钢铁冶金学炼钢部分总结(知识点)教学文案

合集下载

九年级炼钢的知识点总结

九年级炼钢的知识点总结

九年级炼钢的知识点总结炼钢是一项重要的冶金工艺,通过这一过程可以将铁矿石转化为有用的钢材。

在九年级的学习中,我们接触了一些与炼钢相关的知识点,下面我将对这些知识点进行总结。

1. 铁矿石的提取铁矿石是炼钢的原料,常见的铁矿石包括赤铁矿和磁铁矿。

首先,铁矿石需要被开采和破碎成适当的大小。

然后,通过选矿、磁选等方法,去除其中的杂质,获得纯净的铁矿石。

2. 高炉炼铁高炉是炼钢的主要设备,用于将铁矿石转化为生铁。

在高炉中,铁矿石和焦炭被加入到上部,而空气和矿石的还原反应发生在下部。

通过高炉内的高温和化学反应,铁矿石中的氧气被还原,从而得到液态的生铁。

3. 钢铁冶炼生铁中含有过多的碳和其他杂质,需要经过进一步的冶炼过程才能得到合格的钢材。

在钢铁冶炼中,通过氧气吹炼、除碱、调质等方法,控制碳含量和杂质含量,获得所需的钢材品质。

4. 钢的合金化为了获得不同性能的钢材,我们可以将其他合金元素加入到钢中,制成合金钢。

合金钢常见的合金元素有铬、钼、钛等。

钢材中的合金元素可以增加材料的强度、硬度、耐腐蚀性等特性。

5. 钢的热处理钢材在使用过程中可能由于拉伸、冷却等原因产生应力,这会导致零件变形或失去强度。

为了解决这个问题,我们可以进行钢的热处理。

常见的热处理方法有退火、淬火和回火等,通过控制温度和冷却速度,改善钢材的力学性能。

6. 钢材的分类根据用途和成分的不同,钢材可以分为碳素钢、合金钢和不锈钢等。

碳素钢是最基本的钢材,主要由碳和铁组成。

合金钢中添加了合金元素,具有更高的强度和硬度。

不锈钢具有较高的耐腐蚀性,通常在需要抗腐蚀的环境中使用。

总结:炼钢是一项复杂而重要的过程,在我们生活中扮演着重要的角色。

通过铁矿石的提取、高炉炼铁、钢铁冶炼、合金化、热处理和分类等步骤,我们可以获得不同性能的钢材。

了解这些知识点有助于我们更好地理解钢材的制造和应用,为未来的学习和工作打下良好基础。

炼钢重要基础知识点

炼钢重要基础知识点

炼钢重要基础知识点
1. 钢的定义和特性:
钢是一种由铁和少量碳以及其他合金元素组成的金属材料。

钢的主要特点是强度高、韧性好、耐腐蚀性强等,因此被广泛应用于建筑、机械、汽车等领域。

2. 钢的生产方法:
钢的生产过程主要包括炼铁和炼钢两个环节。

炼铁是将铁矿石经过高温炉石化,获得高纯度的铁。

而炼钢则是将炼铁得到的铁经过加热、除杂、加入合金等处理,控制碳含量,使其成为钢。

3. 钢的合金元素:
为了改变钢的力学性能和化学性能,可以向钢中添加各种合金元素。

常见的合金元素包括锰、铬、镍、钼等。

不同的合金元素会赋予钢不同的性能,使其适用于不同的工程需求。

4. 钢的熔炼工艺:
钢的熔炼工艺主要包括平炉、转炉、电炉等几种。

平炉是最早的炼钢方法,通过将炼铁和生铁一起加热熔化,再通过各种方法去除杂质。

转炉是一种常用的炼钢设备,通过向炉中注入氧气,使炉中的碳和其他杂质氧化脱除。

电炉则是利用电能将钢材加热熔化。

5. 钢的热处理与热处理工艺:
钢的热处理是通过加热和冷却过程来改变钢的力学性能和组织结构。

热处理工艺包括退火、正火、淬火、回火等。

不同的热处理方式可以使钢材获得不同的硬度、韧性或强度等特性。

6. 钢的质量控制:
钢的质量控制非常重要,可以通过化学成分分析、金相组织观察、力学性能测试等手段来评估钢的质量。

合理的质量控制可以保证钢材的性能,防止出现质量问题。

以上是炼钢的重要基础知识点,希望对你了解炼钢有所帮助。

如果有更深入的问题,欢迎进一步探讨。

九年级炼钢的知识点

九年级炼钢的知识点

九年级炼钢的知识点炼钢的知识点炼钢是一项重要的冶金工艺,通过控制和改变钢铁中的元素成分和组织结构,使其具备特定的力学性能和化学性能。

九年级学生学习炼钢的知识点,有助于理解钢铁产业的发展和相关技术的应用。

本文将介绍九年级学生需要了解的炼钢的知识点。

一、炼钢的基本原理炼钢的基本原理是通过高温下的冶炼过程,将生铁中的杂质和有害元素进行去除,同时添加适量的合金元素,使得钢铁具备所需的力学性能和化学性能。

主要包括高炉炼铁、转炉炼钢和电炉炼钢等不同的炼钢方法。

二、高炉炼铁高炉炼铁是最常见的炼钢方法之一。

在高炉中,生铁和焦炭以及石灰石等原料被逐层添加,通过高温还原反应将生铁中的杂质去除。

在高炉炼铁的过程中,需要掌握化学反应方程式、温度控制和物料配比等关键技术。

三、转炉炼钢转炉炼钢是一种重要的炼钢方法,其特点是生产效率高、自动化程度高。

在转炉中,通过将生铁和废钢等原料添加到转炉中,通过氧气吹炼和搅拌作用,控制合金元素的含量和合金化程度,使得钢铁达到所需的力学性能和化学性能。

四、电炉炼钢电炉炼钢是一种使用电力作为能源的炼钢方法,具有能源利用率高、产生的污染物较少的优点。

在电炉炼钢中,通过将废钢和铁合金等原料加入电炉中,通过电阻加热和电弧放电作用,控制温度和化学反应,达到炼钢的目的。

五、炼钢中的合金元素合金元素对钢铁的性能起着重要的作用。

常见的合金元素有锰、铬、镍等。

锰可以提高钢的强度和韧性,铬可以增加钢的耐蚀性,镍可以提高钢的冷热塑性。

了解合金元素的作用和添加量对于学习炼钢知识具有重要意义。

六、炼钢工艺的发展炼钢工艺在长期的发展中呈现出多样化和先进化的趋势。

例如,在传统的高炉炼铁基础上,出现了湿法冶金、气体冶金和无渣冶炼等新型工艺。

九年级学生应该了解炼钢工艺的发展趋势,了解新技术在炼钢中的应用。

七、炼钢的环保问题炼钢过程中产生的烟尘、废水和废气等污染物对环境造成了一定的影响。

为了解决炼钢过程中的环保问题,炼钢企业采取了多种措施,如煤气净化技术、废气脱硫技术和废水处理技术等。

钢铁冶金学(炼钢学)

