一大电容,VSI的输出端接有输出滤波器,以此来滤除开关器件通断造成的高频毛刺。图中iS、iL、iF分别为电网电流、负载电流和滤波电流,iC为逆变器的输出电流,iR为流入基波串联谐振电路的电流。电路中其它各电量的定义和方向如图2所示,其中iS、iL、iP、iC、iR、iG分别为电网支路、负载支路、并联无源支路、有源支路、基波串联谐振电路、注入支路的电流,ZS、ZP、ZG、ZR分别为电网阻抗、无源部分阻抗、有源输出支路阻抗、基波串联谐振电路阻抗。

只考滤负载谐波电流源作用时的单相等效电路如图3所示。有源部分控制为一个受控电流源:iC=KiSh,iSh为电网支路电流的谐波分量,K为控制放大倍数,当K=0时,相当于只有无源部分起补偿作用。对应于图3所示的单相等效电路,系统的电路方程为:

补偿装置的有源部分相当于在电网支路串联了一个可控的谐波阻抗,当Z足够大时,流入电网的谐波电流将会很小,接近于0,起到抑制谐波电流的作用,同时可以抑制无源部分与电网阻抗间的并联谐振。

2 稳态补偿特性分析

2.1无源部分设计参数

本文从控制放大倍数K和系统等效电感LS两个方面来分析综合补偿系统的稳态补偿特性。为了分析方便,定义式(2)为谐波源谐波抑制函数,可以通过对式(2)的分析来讨论综合补偿装置的稳态补偿特性。为此,可做出式(2)的幅频特性曲线,并以此来分析和讨论本文提出的无功补偿和混合滤波综合补偿装置的稳态补偿特性。根据实际工程中所需补偿的无功量和抑制11次和13次谐波要求设计的无源部分参数如下。

11次无源支路为电感L11=1.77mH,电容C11=49.75?F,品质因数Q=35;

13次无源支路为电感L13=1.37mH,电容C13=44.76?F,品质因数Q=35;

基波谐振支路为电感L1=15.47mH,电容C1=690?F,品质因数Q=50;

注入电容:CG=19.65?F。

图3谐波源作用时的单相等效电路图4不同K值时谐波源谐波抑制函数幅频特性

2.2控制放大倍数(K)对补偿特性的影响

图4给出了补偿装置在不同的控制放大倍数情况下谐波源谐波抑制函数的幅频特性曲线,系统等效电感的取值为LS=0.5mH。从图4中可以看出,当K=0,即补偿装置只投无源部分时,只对固定频率的谐波及高次谐波有较大的抑制作用,在ω=1000rad/s和ω=4000rad/s之间

滤波补偿无功补偿的区别

滤波补偿与无功补偿的区别 一、综述 普通无功补偿装臵实现无功功率补偿是通过投切400V的普通电容器来实现的。 普通电容器的电压等级是400V,过压能力是1.1倍,过流能力是1.3倍。谐波会叠加在基波上对电容器产生冲击,使电容器处于过压过流的状态,极易产生电容器的损坏或谐振事故。电容器的故障会使功率因数下降,功率因数低于0.9供电公司会进行处罚。 滤波补偿装臵实现无功功率补偿是通过投切电容电抗LC串联电路来实现的。 滤波电容器的电压等级是480V,过压能力是1.1倍,过流能力是2.0倍。串联滤波电抗器会对电容器实现保护,同时电容器的技术参数较高,所以能实现电容补偿的安全运行。电容电抗串联回路具有调谐频率(P7-189Hz),对低于这个频率的基波呈容性实现无功补偿的功能,对于高于这个频率的谐波电流呈感性,呈现低阻抗的滤波功能,也就是说在实现无功功率补偿的同时滤除系统中的谐波。 二、从谐波对电力系统的影响来说明普通无功补偿与滤波补偿的区别 谐波造成电网污染,电网电压的严重畸变,影响线路的稳定运行和电网的质量,近年来供电部门对此越来越重视,要求用户将系统谐波的畸变率控制在安全线以下,所以普通的无功补偿装臵会淡出市场