钢铁冶金学(炼钢学)
钢铁冶金学(炼钢学)
炼 钢 方 法(6)
• 瑞典人罗伯特·杜勒首先进行了氧气顶吹 转炉炼钢的试验,并获得了成功。1952 年奥地利的林茨城(Linz)和多纳维兹城 (Donawitz)先后建成了30吨的氧气顶吹 转炉车间并投入生产,所以此法也称为 LD法。美国称为BOF法(Basic Oxygen Furnace)或BOP法。
钢铁冶金学(炼钢学)
钢 O铁B冶M金学/ Q(炼-钢B学O) P
炼 钢 方 法(8)
• 在顶吹氧气转炉炼钢发展的同时,19781979年成功开发了转炉顶底复合吹炼工 艺,即从转炉上方供给氧气(顶吹氧), 从转炉底部供给惰性气体或氧气,它不仅 提高钢的质量,降低了消耗和吨钢成本, 更适合供给连铸优质钢水。
钢铁冶金学(炼钢学)
钢铁冶金学(炼钢学)
钢铁冶金学(炼钢学)
LD/ BOF/ BOP
炼 钢 方 法(7)
• 1965年加拿大液化气公司研制成双层管氧 气喷嘴,1967年西德马克西米利安钢铁公 司引进此技术并成功开发了底吹氧转炉炼钢 法,即OBM法(Oxygen Bottom Maxhuette) 。1971年美国钢铁公司引进 OBM法,1972年建设了3座200吨底吹转 炉,命名为Q-BO钢铁P冶金(学Q(炼钢u学i)et BOP)。
钢L铁D冶金- 学Q(炼- 钢B学O) P
炼 钢 方 法(9)
•我国首先在 1972-1973 年 在沈阳第一炼钢 厂成功开发了全 氧侧吹转炉炼钢 工艺。并在唐钢 等企业推广应用。
钢铁冶金学(炼钢学)
总之,炼钢技术经过200多 年的发展,技术水平、自动化程 度得到了很大的提高,21世纪炼 钢技术会面临更大的挑战,相信 会有不断的新技术涌现。
1.1 炼钢的发展历程

钢铁冶金学炼钢部分总结(知识点)

钢铁冶金学炼钢部分总结(知识点)

1、钢和生铁的区别?答:C<2.11%的Fe-C合金为钢;C>1.2%的钢很少实用;还含Si、Mn等合金元素及杂质。

生铁硬而脆,冷热加工性能差,必须经再次冶炼才能得到良好的金属特性;钢的韧性、塑性均优于生铁,硬度小于生铁长流程:以铁矿石为原料,煤炭为能源-高炉-铁水预处理-转炉炼钢-炉外精炼-连铸-轧钢短流程:以废钢为原料,电为能源-电炉炼钢-炉外精炼-连铸-轧钢2、炼钢的基本任务?答:钢铁冶金的任务是由生产过程碳、氧位变化决定的。

炼钢的基本任务分为脱碳,脱磷,脱硫,脱氧,脱氮、氢等,去除非金属夹杂物,合金化,升温(1200°C→1700°C),凝固成型,废钢、炉渣返回利用,回收煤气、蒸汽等。

高炉——分离脉石,还原铁矿石铁水预处理——脱S,Si,P转炉——脱碳,升温炉外精炼——去杂质,合金化3、钢中合金元素的作用?答:C:控制钢材强度、硬度的重要元素,每1%[C]可增加抗拉强度约980MPa;Si:增大强度、硬度的元素,每1%[Si]可增加抗拉强度约98MPa;Mn:增加淬透性,提高韧性,降低S的危害等;Al:细化钢材组织,控制冷轧钢板退火织构;Nb:细化钢材组织,增加强度、韧性等;V:细化钢材组织,增加强度、韧性等;Cr:增加强度、硬度、耐腐蚀性能。

4、钢中非金属夹杂物来源?答:5、主要炼钢工艺流程?答:炒钢→坩埚熔炼等→平炉炼钢→电弧炉炼钢→氧气顶吹转炉炼钢→氧气底吹转炉和顶底复吹炼钢。

主要生产工艺为转炉炼钢工艺和电炉炼钢工艺。

与电炉相比,氧气顶吹转炉炼钢生产率高,对铁水成分适应性强,废钢使用量高,可生产低S、低P、低N的杂质钢,可生产几乎所有主要钢品种。

顶底复吹工艺过氧化程度低,熔池搅拌好,金属-渣反应快,控制灵活,成渣快。

现代炼钢流程:炼铁,炼钢(铁水预处理、炼钢、炉外精炼),连铸,轧钢,主要产品。

6、铁的氧化和熔池的基本传氧方式?答:火点区:氧流穿入熔池某一深度并构成火焰状作用区(火点区)。

钢铁冶金学(炼钢部分)

钢铁冶金学(炼钢部分)
11
耐火材料融损及 卷入
炼钢任务:
9)凝固成型
12
炼钢的基本任务:
1、脱碳; 2、脱磷; 3、脱硫; 4、脱氧; 5、脱氮、氢等; 6、去除非金属夹杂物; 7、合金化; 8、升温; 9、凝固成型 。
13
主要炼钢工艺: 铁水预处理; 转炉或电弧炉炼钢; 炉外精炼(二次精炼); 连铸。
14
3
伴随脱碳反应, 钢的熔点提高。
炼钢任务: 4)升温
1200℃ 1700℃
4
伴随脱碳反应,钢液[O]含量增加。
C(石墨)+1/2O2=CO C(石墨)=[C] 1/2O2=[O]
[C]+[O]=CO
G=-116204-83.617040-2.88T[2]
G=-20482-38.94T
[1]Reed Thomas, Free Energy of Formation of Binary Compounds, MIT Press, 1971 [2]J.F. Elliott, Thermochemistry for Steelmaking, Vol.2, Addison-Wesley 1963
30
熔池在氧流作用下形成的强烈运动和高度弥散的气 体-熔渣-金属乳化相,是吹氧炼钢的特点。
1-氧枪 2-乳化相 3-CO气泡 4-金属熔池 5-火点 6-金属液滴 7-作用区释放出的 CO气泡 8-溅出的金属液滴 9-烟尘
31
2、铁的氧化和还原
向熔池吹氧时
第一步,气体氧分子分解并吸附在铁的表面:
5
0.6
炼钢任务:
¬ wt% [O]£
1650¡ æ 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1

钢铁冶金学(炼钢部分)教案

钢铁冶金学(炼钢部分)教案

1.绪论 (4)1.1 炼钢历史的发展过程 (4)1.2我国钢铁冶金的发展 (5)1.3炼钢的基本任务 (5)2. 炼钢任务、原材料和耐火材料 (7)2.1去除杂质 (7)2.2 调整钢的成分 (8)2.3 浇注成内外部质量好的钢锭和钢坯 (9)3. 炼钢熔池中的基本反应 (10)3.1 脱碳反应 (10)3.1.1 脱碳反应的作用 (10)3.1.2碳在熔铁中的溶解 (11)3.1.3 脱碳反应的热力学条件 (11)3.1.4 脱碳反应的动力学条件 (13)3.2 硅锰的氧化和还原 (16)3.3脱磷反应 (17)3.3.1 磷在钢铁冶炼过程中氧化 (18)3.3.2 脱磷的热力学条件 (20)3.3.3 冶炼低磷钢的几个问题 (22)3.4 脱硫反应 (25)3.4.1 硫在炼钢中表现的热力学性质 (25)3.4.2 碱性氧化渣与金属间的脱硫反应 (26)3.4.3 熔渣脱硫的计算 (29)3.4.4 气相在脱硫中的作用 (30)3.5 钢中气体和非金属夹杂物 (32)3.5.1 钢中气体 (32)3.5.2 钢中的非金属夹杂物 (35)3.5.3 非金属夹杂物的种类 (35)3.5.4 夹杂物的来源及减少其的措施 (37)4 转炉炼钢工艺 (39)4.1 炼钢用原材料 (39)4.1.1 金属料 (39)4.1.2 造渣材料 (40)4.1.3 氧化剂(自学) (41)4.1.4 冷却剂(自学) (42)4.1.5 还原剂和增碳剂(自学) (42)4.2 装料 (42)4.2.1 三种不同的装入制度 (42)4.2.2 确定个阶段装入量应考虑的因素 (43)4.3 铁的氧化和熔池传氧方式 (43)4.3.1 铁的氧化和还原 (43)4.3.2 炉渣的氧化作用 (44)4.3.3 杂质的氧化方式—直接氧化和间接氧化 (44)4.4 供氧 (45)4.4.1氧流对熔池作用 (45)4.4.2 氧化机理 (51)4.4.3 LD的供氧操作 (52)4.5 造渣 (53)4.5.1炉渣碱度的控制 (53)4.5.2炉渣粘度的控制 (56)4.5.3炉渣氧化性的控制 (56)4.5.4放渣及留渣操作 (58)4.6 温度及终点的控制 (58)4.6.1 LD物料平衡和热平衡 (59)4.6.2 出钢温度的确定 (59)4.6.3 吹炼过程的温度控制 (59)4.6.4 终点控制 (60)4.7 脱氧和合金化 (60)4.7.1 吹炼终点的含氧量及脱氧的任务 (60)4.7.2 脱氧剂的选择及加入量的确定 (62)4.7.3 脱氧操作 (64)4.7.4 合金化的一般原理 (65)5 转炉顶底复合吹炼 (67)5.1 转炉顶底复吹的发展及其特点: (67)5.1.1 顶吹底吹转炉炼钢的特点及复合吹工艺的产生 (67)5.1.2 复合吹炼工艺的分类及目前发展状况 (68)5.1.3 复合吹炼的主要冶金特点 (69)5.2复合吹炼的熔池搅拌问题 (70)5.2.1转炉熔池搅拌问题—CO气泡搅拌及气流搅拌 (70)5.2.2 搅拌能与均匀混合时间(混匀时间) (72)5.3 复合吹炼的冶金问题 (73)5.3.1 对成渣及渣中FeO的影响 (73)5.3.2 对各元素化学反应的影响 (74)5.3.3 对钢中气体含量的影响 (75)5.4 底部供气元件 (76)5.4.1 底部供气种类及选择 (76)5.4.2 底部供气元件的种类及特点 (76)5.4.3 底部供气元件的布置对熔池搅拌的影响 (78)6 炼钢常用耐火材料 (79)6.1 炉衬材料 (79)6.2 炉衬破损机理 (80)6.3 延长炉龄的措施(自学) (81)7 预脱硫 (83)8 含钒铁水的吹炼 (87)8.1 提钒 (87)8.2 半钢炼钢 (89)使用说明 (90)参考文献 (91)1.绪论钢铁是现代生产和科学技术中应用最广的金属材料.特别是钢,在金属材料的用量中约占85%以上.这是由于钢的强度高,韧性好,容易加工和焊接,使优良的结构材料.钢的品种由上千种,可以跟据不同要求,得到不同性能的钢.作为钢的基体的铁元素在地壳中的蕴藏量5.10%,在金属元素中仅次于铝8.80%,容易从矿石中提取和加工.近三四十年,钢生产迅速发展,世界上岗的年产量已超过七亿吨.近代钢铁生产的主要方法一直是沿用”二步法”,第一步先用矿石冶炼出生铁,第二不再以生铁和废钢为基本原料炼出不同的钢种.近十几年,虽然有人在”一步法”上作了大量的工作,即直接还原—从矿石直接还原出钢,但目前来看,最起码在近期,其法不会最为生产钢的主要手段;也很难成为发展方向.原因主要是其技术不成熟;成本太高.1.1 炼钢历史的发展过程近代主要的炼钢方法首推1885年在英国获得专利的贝塞麦法,即酸性空气底吹转炉炼钢法.他是在底吹转炉中,将空气直接吹入铁水,利用空气中的氧气氧化铁水中铁、硅、锰、镁等元素,并依靠这些元素氧化释放出的热量将体金属加热到能顺利进行浇铸所需的高温。

钢铁冶金学知识点总结

钢铁冶金学知识点总结

钢铁冶金学知识点总结一、钢铁冶金学概述钢铁是一种重要的金属材料,广泛用于建筑、机械、汽车、电子、航空航天等行业,对于国民经济的发展起着至关重要的作用。

钢铁冶金学是研究如何通过冶炼和加工原料来生产各种类型钢铁的学科。

本文将系统地介绍钢铁冶金学的相关知识,涉及原料、冶炼工艺、合金设计、热处理等内容。

二、原料1. 铁矿石铁矿石是钢铁冶金的原料,常见的有褐铁矿、赤铁矿、磁铁矿等,其中以赤铁矿和磁铁矿为主要产状。

从原料稀缺角度来看,赤铁矿资源相对较丰富,但使用赤铁矿需要高温还原,而且其资源储量日益减少。

而磁铁矿则容易熔化,且熔点低,深受炼铁企业的喜爱。

2. 焦炭和燃料焦炭是冶金煤炭经高温干馏后得到的一种多孔性炭质燃料,是高炉炼铁的原料之一。

燃料也是冶金中常用的燃烧材料,其中包括煤、焦炭、天然气等。

3. 废金属资源钢铁冶金中还需要利用废钢、废铁等废弃金属资源进行熔炼,以提高资源利用率,降低能源消耗。

三、冶炼工艺1. 高炉冶炼高炉是一种用于生产铁水、生铁或合金铁的设备。

高炉内的冶炼过程较为复杂,主要包括炉料下料→还原→熔融→炉渣→收得铁水等步骤。

2. 炼钢炉冶炼炼钢炉冶炼采用的设备主要有转炉炼钢炉、电弧炉、氧气顶吹炼钢炉和底吹熔融锅炉等,是将生铁或铸铁通过熔化、脱碳、脱磷、分别半湿废气、装料等工艺,生产出合格钢的过程。

4. 电炉冶炼电炉冶炼是利用电能将废钢、废铁、生铁等熔化成合格的熔铁或合金。

其主要特点是能耗低、操作简便、保护环境等。

四、合金设计1. 合金元素合金元素是各种金属或非金属元素的混合物。

在钢材中,合金元素可以显著改变钢的组织和性能。

主要的合金元素有碳(C)、锰(Mn)、钒(V)、铬(Cr)、钼(Mo)、镍(Ni)、铜(Cu)、钛(Ti)等。

2. 合金设计合金设计即根据钢材的使用要求和生产条件,选取合适的合金元素和比例,调整钢的成分和组织结构,以获得理想的性能和工艺性。

3. 合金设计的原则合金设计应根据具体用途确定设计要求。

完整版北京科技大学钢铁冶金学炼铁部分知识点复习

完整版北京科技大学钢铁冶金学炼铁部分知识点复习

完整版北京科技大学钢铁冶金学炼铁部分知识点复习第一章概论1、试述3种钢铁生产工艺的特点。

答:钢铁冶金的任务:把铁矿石炼成合格的钢。

工艺流程:①还原熔化过程(炼铁):铁矿石去脉石、杂质和氧铁;②氧化精炼过程(炼钢):铁精炼(脱C、Si、P 等)钢。

高炉炼铁工艺流程:对原料要求高,面临能源和环保等挑战,但产量高,目前来说仍占有优势,在钢铁联合企业中发挥这重大作用。

直接还原和熔融还原炼铁工艺流程:适应性大,但生产规模小、产量低,而且很多技术冋题还有待解决和完善。

2、简述高炉冶炼过程的特点及三大主要过程。

答:特点:①在逆流(炉料下降及煤气上升)过程中,完成复杂的物理化学反应;②在投入(装料)及产出(铁、渣、煤气)之外,无法直接观察炉内反应过程,只能凭借仪器仪表简介观察;③维持高炉顺行(保证煤气流合理分布及炉料均匀下降)是冶炼过程的关键。

三大过程:①还原过程:实现矿石中金属元素(主要是铁)和氧元素的化学分离;②造渣过程:实现已还原的金属与脉石的熔融态机械分离;③传热及渣铁反应过程:实现成分与温度均合格的液态铁水。