被滤波补偿所取代。 三、对电力设备的影响来说明普通无功补偿与滤波补偿的区别 A、由于谐波趋肤效应的影响,电缆电线过热,绝缘老化加速,易损坏并导致线间短路和接地故障引起电气火灾和人身电击事故;造成能源浪费同时降低电缆铜排使用寿命; B、变压器和马达的过热,损坏甚至于烧毁; 补偿功率因数的装臵上还可能由于谐波的放大,产生并联电容器过热、损坏或谐振事故; C、断路器及漏电保护装臵、接触器、热继电器等电气保护元件过热,失灵,误动作,接地保护装臵功能失常; D、中性线过负荷、发热,甚至于烧损、着火; E、谐波导致继电保护装臵误动作,导致开关元件误动作,使电气测量仪表计量不准确; F、谐波在负载与负载间相互影响,降低了生产设备的操作精度与工艺准确度。 普通无功补偿完全没有消谐功能,滤除谐波最经济的方法就是使用滤波补偿装臵来实现无功补偿与滤除谐波的双功能。 四、产生对计算机网络、通信、有线电视等弱电系统设备的干扰,从这方面说明普通无功补偿与滤波补偿的区别 现代工程项目非常重视弱电系统的安全运行,所以滤波补偿装臵取代无功补偿装臵是科技发展的需要。

1、为什么需要无功补偿及补偿的基本知识

产品技术特点--- 一、为什么需要无功补偿及补偿基本知识 企业中由于大量的用电负荷是感性负荷,因此企业的自然功率因数较低,如不采用人工补偿、提高功率因数,将造成如下不良影响: a、让发电机大量发无功,消耗发电机的功率,降低发电机的输出功率,当发电机需提高无功输出,低于额定功率因数运行时,将使发电机有功输出降低; b、无功在输配电网络中传输,占据了传输容量,降低了变电、输电设备的供电能力; c、加大了网络的传输容量,使网络电力损耗增加(网络中的电能损失与功率因数平方数成反比); d、功率因数愈低,线路的电压降愈大,使得用电设备的运行条件恶化; e、月均功率因数低于0.9(小型低压用户或农业用电为0.8),将受到“电力罚款”。 上述可见,提高功率因数不仅对电力系统,而且对企业经济运行有着重大意义。无功补偿应本作:无功在哪理发生,就在那里就地补偿的原则。因此,广泛的低压配电系统使用大量低压补偿装置。 补偿的基本知识 补偿就是用电容器的容性无功(Q C)去减小用户配电网络中的感性无功(Q L), 减小功率因数角(φ),以提高功率因数(COSφ)。从下面的功率三角形可形象的看出这种关系。 功率三角形 例:一用户4、5、6三月的用电:(电业局数据)

1)计算每月功率因数: 4月S=(419000^2+375640^2)^5=562731((KV A.h) COSΦ=P/S=419000/562731=0.7445 5月S=(440920^2+388820^2)^5=587870((KV A.h)COSΦ=P/S=440920/587870=0.75 6月S=(444286^2+473480^2)^5=649287((KV A.h) COSΦ=P/S=444286/649287=0.684 2) 将月均功率因数提高到0.9以上,应补偿多少电容器: 按有功不变来进行计算:为确保0.9,按0.92计算 A、4月:有功419000(KW.h)视在功 =419000/0.92=450978(KV A.h) 允许无功Q=(450978^2-419000^2) ^0.5=166794(Kvar.h) 现有无功375640(Kvar.h) 应补偿375640-166794=208846(Kvar.h),换算为每小时功 率:208846/30/24=290(Kvar) B、5月:有功440920(KW.h)视在功 =440920/0.92=479261(KV A.h)

浅谈无功补偿与无源滤波

浅谈无功补偿与无源滤波 用电设备正常工作不但要从电源取得有功功率,还需要获取无功功率。如果电网中的无功功率不足,用电设备就没有足够的能力建立正常工作的电磁场,导致端电压下降,从而影响用电设备的正常运行。 电网输出的功率包括两部分:一是有功功率:直接消耗电能,把电能转变为机械能、热能、化学能或声能,利用这些能作功,这部分功率称为有功功率;二是无功功率:不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率。 实际上用电设备正常工作不但要从电源取得有功功率,还需要获取无功功率。如果电网中的无功功率不足,用电设备就没有足够的能力建立正常工作的电磁场,导致端电压下降,从而影响用电设备的正常运行。但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中常常使用一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。无功补偿是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换,这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

无功补偿可以增加电网中有功功率的比例常数,减少发、供电设备的设计容量,减少投资,降低线损等。在无功补偿中,串联电抗的无功补偿电容器能够达到避免谐振滤除谐波等功能,在IEC标准中,将电容器与串联电抗器构成的设备统称为滤波器。无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道。采用电力滤波装置就近吸收谐波源所产生的谐波电流,是抑制谐波污染的有效措施。 。 通常采用由电力电容器、电抗器和电阻器适当组合而成的无源滤波装置进行滤波,其实质就是根据电容电阻固有的阻抗特性,对某一特定频率的谐波呈低阻抗,为负载谐波电流提供较低的阻抗通道,与电网阻抗形成分流的关系,使大部分该频率的谐波流入滤波器,而不流入电网,其滤波特性由系统和滤波器的阻抗比所决定,所以滤波器一旦制成,性能参数难以变动,滤波特性受系统参数的影响较大;当波电流增大时,滤波器负担随之加重,可能造成滤波器过载;除此之外,无源滤波器只能消除特定的几次谐波,而对某些次谐波会产生放大作用。以上诸多缺点大大限制了无源滤波器的应用场合。