3、画出高炉本体图,并在其图上标明四大系统。

答:煤气系统、上料系统、渣铁系统、送风系统。

4、归纳高炉炼铁对铁矿石的质量要求。

答:①高的含铁品位。

矿石品位基本上决定了矿石的价格,即冶炼的经济性。

② 矿石中脉石的成分和分布合适。

脉石中SiO2和A12O3要少,CaO多,MgO含量合适。

③有害元素的含量要少。

S、P、As、Cu对钢铁产品性能有害,K、Na、Zn、Pb、F对炉衬和高炉顺行有害。

④有益元素要适当。

Mn、Cr、Ni、V、Ti等和稀土元素对提高钢产品性能有利。

上述元素多时,高炉冶炼会出现一定的问题,要考虑冶炼的特殊性。

⑤矿石的还原性要好。

矿石在炉内被煤气还原的难易程度称为还原性。

褐铁矿大于赤铁矿大于磁铁矿,人造富矿大于天然铁矿,疏松结构、微气孔多的矿石还原性好。

⑥冶金性能优良。

冷态、热态强度好,软化熔融温度高、区间窄。

钢铁是怎样炼成的知识点整理及归纳考点

钢铁是怎样炼成的知识点整理及归纳考点

钢铁是怎样炼成的知识点整理及归纳考点一、炼钢的基本原理1. 原料准备:炼钢的原料主要有铁矿石、焦炭和石灰石,其中铁矿石是主要的铁源。

2. 高炉冶炼:高炉是炼钢的主要设备,通过高温和还原剂(焦炭)将铁矿石还原为熔融的铁水。

3. 钢水调质:对炼得的铁水进行调质,包括去除杂质、控制成分和温度等。

4. 连铸成型:将调质后的钢水连续浇注到铸造机中,通过冷却和凝固形成铸坯。

二、炼钢的主要工艺流程1. 矿石处理:将铁矿石破碎、磨细,并通过磁选、重选等工艺去除杂质。

2. 焦炭制备:将煤进行干馏得到焦炭,焦炭是高炉冶炼的还原剂。

3. 高炉冶炼:将经过矿石处理和焦炭制备的原料投入高炉,通过高温还原铁矿石中的铁,并将产生的熔融铁水收集。

4. 调质处理:对收集到的铁水进行脱硫、脱磷、脱硅等处理,调整成分和温度。

5. 连铸成型:将调质后的铁水通过连铸机连续浇注到结晶器中,形成铸坯。

三、炼钢中的关键技术和设备1. 高炉:高炉是炼钢的核心设备,其炉体由炉缸、炉腰、炉身和炉喉组成,通过供热和还原剂来实现铁矿石的冶炼。

2. 连铸机:连铸机是将熔融的铁水连续浇注成型的设备,主要由结晶器、浇注机构和冷却系统组成。

3. 调质设备:包括脱硫装置、脱磷设备、调温系统等,用于对熔融的铁水进行去杂质和调整成分、温度等处理。

4. 矿石处理设备:包括破碎机、磨矿机、磁选机等,用于将铁矿石进行处理,去除杂质。

5. 焦炭制备设备:包括焦炉、焦炭破碎机等,用于将煤进行干馏得到焦炭。

四、炼钢的关键参数和控制要点1. 温度控制:炼钢过程中,需要控制高炉温度、铁水温度和钢水温度等,以保证炼钢过程的稳定性和产品质量。

2. 成分控制:炼钢过程中,需要控制铁水中的碳含量、硫含量、磷含量等,以调整钢的性能和成分。

3. 流动控制:炼钢过程中,需要控制铁水和钢水的流动速度和方向,以保证连铸成型的质量和效率。

4. 杂质控制:炼钢过程中,需要去除铁水中的氧化物、硫化物、杂质金属等有害物质,以提高钢的纯净度和质量。

冶金专业知识点,与炼钢炼铁有关

冶金专业知识点,与炼钢炼铁有关

一、填空题1.吹炼前期调节和控制枪位的原则是:早化渣、化好渣,以利最大限度的去( 磷 )。

2.氧气顶吹转炉中氧的传递方式一般有(直接传氧 )和间接传氧两种方式。

3.炼钢温度控制是指正确地控制一炉钢的吹炼过程温度和( 吹炼终点 )温度。

4.炉渣返干的根本原因是碳氧反应激烈,渣中( FeO )大量减少。

5.氧枪由三层同心钢管组成,内管道是( 氧气 )通道,内层管与中层管之间是冷却水的( 进 )水通道,中层管与外层管之间是冷却水的( 出 )水通道。

6.炉衬的破损原因主要有高温热流的作用、(急冷急热)的作用、(机械冲击)的作用、化学侵蚀等几方面作用。

7.转炉冶炼终点降枪的主要目的是均匀钢水温度和( 成份 )。

8.控制钢水终点碳含量的方法有拉碳法、高拉补吹法和(增碳法)三种。

9.氧气顶吹转炉炼钢过程的自动控制分为( 静态控制 )和动态控制两类。

10.马赫数就是气流速度与当地温度条件下的( 音速 )之比。

11.合理的喷嘴结构应使氧气流股的( 压力能 )最大限度的转换成动能。

12.为了达到炉衬的均衡侵蚀和延长炉龄的目的,砌炉时采用( 综合砌炉 )。

13.副枪作用主要是(测温)、(取样)、(定碳)、(定氧)、(测液面),它带来的好处是降低劳动强度、缩短冶炼时间、容易实现自动化控制。

14.影响转炉终渣耐火度的主要因素是( MgO )、TFe和碱度(CaO/SiO2).15.氧气流量是指单位时间内向熔池供氧的( 体积 )。

16.钢水温度过高,气体在钢中的( 溶解度 )就过大,对钢质危害的影响也越大。

17.以( CaO )、( MgO )为主要成分的耐火材料是碱性耐火材料。

18.在溅渣护炉工艺中,为使溅渣层有足够的耐火度,主要措施是调整渣中的( MgO )含量。

19.供氧制度的主要内容包括:确定合理的(喷头结构)、(供氧强度)、(氧压)以及(枪位控制)。

20.造渣制度是确定合适的(造渣方法);渣料种类;渣料数量;加入时间及加速造渣的措施。

钢铁冶金学(炼钢学)

钢铁冶金学(炼钢学)

02 炼钢原料及预处理
炼钢原料种类及性质
A
铁矿石
主要含铁矿物,分为磁铁矿、赤铁矿等,是炼 钢的主要原料之一。
废钢
来自报废的汽车、建筑、机器等,是炼钢 的重要原料之一,具有可回收性和环保性。
B
C
熔剂
如石灰石、白云石等,用于造渣和脱硫,保 证钢的质量。
合金元素
如铬、镍、钨等,用于提高钢的力学性能和 耐腐蚀性。
特点
钢铁冶金学是一门综合性很强的 技术科学,它涉及地质、采矿、 选矿、冶炼、金属加工和金属材 料性能等多方面的知识。
炼钢学发展历史及现状
发展历史
炼钢学的发展经历了漫长的岁月,从 古代的铁匠铺到现代的钢铁联合企业 ,炼钢技术不断得到改进和完善。
现状
目前,炼钢学已经成为一门高度自动 化的技术科学,采用了许多先进的工 艺和设备,如高炉炼铁、转炉炼钢、 电炉炼钢等。
钢铁冶金学(炼钢学)
目录
• 绪论 • 炼钢原料及预处理 • 炼钢工艺过程及设备 • 炉外精炼技术与应用 • 连铸技术与发展趋势 • 节能环保与资源综合利用 • 课程总结与展望
01
绪论
钢铁冶金学定义与特点
定义
钢铁冶金学是研究从矿石中提取 金属,并用各种加工方法制成具 有一定性能的金属材料的学科。
01
02
03
04
高炉
用于将铁矿石还原成生铁的主 要设备,具有高温、高压、高
还原性的特点。
转炉
用于将生铁和废钢转化为钢水 的重要设备,通过吹氧和加入 造渣剂去除杂质和调整成分。
电炉
利用电能加热原料进行熔炼的 设备,具有灵活性高、环保性
好的优点。
连铸机
将钢水连续浇铸成坯或板的设 备,提高了生产效率和产品质

炼钢学 学习总结

炼钢学 学习总结

炼钢学学习总结钢铁冶金钢铁材料是人类社会最主要使用的结构材料,也是产量最大、应用最广泛的功能材料,在经济发展中发挥着举足轻重的作用。

尽管今年来钢铁面临着陶瓷材料、高分子材料、有色金属材料(如铝)等的竞争,由于其在矿石储量、生产成本、回收再利用率、综合性能等方面所具有的明显优势,在可以预见的将来,钢铁在各类材料中的重要地位仍然不会改变。

炼钢学是研究将高炉铁水(生铁)、直接还原铁或钢铁加热、溶化,通过化学反应去除铁液中的有害杂质,配加合金并烧铸成半成品——铸坯的工程科学。

炼钢包括以下主要过程:1.去除钢中的碳、磷、硫、氧、氮、氢等杂质组分以及由废钢带入的混杂元素铜、锡、铅、铋等;2.为了保证冶炼和浇铸的顺利进行,需将钢水加热升温至1600—1700℃;3.普通碳素钢通常需含锰、硅,低合金钢和合金钢则需含有铬、镍、鉬、鎢、钒、钛、铌、铝等,为此在炼钢过程中需向钢液配加有关合金以使之合金化;4.去除钢液中内生和外来的各类非金属夹杂物;5.将合格钢水浇铸成方坯、小方坯、圆坯、板坯等;6.节能和减少排放,包括回收转炉炼钢煤气、炼钢烟气余热利用、减少烟尘和炉渣排放以及炼钢烟尘污泥、炉渣、耐火材料等的回收利用。

一、炼钢法的变迁:1.1856年英国人H.Bessemer 发明酸性底吹转炉炼钢法→1879年英国人S.G. Thomas发明碱性空气底吹转炉炼钢法→20世纪50年代氧气顶吹转炉炼钢法1952年氧气顶吹转炉炼钢方法,在奥地利被发明成功。

→氧气底吹转炉炼钢法→了顶底复吹氧气转炉炼钢方法,2. 1856年平炉炼钢方法(酸性炉衬)→碱性平炉炼钢方法很快被开发成功→ 1899年电弧炉炼钢方法也被发明成功。