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

电力SVG动态无功补偿及有源滤波教材

SVG动态无功补偿及有源滤波治理装置运行规范 35kv-110kV电力 二○一四年一月

目录 第一章总则 (1) 第二章 SVG技术指标 (2) 第三章 SVG设备日常巡检维护 (3) 第四章 SVG设备定期保养 (4) 第五章缺陷管理及异常处理 (5) 第六章培训要求 (6) 第七章备品备件管理 (7)

第一章总则 第一条:凡是安装有变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定)。 第二条:特别是那些功率因数较低的变电站、发电厂、工矿、企业必须安装。大型的异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、电气列车等尤其需要。 第三条:加装补偿设备是改善供电状况、提高电能利用率的有效措施,规范适用于国家电网公司所属范围内35kV SVG 动态无功偿及有源滤波治理装置。 第二章SVG的技术指标 一、SVG的产品特征 第四条:专用软件无功功率补偿,不过载,不存在过补和欠补问题。 第五条:输出无功功率从容性到感性连续变化,可实现动态、连续、同步补偿。 第六条:电流源特性,输出无功电流不受母线电压影响。 第七条:不产生谐波,具备抑制谐波的功能,更保障系统安全。

第八条:抑制电压波动和闪变,维持受电端电压,加强系统电压稳定性。 第九条:补偿系统无功功率,提高功率因素,降低线损,节能降耗,降低生产成本 二、SVG的技术指标 电气特征额定电压(V)AC10kv±15%,AC35kv±15%,AC110kv±15%工作频率(HZ)50±5% 额定补偿容量(Kvar)-15Mvar ~+15Mvar 无功调节范围额定感性到额定容性无功负载平滑连续可调功率因素≥0.98 同步(动态)响应时 间 <5ms 有功功率损耗<3.5%额定功率下 过载能力专用软件控制,不过载 运行方式多台可并联运行,连续工作 平均无故障时间MTBF ≥10万小时 控制特征开关频率12.8KHZ 控制器DSP控制器 控制连接光纤,或电气连接 遥信,遥测根据用户需要按合同要求提供遥信、遥测功能 机构特征尺寸(高×宽×深)2200×800×1000 重量(Kg) ≈70≈90≈110≈150≈190≈21 防护等级IP IP3XD或根据用户需求定制 颜色可按合同要求提供外壳颜色 冷却方式强迫风冷 整体结构落地式 安装方式室内安装,固定方式可选、进线方式可选 环境条件环境温度-25℃~+40℃(户内-5℃~+40℃)存储温度-40℃~+65℃ 相对湿度最大95%,无凝露(正常工作状态)海拔高度安装海拔小于1000米 电磁兼 容 符合GB/T.7251-2005或GB/T3791-2005条款

国家标准《静止式动态无功补偿装置功能特性》(精)