最早起始于1856年英国人H.Bessemer 发明的酸性底吹转炉炼钢法,该方法首先解决了大规模生产液态钢的问题,奠定了近代炼钢工艺方法的基础。

(空气与铁水的直接作用,具有很快的冶炼速度,当时的主要炼钢方法。

但是工艺采用的是酸性炉衬,不能造碱性炉渣,因而不能进行脱磷和脱硫。

炼钢行业知识点总结

炼钢行业知识点总结

炼钢行业知识点总结一、炼钢行业概述炼钢行业是钢铁工业的重要组成部分,也是国民经济的关键产业之一。

炼钢行业主要负责将铁矿石、废钢等原料经过高温冶炼、钢水处理、铸造等工艺,生产成各种规格、性能的钢材。

炼钢行业涉及的工艺流程复杂,设备设施、原材料、能源等的要求都很高。

二、炼钢行业的主要原材料1. 铁矿石铁矿石是炼钢的主要原料之一,其主要成分是氧化铁和少量的其他杂质。

一般来说,铁矿石需要经过破碎、磨矿、矿浆浸出等工艺处理后,才能成为炼钢的原料。

当前,铁矿石资源的开采和利用已成为炼钢行业面临的重要问题之一。

2. 废钢废钢是炼钢行业的另一主要原料,其包括废旧钢材、废旧机械设备等。

废钢资源的重复利用对保护环境、节约资源具有重要的意义,因此废钢资源的开发与利用一直受到炼钢行业的重视。

3. 铬、锰等合金元素除了铁矿石和废钢,炼钢行业还需要合金元素,如铬、锰等,来冶炼生产合金钢,以满足市场对高强度、耐腐蚀等特殊性能钢材的需求。

合金元素的选择和添加对钢材的性能起着至关重要的作用。

三、炼钢行业的主要工艺流程1. 炼焦炼焦是将高品质的煤转化成冶金焦,作为高炉冶炼的还原剂。

炼焦过程中需要控制原料粒度、热风量、炼焦时间等,以获得高品质的冶金焦。

2. 高炉冶炼高炉冶炼是利用冶金焦、铁矿石等原料冶炼生铁的主要工艺过程。

在高炉冶炼中,需要精确控制原料比例、炉温、通风量等参数,以获得高品质的生铁。

3. 转炉炼钢转炉炼钢是将生铁转化为钢水的工艺过程,其主要设备包括转炉、炼钢、以及氧气供应系统。

在转炉炼钢过程中,需要根据钢水成分要求调整氧气供应量、加入合金元素、进行脱硫等操作,以获得符合要求的钢水。

4. 连铸连铸是将炼钢得到的钢水浇铸成方坯、圆坯等的成形工艺过程。

在连铸生产中,需要控制浇铸温度、拉速、结晶器等参数,以获得高品质的铸坯。

5. 精炼精炼是通过真空设备、氩气吹炼等手段对钢水进行再处理,以消除氧化物、控制钢水成分和温度,获得高品质的精炼钢。

现代炼钢知识点归纳总结

现代炼钢知识点归纳总结

现代炼钢知识点归纳总结1. 炼铁过程炼铁是炼钢的第一步,它通过高温还原铁矿石得到的生铁。

炼铁过程一般包括了还原和熔化两个过程。

具体包括矿石的选矿、碳素还原法、炼铁炉、高炉、烧结等环节。

炼铁过程是现代炼钢过程中的重要环节,其稳定性和效率直接影响到钢铁生产的质量和成本。

2. 炼钢过程炼钢过程是指将生铁经过氧、碳等还原剂的作用下,去除杂质并将铁中的碳含量控制在一定范围内,最终得到符合要求的钢材。

炼钢过程通常包括了原料的准备、熔炼、除杂、调质、浇铸等环节。

现代炼钢过程中,炼钢技术的进步和改进使得炼钢过程更加精确,高效和环保。

3. 现代炼钢技术现代炼钢技术包括了许多先进的设备和工艺,比如转炉炼钢、电炉炼钢、喷吹炼钢等。

这些新技术的出现使得炼钢的效率得到了大大的提高,产品质量也得到了大幅度的提升。

同时,这些新技术还提供了更多的选择,以满足不同的生产需求。

4. 原料炼钢过程中所使用的原料包括了铁矿石、焦炭、石灰石、废钢等。

其中,铁矿石是钢铁的主要原料,焦炭是还原剂,石灰石用于还原冶金反应的熔炼助剂,废钢则可以通过回收再利用,降低了原料成本和环保。

不同的原料组合和比例会直接影响到炼钢过程的成本和产品质量。

5. 炼钢设备现代炼钢设备包括了高炉、转炉、电炉、喷吹煤氧等,这些设备通常采用高科技材料和先进的控制系统。

通过这些设备,可以实现自动化,智能化,大幅度提高了生产效率和降低了人力成本。

这些设备还具有节能、环保的特点,符合现代工业的可持续发展要求。

6. 炼钢工艺炼钢工艺是指炼钢生产中的一系列操作方法和技术要点。

炼钢工艺涉及了操作人员的技术水平和经验,准确、稳定的操作是保证产品质量的重要保证。

现代炼钢工艺在提高生产效率的同时,也是注重提高操作技术水平,从而保证产品质量和安全生产。

7. 质量控制炼钢的质量控制是现代炼钢过程中的重要环节,包括了原料的质量控制、炉料的合理配比、生产过程的控制和产品质量的检测。

现代炼钢企业通常建立了完善的质量管理体系,从原料采购到产品出厂的全过程控制,保证了产品的质量和安全。

钢铁冶金原理知识点总结

钢铁冶金原理知识点总结

钢铁冶金原理知识点总结钢铁冶金是一门专门研究金属材料制备和性质改善的学科。

钢铁是一种重要的金属材料,在工业生产和日常生活中有着广泛的应用。

掌握钢铁冶金原理对于材料工程师和金属材料从业者来说是非常重要的。

在这篇文章中,我将对钢铁冶金的一些重要知识点进行总结。

1. 钢铁冶金的历史背景钢铁冶金的历史可以追溯到几千年前的古代,人类开始使用铁器制品,进行熔炼和鍮制的技术。

随着工业的发展,钢铁冶金技术得到了不断的改进和发展,出现了许多新的制备和处理方法,同时也推动了金属材料从原始水平到今天的发展。

通过对钢铁冶金的历史背景进行了解,可以更好地理解钢铁冶金的发展和变革。

2. 钢铁冶金的基本原理钢铁是铁与碳的合金,具有优良的机械性能和耐磨性,是一种重要的结构材料。

在钢铁冶金中,主要包括炼铁、钢水处理、热处理和表面处理等主要工艺。

炼铁是指将原料(铁矿石、焦炭、石灰石等)加热熔化,在熔融状态下去除杂质,得到高纯度的铁。

钢水处理是指将熔化的铁与合金元素混合调整成符合要求的合金成分,通过控制温度和化学成分来调整钢的性能。

热处理是指通过加热和冷却过程来改变钢的物理和化学性能,提高其机械性能和耐腐蚀性。

表面处理是指通过对钢材表面进行化学处理或机械加工,提高其表面硬度和耐磨性。

这些基本原理是钢铁冶金学的基础,掌握这些知识对于进行钢铁冶金工艺设计和材料性能改善具有重要意义。

3. 钢铁材料的组织结构钢铁是由铁和碳组成的合金,除此之外还含有少量的合金元素,如锰、硅、磷、硫等。

钢铁的组织结构主要包括铁素体、珠光体、贝氏体和马氏体等组织。

铁素体是最基本的组织结构,其性能最差,珠光体比铁素体的性能要好,贝氏体和马氏体比珠光体的性能更优越。

通过对钢铁材料的组织结构进行研究,可以更好地理解钢铁材料的性能和应用。

4. 钢铁冶金中的煅烧技术煅烧是指将金属矿石或精矿通过高温加热而非完全熔化的过程,通过煅烧可以去除矿石中的挥发性物质和硫、砷等杂质,在矿石中得到合金的金属。

九年级炼钢的知识点汇总

九年级炼钢的知识点汇总

九年级炼钢的知识点汇总钢铁是现代社会不可或缺的材料之一,它用于建筑、交通工具、机械制造等各个领域。

而钢的主要来源就是通过炼钢过程获得的。

炼钢是一项复杂而重要的工艺过程,它涉及到化学、物理等多个学科知识。

在九年级学习中,我们可以了解到一些炼钢过程中的关键知识点,下面将对这些知识点进行汇总。

1. 原料选择炼钢的原料主要是铁矿石、焦炭和石灰石。

铁矿石含有铁的氧化物,经过还原反应可以得到金属铁;焦炭是一种煤炭燃烧后的残留物,能够提供高温和还原性质;石灰石则用于吸收冶炼过程中产生的硫化物。

2. 高炉冶炼高炉是炼钢的主要设备之一。

在高炉中,先将铁矿石、焦炭和石灰石按一定比例投入到高炉中,然后通过加热和还原反应,将铁矿石中的氧化铁还原为金属铁。

在这个过程中,还会产生大量的煤气和渣,煤气可以作为燃料,渣则被移除。

3. 钢水生产经过高炉冶炼的产物是生铁,含有大量杂质。

为了得到纯净的钢材,还需要对生铁进行处理。

这个过程就是钢水生产。

首先,从高炉中取出生铁,然后进行钢化、精炼、除杂等步骤,最终获得纯净的钢水。

4. 连铸成型钢水生产出来后,需要通过连铸成型成为钢坯。

连铸是指将钢水连续浇注到连铸机中,经过冷却、凝固、拉拔等一系列过程,最终得到连续铸模的钢坯。

在这个过程中,需要控制冷却速度和拉拔力度,以确保钢坯的质量和形状。

5. 热轧和冷轧钢坯通过连铸成型后,还需要进行热轧或冷轧。

热轧是指将钢坯加热到一定温度,然后通过辊压机械将其压制成所需的形状和尺寸;冷轧则是将钢坯在室温下进行压制。

热轧可以提高钢的塑性,冷轧可以提高钢的硬度和强度。

6. 钢材表面处理炼钢的最后一个步骤是对钢材表面进行处理。

常见的处理方法有酸洗、镀锌和喷涂。

酸洗是通过酸性溶液进行清洗,去除表面的氧化层和杂质;镀锌是将钢材浸入熔融的锌中,形成锌层来防止钢材锈蚀;喷涂则是利用喷涂设备将保护涂料喷到钢材表面,提高其耐腐蚀性能。

总结起来,九年级学习的炼钢知识点主要包括原料选择、高炉冶炼、钢水生产、连铸成型、热轧和冷轧,以及钢材表面处理。

炼钢设计原理 知识点总结

炼钢设计原理 知识点总结

炼钢设计原理知识点总结炼钢是将生铁经过高温冶炼、镁球处理等一系列工艺过程,去除杂质,调整化学成分和温度,以得到符合要求的合金材料的过程。

炼钢设计原理是指在炼钢过程中,根据各种物质的性质和热力学规律,确定合理的工艺参数和操作方法,以实现炼钢过程的高效、稳定和安全。

为了实现高效炼钢,炼钢设计原理需要考虑以下几个方面的内容:1. 原料的选择和预处理在炼钢过程中,原料的质量和成分将直接影响到最终产品的质量。

因此,在炼钢设计中需要仔细选择原料,尽量减少杂质含量,并进行预处理,以提高原料的利用率。

2. 炉型和燃烧技术炼钢的主要设备是炼钢炉,而炉型和燃烧技术的选择将直接影响炼钢过程的效率和产品质量。

在炼钢设计中,需要根据生铁的性质和炼钢目标,选择合适的炉型和燃烧技术,以最大程度地提高炉内的温度和热传导效率。

3. 溶解和炉渣控制溶解和炉渣控制是炼钢过程中非常重要的环节。

在炼钢设计中,需要合理控制溶解速度和炉渣成分,以保证溶解反应的充分进行,并提供足够的热量和氧化剂,以促进金属间的化学反应。

4. 温度和时间控制炼钢过程中,温度和时间的控制非常关键。

在炼钢设计中,需要合理选择加热和保温的方式,以确保炉内温度的均匀分布和保持一定的时间,以达到预期的炼钢效果。

5. 合金元素添加和脱气处理根据炼钢目标和产品要求,可能需要添加一定的合金元素来调整钢的成分和性能。

在炼钢设计中,需要选择合适的添加方法和时间,以确保合金元素的均匀分布。

同时,在炼钢过程中需要进行脱气处理,以降低钢中的氧含量和气体杂质含量。

6. 冷却和凝固控制炼钢后,要通过冷却和凝固控制来实现炉内金属的结晶和凝固。

在炼钢设计中,需要根据钢的成分和要求,选择合适的冷却方式和速度,以控制钢的组织和晶粒尺寸,从而达到预期的产品性能。

总的来说,炼钢设计原理是在充分了解物质性质和热力学规律的基础上,根据炼钢目标和产品要求,确定合理的工艺参数和操作方法,以实现炼钢过程的高效、稳定和安全。

钢铁生产概论--炼钢部分)

钢铁生产概论--炼钢部分)

炼钢生产概论第一讲概述铁与钢性能的比较铁与钢的定义转炉炼钢法的发展经过课程介绍:通过本课程培训使学员系统了解和掌握炼钢的基本任务,炼钢的基本原理,转炉炼钢、炉外精炼及铸锭等。

整个课程分为五讲。

第一讲概述铁与钢性能的比较生铁硬而脆,耐磨性好,熔点低利于铸造,但强度低,一般不能进行压力加工,焊接性能差;钢的性能优于生铁,强度高,塑性、韧性和焊接性能好,可轧制、锻造等各种机械加工;若加入不同的合金元素,可以得到各种特殊性能;此外用热处理方法改变同一成分钢的性能。

铁与钢的定义所谓生铁是指含碳量在2.11%~6.69%之间,并含有一定量的Si、Mn、S、P等元素组成的铁碳合金;钢是指含碳量在0.02%~2.11%之间,并含有一定量的Si、Mn和少量的S、P等元素组成的铁碳合金。

因此生铁与钢的性能不同的根本原因是它们的成分不同,其中特别是碳元素的含量不同。

炼钢就是创造一定的有利条件,利用氧化剂如氧气等与铁水中的碳、硅、锰、磷、硫等元素进行直接或间接的氧化以及造渣反应而使其转化为炉渣被除去。

因此从化学角度看,炼钢主要是氧化过程。

炼钢的基本任务炼钢的基本任务是:脱碳、脱氧、去硫、去磷、去气、去除非金属夹杂物、升温与合金化。

现代炼钢方法1)、转炉炼钢法(1856年英国人贝塞麦发明)2)、平炉炼钢法(1864年法国马丁父子发明)3)、电炉炼钢法(二十世纪初出现)转炉炼钢法的发展经过1)、底吹空气酸性转炉炼钢1856年英国人贝塞麦发明;要求铁水有较高的含硅量和较低的P、S等;2)、底吹空气碱性转炉炼钢1878年托马斯在贝塞麦炼钢法基础上创建的,对铁水的P、S等要求不高;3)、氧气顶吹碱性转炉炼钢随着制氧技术的发展,在1952年出现氧气顶吹碱性转炉炼钢,克服了转炉钢质量差,原料限制严的两大缺点。

目前世界上除氧气顶吹碱性转炉炼钢外,又发展了底吹氧气转炉炼钢和复合吹炼转炉炼钢法。

平炉炼钢法的缺点1)平炉要用燃料;2)炉体庞大;3)设备复杂;4)基建投资大;5)炉子热效率低;6)熔炼时间长;7)劳动生产率不高等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢铁冶金学炼钢部分总结(知识点)1、钢和生铁的区别?答:C < 2.11%的Fe-C合金为钢;C > 1.2%的钢很少实用;还含Si、Mn等合金元素及杂质。

生铁硬而脆,冷热加工性能差,必须经再次冶炼才能得到良好的金属特性;钢的韧性、塑性均优于生铁,硬度小于生铁长流程:以铁矿石为原料,煤炭为能源-高炉-铁水预处理-转炉炼钢-炉外精炼-连铸-轧钢短流程:以废钢为原料,电为能源-电炉炼钢-炉外精炼-连铸-轧钢2、炼钢的基本任务?答:钢铁冶金的任务是由生产过程碳、氧位变化决定的。

炼钢的基本任务分为脱碳,脱磷,脱硫,脱氧,脱氮、氢等,去除非金属夹杂物,合金化,升温(1200°C→1700°C),凝固成型,废钢、炉渣返回利用,回收煤气、蒸汽等。

高炉——分离脉石,还原铁矿石铁水预处理——脱S,Si,P转炉——脱碳,升温炉外精炼——去杂质,合金化3、钢中合金元素的作用?答:C:控制钢材强度、硬度的重要元素,每1%[C]可增加抗拉强度约980MPa;Si:增大强度、硬度的元素,每1%[Si]可增加抗拉强度约98MPa;Mn:增加淬透性,提高韧性,降低S的危害等;Al:细化钢材组织,控制冷轧钢板退火织构;Nb:细化钢材组织,增加强度、韧性等;V:细化钢材组织,增加强度、韧性等;Cr:增加强度、硬度、耐腐蚀性能。

4、钢中非金属夹杂物来源?答:5、主要炼钢工艺流程?答:炒钢→坩埚熔炼等→平炉炼钢→电弧炉炼钢→氧气顶吹转炉炼钢→氧气底吹转炉和顶底复吹炼钢。

主要生产工艺为转炉炼钢工艺和电炉炼钢工艺。

与电炉相比,氧气顶吹转炉炼钢生产率高,对铁水成分适应性强,废钢使用量高,可生产低S、低P、低N的杂质钢,可生产几乎所有主要钢品种。

顶底复吹工艺过氧化程度低,熔池搅拌好,金属-渣反应快,控制灵活,成渣快。

现代炼钢流程:炼铁,炼钢(铁水预处理、炼钢、炉外精炼),连铸,轧钢,主要产品。

6、铁的氧化和熔池的基本传氧方式?答:火点区:氧流穿入熔池某一深度并构成火焰状作用区(火点区)。

吹氧炼钢的特点:熔池在氧流作用下形成的强烈运动和高度弥散的气体-熔渣-金属乳化相,是吹氧炼钢的特点。

乳化可以极大地增加渣-铁间接触面积,因而可以加快渣-铁间反应。

乳化:在氧流强冲击和熔池沸腾作用下,部分金属微小液滴弥散在熔渣中;乳化的程度和熔渣粘度、表面张力等性质有关。

乳化可极大增加渣-铁接触面积,因而可加快渣-铁间反应。

杂质的氧化方式:直接氧化:气体氧直接同铁液中的杂质进行反应。

间接氧化:气体氧优先同铁发生反应,待生成FexO以后再同其他杂质进行反应。

氧气转炉炼钢以间接氧化为主:氧流是集中于作用区附近而不是高度分散在熔池中;氧流直接作用区附近温度高,Si和Mn对氧的亲和力减弱;从反应动力学角度来看,C向氧气泡表面传质的速度比反应速度慢,在氧气同熔池接触的表面上大量存在的是铁原子,所以首先应当同Fe结合成FeO。

7、脱碳反应?答:脱碳的重要性:反应热升温钢水;影响生产率;影响炉渣氧化性;影响钢[O]含量。

脱碳产物CO的作用:从熔池排出CO气体产生沸腾现象,使熔池受到激烈地搅动,起到均匀熔池成分和温度的作用;大量的CO气体通过渣层是产生泡沫渣和气一渣一金属三相乳化的重要原因;上浮的CO气体有利于清除钢中气体和夹杂物;在氧气转炉中,排出CO气体的不均匀性和由它造成的熔池上涨往往是产生喷溅的主要原因。

“C-O”关系:脱碳反应的热力学条件:增大f[C]有利于脱碳;增加[O]有利于脱碳;降低气相PCO有利于脱碳;提高温度有利于脱碳。

8、脱碳反应动力学?答:限制性环节:C高O低时,O的扩散为限制性环节;C 低O高时,C的扩散为限制性环节。

脱碳过程:1.吹炼初期以硅的氧化为主,脱碳速度较小;2.吹炼中期,脱碳速度几乎为定值;3.吹炼后期,随金属中含碳量的减少,脱碳速度降低。

9、硅的氧化反应?答:脱硅的作用:硅高,增加渣量,需多加石灰提高炉渣碱度,影响前期脱磷,影响炉龄,增加氧气消耗,降低金属收得率;硅低,渣量少,石灰用量少,氧气消耗低,金属收得率提高。

有利于[Si]氧化反应因素:[Si]的氧化反应对炼钢过程的影响:热效应;影响脱碳、脱磷反应;影响渣量。

10、锰的氧化与还原?答:有利于[Mn]氧化反应因素:有利于[Mn]氧化的因素:提高[Mn]的活度;提高渣中的(FeO)活度;降低(MnO)活度;较低温度。

温度对脱锰反应的影响:初期温度低,渣中MnO活度低,大量Mn氧化;中后期温度升高、渣中FeO含量降低,碱度提高,炉渣中部分MnO被还原;末期炉渣FeO含量增高,Mn重新被氧化。