国家标准《静止式动态无功补偿装置功能特性》 征求意见稿编制说明 2005年7月 一、概述 国家标准《静止式无功功率补偿装置(SVC)功能特性导则》被列入了2003年国家标准制修订计划,计划编号为20032411-T-469。完成年限2005年。本标准由国家标准化管理委员会提出;全国电压电流等级和频率标准化技术委员会(以下简称“标委会”)归口并负责起草。 本标准主要起草单位: 本标准主要起草人: 本标准参加起草单位: 本标准参加起草人: 为了保证标准质量,特别邀请西安交通大学夏道止教授、王兆安教授、清华大学陈建业教授、中国电力科学研究院林海雪教授级高工(兼)、全国电力电子学标委会秘书处周观允教授级高工(兼)担任标准编制工作组顾问。 1 标准项目的提出和编制过程 该项目是在全国电压电流等级和频率标委会委员、鞍山荣信电力电子有限公司左强总经理的提议下,于2001年初和《静止式动态无功补偿装置(SVC) 现场试验导则》国家标准项目一起,向国家标准委提出立项申请,2003年底被批准立项的。 2004年第1季度,标委会秘书处研究确定:成立以全国电压电流等级和频率标委会秘书处、全国电力电子学标委会秘书处、中国电力科学研究院、西安领步电能质量研究、鞍山容信电力电子有限公司为主要起草单位的标准编制工作组;随着工作的进一步开展,还将扩展供电、用电、设备及其主要部件制造行业的工程技术人员参加标准编制工作。 根据2004年6月23日国家标准委高新技术部有关“无功补偿装置”国家标准规划及制定工作会议精神,两项《静止式动态无功补偿装置(SVC)》国家标准的制定过程中将积极吸收相关行业和单位的意见。 2004年12月21-23日,于北京召开了主要起草人和顾问工作扩大会议。会议就采用美国IEEE相应标准的基本原则达成以下共识: ——本标准不是等同、也不是修改采用,但鉴于美国IEEE 1303:1994相应标准的框架和技术内容有一定价值,因此在编制我国标准时应作为主要参考文件;关键是要保证国家标准的先进性,提高产品竞争力,技术内容可适当超前以指导科研; ——标准的适用范围要突破美国IEEE相应标准,涵盖输电和配电系统; ——保持立项时的标准名称,暂不改变; ——标准中,对实现产品性能的方法(例如冷却方式)不应强行做推荐性规定; ——该标准在编制过程中,要注意与国家标准《静止式动态无功补偿装置现场试验》的编制工作的密切协调; ——标准内容不应与现行国家标准发生矛盾; ——编制标准时应注意充分研究现正在编制的相关电力行业标准和可控硅阀国家标准。 会议对由西安领步电能质量研究所、鞍山荣信电力电子有限公司分别组织翻译,并聘请有关专家校对的最新IEEE标准进行了集体校对;研究商讨了IEEE 1303:1994各章条的采用程度和增删意见。会议决定由刘军成高级工程师执笔起草、林海雪教授级高工校核本标准的征求意见稿讨论稿,然后提交2005年5月召开的主要起草人会议,供集体讨论修改。

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功补偿设备主要分类简介

无功补偿设备主要分类简介 无功补偿是电力系统及电力设备稳定运行的重要保障,无功补偿设备也是输配电网必备的重要设备。无功补偿设备大致可分为三类:调相机、静止无功补偿装置(Static Var Compensator,SVC)、静止无功发生装置(Static Var Generator,SVG)。 调相机或称同步调相机、同步补偿机是较早出现的一类无功补偿设备。调相机实际是一台空载运行的同步电动机,利用同步电动机在不同励磁电流下的发出或吸收无功电流的能力起到无功补偿作用。当正常励磁时,调相机的电枢电流接近于零;过励磁时,调相机向电网发出无功电流;欠励磁时,调相机从电网中吸收无功电流。因此,调相机经常运行在过励状态,励磁电流较大,损耗也比较大,发热比较严重。为方便运行起见,调相机一般与发电厂中的同步发电机组或负荷端的异步电动机组安装在一起,容量较大的调相机还需要采用氢气冷却。以上缺点均大大限制了调相机的应用范围,目前除在高压直流输电线路的终端作动态无功支持外,已很少使用。 SVC是目前应用最为广泛的一类无功补偿设备。单就字面而言,SVC中的“Static”即静止,是相对于调相机的旋转而言,因此除调相机和SVG之外,凡是用电感或电容进行无功补偿的装置均可称作SVC。按国际大电网会议的定义,SVC可分为以下7类:机械投切电容器(MSC)、机械投切电抗器(MSR)、自饱和电抗器(SR)、晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)、晶闸管投切电抗器(TSR)、自换向或电网换向转换器(SCC/LCC)。实际上以上7类仍未能涵盖全部SVC设备,例如MCR(Magnetic Control Reactor)——磁阀式可控电抗器设备以及由以上两类或几类技术混合构成的设备。一般认为应慎重使用SVC这一名词,因为其所能指代的范围过于宽泛。 在种类繁多的SVC设备中,一般可按控制/投切设备的种类分为机械投切型及电力电子型两大类,通常所称的SVC设备也是指这两类。前者一般包括机械投切电容器(MSC)、机械投切电抗器(MSR)等,共同特点是采用机械投切开关如接触器、遥控断路器等作为投切设备,其优点是鲁棒性较好、不易受谐波干扰等,缺点则是响应时间长、一般只能分级投入不易实现动态无级补偿等。后者一般包括晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)、晶闸管投切电