11、脱磷反应?答:有利于脱磷的工艺条件:降低温度;提高炉渣碱度;增加炉渣氧化铁活度;增加渣量;增加[P]活度系数。

炉渣的重要性:通过造碱性炉渣能够降低P2O5的活度系数,同时,碱度CaO/SiO2越高,磷分配比越大,有利于脱磷;渣量增大有利于脱磷。

回磷的原因:吹炼中期炉渣“反干”,炉渣FexO含量减少(炼钢过程);出钢带渣量多,炉渣碱度降低,[O]含氧量降低(脱氧过程)。

回磷的解决措施:高磷铁水吹炼过程中采用“倒包”方法。

吹炼高磷铁水技术:利用“后吹”脱磷;“双渣”工艺。

超低磷冶炼工艺技术:采用铁水“三脱”预处理;采用氧气转炉进行脱磷预处理;转炉铁水脱磷工艺。

12、脱硫的方法及工艺:方法:KR(机械搅拌)脱硫;喷粉脱硫。

工艺:LF炉精炼脱硫渣系;真空喷粉钢水脱硫(铁水预处理-BOF-LF-RH-CC工艺;铁水预处理-BOF-真空喷粉精炼-CC工艺);V-KIP工艺;RH喷粉脱硫;RH-PB 工艺;RH顶喷粉脱硫;IR-UT工艺。

有利于脱硫的因素:硫容量:炉渣的作用:FexO过高不利于脱硫,碱性还原渣有利于脱硫,增大渣量有利于脱硫。

金属脱硫及气相脱硫:回硫的原因及控制:回硫主要来自废钢和铁水脱硫渣;石灰带入的硫量很少。

转炉炼钢工艺抑制回硫。

衡量脱硫渣能力的方法:炉渣碱度、还原性、[O]活度、[S]活度、(O2-)活度、(S2-)活度的高低。

13、脱氧的必要性:α铁中氧溶解度仅为3~4ppm,过饱和的氧会在钢液冷却过程以铁的氧化物氧硫化物或其他类型的非金属夹杂物的形式析出存在于固态铁的晶界处。

在钢的加工和使用过程容易成为晶界开裂起点。

脆性破坏。

钢中氧含量增加会降低钢材的延性,冲击韧性,抗疲劳破坏性能,提高韧-脆转换温度,降低耐腐蚀性能。

总氧:包括自由氧(a0)以及固定氧(夹杂物所含的氧)。

总氧T[O]表示钢的洁净度,值越低表示钢越“干净”。

终点氧:炼钢终点时钢液中总的溶解氧量。

脱氧方式:沉淀脱氧、扩散脱氧、真空脱氧法。

沉淀脱氧:优点:反应速度快,操作简便,成本低。

缺点:部分脱氧产物滞留在钢中,不吐程度污染钢水,降低钢的纯净度。

扩散脱氧:优点:脱氧产物不污染钢液。

缺点:反应速度较慢。

真空脱氧:优点:脱氧产物CO几乎全部由钢液排除,不污染钢液。

缺点:钢液温度降低较大,且投资和生产成本较高。

沉淀脱氧:是用与氧亲和力较铁与氧亲和力强的元素作脱氧剂,脱氧剂与钢液中的氧直接作用,发生脱氧反应,反应产物由钢液上浮排除,从而达到脱氧目的。

脱氧时将各种脱氧剂以铁合金形式直接加入到钢液中;某些比重较轻或较易气化的脱氧剂则多采用向钢液喂丝或喂包芯线方法加入至钢液中。

扩散脱氧:扩散脱氧是向炉渣中加入碳粉、硅铁粉、铝粉等脱氧剂,降低炉渣的FeO含量;当渣中FeO含量不断降低时,钢中的氧即会向炉渣中扩散,以维持氧在渣-钢间的分配平衡,从而达到钢液脱氧的目的;扩散脱氧方法目前主要应用于钢水炉外精炼;扩散脱氧的优点是脱氧产物不玷污钢液,缺点是脱氧速度较慢。

真空脱氧:真空脱氧是指将钢液置于真空条件下,通过降低CO气体分压,促使钢液内[C]-[O]反应继续进行,利用[C]-[O]反应达到脱氧的目的;真空脱氧方法的最大特点是脱氧产物CO几乎全部可由钢液排除,不玷污钢液;钢液温度降低较大,且投资和生产成本较高。

14、元素的脱氧能力?答:Ca>Ba>Zr>Al>Ti>B>Ta>Si>C>V>Nb>Cr>Mn。

15、脱氧的产物?答:复合脱氧:用含有两种或两种以上脱氧元素的铁合金对钢液进行的脱氧称为复合脱氧;复合脱氧的实质是用两种或两种以上的脱氧元素同时同钢液中溶解的氧发生反应,并使它们的脱氧产物彼此结合成互溶体或化合物以降低脱氧产物的活度;由于脱氧产物活度降低,使钢液[O]含量降低;与单独元素脱氧相比,多数情况下,复合脱氧能够提高脱氧元素的脱氧能力。

常用脱氧剂:硅-锰复合脱氧剂;钙-硅复合脱氧剂。

脱氧动力学:包括以下几个环节,即脱氧元素的溶解和均匀化;脱氧化学反应;脱氧产物的形核;脱氧产物的长大;脱氧产物的去除。

脱氧产物长大的方式:扩散长大;不同尺寸脱氧产物间的扩散长大;由于上浮速度差而碰撞凝集长大;由于钢液运动而碰撞凝集长大。

影响脱氧颗粒长大的因素:斯托克定律:V夹杂物上浮速度ρm钢水密度7*10^3Kg/m3 ρs夹杂物密度4*10^3Kg/m3γ夹杂物当量直接m ηm钢水粘度0.005Pa·S16、夹杂物的分类⑴按化学组成成分:氧化物,硫化物,氮化物,磷化物,碳化物⑵按尺寸:超显微夹杂物(微粒<1μm),显微夹杂物(1~100μm),大型夹杂物(微粒>100μm)⑶按图标:A类(硫化物类):具有高的延展性,较宽范围形态比,一般端部呈圆角B类(氧化铝类):大多数没有变形,带角的,形态比较小(一般<3μm),黑色或带蓝色颗粒C类(硅酸盐类):具有较高的延展性,较宽范围形态比(一般≧3μm),呈黑色或深灰色,一般端部成锐角D类(球状氧化物类):不变形,形态比较小(一般<3μm),黑色或带蓝色的无规则分布的颗粒Ds类(单颗粒球状类):圆形或者近似圆形,直径大于13μm的单颗粒夹杂物17、夹杂物的评价指标:含量,尺寸,分布,评级方法夹杂物上浮去除:⑴精炼:底吹气体促进上浮⑵中间包:控流装置延长上浮时间⑶结晶器:控制流动,促进夹杂物上浮。

夹杂物的变性处理的目的:为了最大程度上防止对产品有坏影响的夹杂物残留在钢中,还需要把他们改变为对产品性能危害小或者无害的夹杂物,即夹杂物的形态控制。

氧气顶吹:优点:控制灵活,成渣快。

缺点:过氧化,金属-渣反应慢,熔池搅拌差。

氧气底吹:优点:过氧化程度低,熔池搅拌好,金属-渣反应快。

缺点:成渣快,废钢比低。

顶底复吹:优点:过氧化程度低,熔池搅拌好,金属-渣反应快,控制灵活,成渣快。

18、非金属夹杂物的分类:氧化物、硫化物、氮化物夹杂。

非金属夹杂物的危害和所造成的缺陷:铸坯缺陷:表面夹渣;裂纹(表面纵裂纹、表面横裂纹、内部裂纹。

钢材缺陷:热轧钢板(夹渣、翘皮、分层、超声波检查不合等;冷轧钢板(裂纹、灰白线带、起皮、鼓包等。

相关文档
最新文档