静止无功补偿器的控制方式

SVC 输出容量控制主要有电压控制和恒导纳控制两种方式,可以在运行人员的指令下互相切换。 3.1.1电压控制模式 这种控制模式下控制系统将测量所得到的母线电压Vmeas与一个设定的参考电压Vref 进行比较,然后将差值进行计算, 得到一个标么值电纳信号Bref ,该电纳值除以单组机械可投切电容(电抗) 器的电纳值可以确定需要的电容(电抗)器数目,而差值由TCR来补充。随后将该标么值电纳送往脉冲触发发生电路,控制TCR 的触发角。SVC稳态特性曲线的斜率采用电流反馈来实现,这种方法能够保证在SVC 控制范围内使端电压和端电流之间保持线性关系。实测的SVC电流ISVC与代表调差率的系数KSL相乘,构成信号VSL再输入到加法节点。当ISVC为感性时, VSL取正;当ISVC为容性时,VSL取负。其传递函数为:G( s) =K1(1+s T Q)/s(1+s Tp),其中T Q=Tp+Kp/K1 由于Tp通常设为零,因而控制器转化为简单的比例积分器,比例系数Kp 反映响应速度。电压调节器输出的电纳参考信号被送到触发计算单元,该单元计算出6 组触发角,送至脉冲发生电路,从而在SVC 母线上得到期望的电纳值,达到设定的控制目标。 3.1.2恒导纳控制模式 在该模式下,SVC 的等效导纳Bord 由运行人员设定,且该导纳可以在规定范围内连续可调。Bref来自电压调节器的输出,在恒导纳模式下被偏置。首先根据监控单元提供的开入量需要确定已投运的电容(电抗) 器组的等效电纳,然后经过电纳计算,得出仍需投切的电容(电抗) 器组以及需要的TCR 触发角连续调节的等效感性电纳。最后换算成触发角发送到触发脉冲发生电路。 3.1.3 PWM电流控制 对PWM电路的电流控制可分为间接电流控制和直接电流控制。前者通过控制整流器产生的交流电压基波分量的相位和幅值来实现PWM 交流侧的电流控制;后者采用跟踪型PWM控制技术对交流侧的电流进行直接控制。在目前的STATCOM 系统中,考虑到PWM开关频率较低以及功耗问题,因此多采用间接电流控制。但间接电流控制其网侧电流的动态响应慢,且对系统参数变化灵敏。相比之下,直接电流控制更能精确地控制PWM输出的电流,因此在DSTATCOM设计中,采用直接电流控制方法,从而可以设置较高的PWM 开关频率,减少输出电流谐波,获得较好的输出电流波形,进而降低系统设计成本,提高运行可靠性。该实验控制方法采用基于矢量变换的直接电流控制,其控制方案如下图所示。

无功补偿柜

无功补偿控制器 无功补偿控制器是无功补偿装置的核心部件,具有举足轻重的地位,大部分无功补偿装置的生产厂家都是买来控制器然后自行装配整机,具有设计制造控制器能力的厂家不多,能够设计制造出性能优异的控制器的厂家更是凤毛麟角。 现有的低端控制器都是以功率因数为依据进行控制的,这种控制器虽然价格低廉、性能很差,已属于淘汰之列,因此这里不做介绍。 现有的高端控制器都是以无功功率为依据进行控制的,但除此之外,往往将设计重点放在汉字显示以及数据通讯等方面。其实要真正实现完美的无功补偿控制是一件相当复杂的事情,实现完美的无功补偿控制是无功补偿控制器的主要功能,只有在主要功能相当完善的情况下,才能考虑附加功能。下面详细介绍一下对控制器的设计要求以及一些基本的设计方法。 1、对测量精度的要求 要实现精确的无功补偿就必须对无功电流进行准确的测量。 因为电压的变化范围较小,因此对电压的测量精度要求不高,通常有1%的测量精度就足够了。通常的情况下,不测量电压也可以实现很好的无功补偿控制,对电压的测量主要是为了实现过压、欠压、以及缺相等保护功能。 对电流的测量灵敏度要求要高一些。对于使用8位单片机的低档控制器,测量灵敏度要达到1%以上。注意这里强调的是“测量灵敏度”而不是“测量精度”, 1%的电流测量灵敏度即相当于可以区分1%的电流变化,例如电流互感器的一次电流为500A,则意味着可以区分从100A到105A的电流变化,并不要求100A的电流测量值绝对准确。对于使用DSP或32位单片机的高档控制器,测量灵敏度要达到0.1%以上,否则就谈不到高档了。同样的道理,测量的灵敏度要达到0.1%,意味着测量值应该有4位有效数字,但同样并不要求绝对准确。对无功补偿控制器要求0.1%的测量精度是不现实的,也没有实际意义。但是控制器的测量值最好能在现场进行校正。 对功率因数测量的灵敏度最好要达到0.001。准确地说,应该是对相位差的测量要求,因为测量无功功率并不需要使用功率因数值。这里要强调一点,对无功电流的计算应该使用Iq=I×sinφ的公式来进行计算,而sinφ的值应该根据相位差的值直接进行计算,不能使用sinφ=(1-cosφ2)1/2 的公式计算,否则当相位差在0度附近时,cosφ的微小变化会导致sinφ的很大变化,导致sinφ的值误差太大。例如cosφ=0.99时,对应的相位差是8.1度,对应的sinφ值为0.14,意味着0—0.14之间其他sinφ值检测不到。

低压电气-无功补偿基础知识

低压电气-无功补偿基础知识

无功补偿基础知识与应用案例 一、功率的概念2 二、需要无功补偿的原因 2 三、无功补偿的一般方法 2 四、无功补偿装置的分类 3 五、采用无功补偿的优点 5 六、无功补偿的应用例子 6

一、功率的概念 1、视在功率:视在功率是指发电机发出的总功率,其中可以分为有功部分和无功部分。 2、有功功率:有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。 3、无功功率:是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。无功功率不做功,但是要保证有功功率的传导必须先满足电网的无功功率。 二、需要无功补偿的原因 在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。 但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一

安装容易、配置方便灵活、维护简单、事故率低等优点。 (2)低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 (3)高压集中补偿 高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。

静止无功补偿器新型自适应动态规划电压控制

第46卷第12期电力系统保护与控制 Vol.46 No.12 2018年6月16日 Power System Protection and Control Jun. 16, 2018 DOI: 10.7667/PSPC170929 静止无功补偿器新型自适应动态规划电压控制 周晓华,张 银,刘胜永,罗文广,李振强 (广西科技大学电气与信息工程学院,广西 柳州 545006) 摘要:以静止无功补偿器电压控制非线性系统为研究对象,提出了一种采用新型自适应动态规划GrHDP实现静止无功补偿器电压控制的方法。选取当前及历史时刻电压误差作为系统状态反馈向量,根据外部增强信号及内部强化信号,GrHDP利用误差反向传播算法对3个神经网络权值进行反馈调节并获取最优权值,实现了静止无功补偿器的电压优化控制。在Matlab/Simulink仿真平台对执行依赖启发式动态规划ADHDP、PI控制和GrHDP进行了仿真对比。结果表明,采用GrHDP的静止无功补偿器能快速补偿系统无功功率,具有更好的电压控制效果,控制系统响应速度快、自适应能力强。 关键词:静止无功补偿器;电压控制;新型自适应动态规划;执行依赖启发式动态规划;电压调节器Voltage control of static Var compensator based on novel adaptive dynamic programming ZHOU Xiaohua, ZHANG Yin, LIU Shengyong, LUO Wenguang, LI Zhenqiang (School of Electrical and Information Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China) Abstract: To remedy the defect of traditional PI controller in static V ar compensator nonlinear voltage control system, a method based on novel adaptive dynamic programming, goal representation heuristic dynamic programming (GrHDP), is proposed to optimize control of SVC voltage control system adaptively. According to the external enhancement signal and the internal strengthening signal, the GrHDP algorithm uses error backward propagation to adjust the weights of the three neural networks and obtain the optimal weights in order to realize the optimal control of the system by selecting the current and historical voltage errors as the system state feedback vector. The Action Dependent Heuristic Dynamic Programming (ADHDP) and the GrHDP algorithm are used to design the voltage regulator of the SVC voltage control system respectively, and simulation comparison is carried out in Matlab/Simulink platform. The results show that the SVC voltage control system based on GrHDP algorithm can compensate reactive power quickly, and has better voltage stability and control effect.The control system has faster response speed and stronger adaptive ability. This work is supported by National Natural Science Foundation of China (No. 61563006), Science and Technology Project of Guangxi (No. 1598008-2), and Natural Science Foundation of Guangxi (No. 2013GXNSFCA019020). Key words: static Var compensator; voltage control; novel adaptive dynamic programming; action dependent heuristic dynamic programming; voltage regulator 0 引言 静止无功补偿器(Static Var Compensator, SVC) 是一种常用的并联型柔性交流输电系统(Flexible AC Transmission System, FACTS)装置[1]。它通过从电网吸收或向电网注入可连续调节的无功功率,以 基金项目:国家自然科学基金项目资助(61563006);广西科技攻关项目资助(1598008-2);广西自然科学基金项目资助(2013GXNSFCA019020) 维持SVC装设点的电压恒定,同时有利于电网无功功率的平衡。目前,SVC以其性价比高、响应速度快和可靠性高等特点,在电力系统中得到了广泛的应用[2-3]。传统PID控制需确定的参数少,且易于在工程中实现,目前工程中SVC的电压控制一般采用传统的PI控制[4],以维持SVC所在线路的电压稳定。然而,将传统PID控制应用于SVC这个非线性复杂系统,将无法同时满足快速性和稳定性的要求,也不能实现对SVC的精确控制[5]。为此,针对SVC的电压控制问题,学者们提出了不同的控制策 万方数据

动态无功补偿及滤波装置

NSVC-2000I系列动态无功补偿及滤波装置 一、简介 NSVC-2000I动态无功补偿及滤波装置,使用无触点电子开关代替原来的机械开关,并采用了基于DSP大规模集成电路数字信号处理技术,综合国外先进技术与清华大学、东南大学、江苏大学电气工程学院联合开发的数字化的智能控制器,克服了投入时的浪涌电流及切除时的操作过电压,其动作时间≤16ms,同时还显示所有与配电系统相关的电气参数,可实现远程控制、显示、打印等功能。该系列产品多种功能已达到国内领先或国际先进水平。 电力系统的用户中有的使用大量负荷频繁变化的设备,如轧钢机、电弧炉、变频装置、中频炉、软启动等负载产生的高次谐波也随之注入电网,引起电压和电流的畸变,使用电环境恶化,影响用电设备的正常工作。为此装置中设计有谐振点偏移的功能,可以有效地避免高次谐波的并联谐振,滤除谐波,且无大电流产生,保证应有的电网配电质量。 其功能:节能、增容、稳压、滤波 1、无功补偿及滤波使总电流减小,电能损耗降低,即节能。 2、实现无功就地补偿,增加配电电源设备的供电能力,即增容。 3、动态无功补偿响应速度快、实时性强,无电压闪变,使输出电压稳定,即稳压。 4、动态无功补偿装置可滤除谐波,消除谐波干扰,即滤波。 二、主要特点 1、基于DSP大规模集成电路数字信号处理技术,对采集参数进行无功计算,输出投 切控制信号;响应速度快、实时性强,快速跟随补偿,提高配电系统功率因数及 运行的稳定性。动态响应时间≤16ms。 2、控制原理为等压零电流平滑地、连续地、快速地投切电容器组,无投切浪涌电流、 无电压闪变。零电流切除,无操作过电压。克服了原老式无功补偿装置即PFC系 统投切时产生的瞬变过程,避免电容器的过热、胀肚,可使装置寿命达到10年以 上。 3、控制器具有大屏幕液晶显示,可采样、计算、显示系统的电压、电流、功率因数、 谐波、有功、无功、有功电度、无功电度等22种电气参数,可存储3个月的用电 量,并通过RS232/RS485通讯口与上位机连接,实现数据显示、打印及远距离控 制的功能。

动态无功补偿基础知识

动态无功功率补偿基础知识 一、什么叫无功 电源能量与感性负载线圈中磁场能量或容性负载电容中的电场能量之间进行着可逆的能量交换而占有的电网容量叫无功,无功功率 表达式如下: 式中无功量 的单位为Var (乏),线电压的单位为V (伏),视在电流I 单位为A (安)。 二、无功及分类 1、感性无功:电流矢量滞后电压矢量90度, 如:电动机、变压器线圈、晶闸管变流设备等; 2、容性无功:电流矢量超前电压矢量90度, 如:电容器、电缆输配电线路、电力电子超前控制设备等; 3、基波无功:与电源频率相等的无功; 4、谐波无功:与电源频率不相等的无功。 三、什么是无功补偿 1、无功补偿: 指根据电网中的无功类型,人为地补偿容性无功或感性无功来抵消线路中的无功功率。 2、无功功率有那些危害: ——无功功率不做功,但占用电网容量和导线截面积,造成线路压降增大,使供配电设备过载,谐波无功使电网受到污染,甚至会引起电网振荡颠覆。 四、什么是动态无功补偿 1、动态无功补偿 根据电网中动态变化的无功量实时快速地进行补偿。 2、为什么要进行无功功率补偿 ——是为了减小供配电线路中往复交换的无功功率,提高供配电线路的利用率。 五、进行就地动补的意义是什么 ——是能将用电设备至发电厂全程供配电设备、线路、都得到补偿,降损节能效果显著,特别是低压线路及变压器的损耗大幅度降低,企业和用户直接受益。 六、就地动补的有功节能是什么 ——减小供配电设备线路损耗,变压器损耗等一切无功电流引起的发热功率。这部分损耗功率Ps 可由下式表达: Ps=i 2r Σ 式中i 为视在电流,r Σ为供配电设备线路电阻和。 七、使用就地动补后线路损耗的节能比 ? sin UI Q =Q Q

动态无功补偿控制器的研究毕业设计论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期:

无功补偿系统报价表(施耐德)

Reference Description Unite Price 订货号说明 单价(RMB)BLRBS075A090B40电容器Box SDY 7.5/9 kvar 400V 577BLRBS104A125B40电容器Box SDY 10.4/12.5 kvar 400V 574BLRBS125A150B40电容器Box SDY 12.5/15 kvar 400V 618BLRBS150A180B40电容器Box SDY 15/18 kvar 400V 627BLRBS208A250B40电容器Box SDY 20.8/25 kvar 400V 874BLRBS250A300B40电容器Box SDY 25/30 kvar 400V 1,209BLRBS500A000B40电容器Box SDY 50/0 kvar 400V 2,418BLRBS750A900B40电容器Box SDY 75/90 kvar 400V 3,627BLRBSX00AX20B40电容器Box SDY 100/100 kvar 400V 4,836BLRBH050A060B40电容器Box HDY 5/6 kvar 400V 833 BLRBH075A090B40电容器Box HDY 7.5/9 kvar 400V 791 BLRBH104A125B40电容器Box HDY 10.4/12.5 kvar 400V 604 BLRBH125A150B40电容器Box HDY 12.5/15 kvar 400V 657 BLRBH150A180B40电容器Box HDY 15/18 kvar 400V 778 BLRBH200A240B40电容器Box HDY 20/24 kvar 400V 1,012 BLRBH250A300B40电容器Box HDY 25/30 kvar 400V 1,445 BLRBH500A000B40电容器Box HDY 50/0 kvar 400V 3,180 BLRBH750A900B40电容器Box HDY 75/90 kvar 400V 4,770 BLRBHX00AX20B40电容器Box HDY 100/120 kvar 400V 5,566 BLRBH088A106B48电容器Box HDY 8.8/10.6 kvar 480V ,5.67%/7%840 BLRBH172A206B48电容器Box HDY 17.2/20.6 kvar 480V,5.67%/7%920 BLRBH339A407B48电容器Box HDY 33.9/40.7 kvar 480V,5.67%/7%1,967 BLRBH075A090B48电容器Box HDY 7.5/9 kvar 480V,14%840 BLRBH155A186B48电容器Box HDY 15.5/18.6 kvar 480V,14%959 BLRBH315A378B48电容器Box HDY 31.5/37.8 kvar 480V,14%2,027 BLRBH619A000B48电容器Box HDY 61.9/0 kvar 480V,14%3,685 BLRBE075A090B40电容器Box ENY 7.5/9 kvar 400V 995 BLRBE104A125B40电容器Box ENY 10.4/12.5 kvar 400V 1,238 BLRBE125A150B40电容器Box ENY 12.5/15 kvar 400V 1,498 BLRBE150A180B40电容器Box ENY 15/18 kvar 400V 1,926 BLRBE208A250B40电容器Box ENY 20.8/25 kvar 400V 2,263 BLRBE250A300B40电容器Box ENY 25/30 kvar 400V 2,812 BLRBE500A600B40电容器Box ENY 50/60 kvar 400V 5,887 BLRBE750A900B40电容器Box ENY 75/90 kvar 400V 9,303 BLRBEX00AX20B40电容器Box ENY 100/120 kvar 400V 12,299 BLRBE088A106B48电容器Box ENY 8.8/10.6 kvar 480V ,5.67%/7%1,362 BLRBE170A204B48电容器Box ENY 17/20.4 kvar 480V ,5.67%/7%1,648 BLRBE339A407B48电容器Box ENY 33.9/40.7 kvar 480V ,5.67%/7%3,393 BLRBE075A090B48电容器Box ENY 7.5/9 kvar 480V,14%1,362 BLRBE155A186B48电容器Box ENY 15.5/18.6 kvar 480V,14%1,648 BLRBE315A378B48电容器Box ENY 31.5/37.8 kvar 480V,14%3,093 VarplusBox Energy 电容器,用于特殊应用环境,高使用寿命, 高过流能力,高环境温度 VarplusBox Harmonic Energy 电容器,用于特殊应用环境,高使用寿命, 高过流能力,高环境温度,且非线性负载>25%需加电抗 VarplusBox 系列电容器 VarplusBox Sduty 电容器,适用于轻度谐波污染环境 VarplusBox Hduty 电容器,相当于Varplus2的400V 及不带电抗器时的480V 电容器 VarplusBox Harmonic Hduty 电容器,相当于Varplus2带电抗器时的480V 电容器

相关文档
最新文档