电子电气类专业毕业设计外文翻译
电气专业毕业设计外文资料及中文翻译
外文资料:Intellectual building electric protection and earth Summary : This text pass to several power supply earth systematic generalization introduction, is it suit as intellectual power supply earth system of building to screen, and has done comparatively exhaustive explanation and analysis to all kinds of earth measures should be takenned by it, electric protection that should adopt to the intellectual building and connecting the proper suggestion of local law proposition. Keyword:Load is balanced Electric potential form some earth , TN-S of datum point , defend static earth unify the earth body.Support distribution in the design , earth is it occupy important status to design systematically in building, because it concerns the dependability of the electric power system , the security . No matter how many buildings, include earth design systematically always in supplying power design. And, different with requirements of the building, functions of all kinds of equipment are different, earth systems are corresponding and different too. Especially after entering the 1990s, a large number of intelligent appearance of building design and get a lot of new contents out of systematically earth. In daily several person who connects place, which kind be suit the intelligent building ? We might as well analyse several kinds of earth systems .1.TN-C systemTN-C system call that into three-phase Line four system, systematic neutral line N this protect earth PE unite two into one, generally called PEN line. Although this kind of earth system is high in sensitivity to the earth trouble, circuit economy is simple, but it is only suitable for and used in three-phase load in the more balanced place . In theintelligent building, single-phase load proportion relatively heavy, difficult to realize three-phase to be load balanced, disequilibrium electric current , PEN of line add because fluorescent lamp , brilliant floodgate person who in charge of high times of in harmony wave electric current that equipment cause that exist in the circuit, in it is not the trouble cases , will superpose at the N in neutral line , make the neutral line N voltage fluctuate, and electric current light and extremely unstable when being heavy, cause neutral some electric potential unstable to drift about earth. Not only will electrify equipment outer cover (connects with PEN line ) , cause the rights of the person unsafe, and unable to fetch to a suitable electric potential datum point, the accurate electronic equipment is unable to run accurately reliably. So TN-C earth system can't be regarded as the earth system of the intelligent building .2.TN-C-S systemTN-C-S system is by two earth composition systematically, first part It is TN-C system, second part It is TN-S system, connect with PE line and click on N line the boundary. This system is generally used in the place attracted by regional switchyard of power supply of the building, enter family adopt TN-C system , enter households of place make repeated earth , enter after the family turning into TN-S system. Have already made analysis in front of TN-C system. The characteristic of TN-S system is: Neutral line N protect earth connection PE after grounding together while entering the family , can't have any electric connection. In this system, the neutral line N regular meeting protects the earth connection PE source without electricity with electricity. Equipment outer cover and metal component that PE line connects are in system normal running, will not be with electricity all the time. So TN-S earth system has obviously improved the securities of people and thing . At the same time so long as we adopt the earth lead wire, draw from earth body some each, choose correct earth resistance valuemake electronic equipment obtain one electric potential datum point ,etc. measure together, then TN-C-S system can be regarded as a kind of earth system of the intelligent building.3.TN-S systemTN-S is a earth system that three-phase Line four added PE line. Building usually is it enter line adopt this system when turning distribution into independently to have. The characteristic of TN-S system is, neutral line N and protecting earth connection PE except in the voltage transformer is grounded neutrally more together a bit, Line two no longer has electric connection of any. Neutral line N belong to electrification, but PE with electricity line. It's time to be grounded the system and totally possessed the safe and reliable basic electric potential. So long as like TN-C-S earth system, takes the same technological measure, TN-S system can be used as the earth system of the intellectual building. If such electronic equipment as the computer ,etc. generally adopt this kind of earth system without special requirement .4.TT systemUsually call TT system the three-phase Line four earth system. This system supplies power to come from the place of the public electric wire netting dailily in the building. Characteristic, TT of system whether neutral line N protect earth connection PE have a bit electric to join, namely neutral some earth separate from that the line earth of PE is. When this system is in normal running, whether three-phase load is balanced, in case of neutral line N electrification, PE line will not be with electricity. Single-phase earth only at the trouble, protect earth to be low in sensitivity, the trouble can be cut off in time, the equipment outer cover is perhaps with electricity. TT system at the time of normal running is similar to TN-S system , can obtain the securities of people and thing and make the qualified basic earth electric potential too. With electric leakage appearance ofperson who protect of large capacity, should systematic to can regard intelligent earth system of building as more and more too. According to present situation, because the power of the public electric wire netting is of low quality , difficult to meet the requirement for intelligent equipment, so TT system is seldom adopted by the intelligent building.5.IT systemIT system three-phase the strategic hinterland of China earth system, system this voltage transformer neutral to ground or pass impedance earth a bit, have neutral line N , have only line voltage (380V), is it is it keep to press to have (220V), protect earth connection PE and is grounded independently each. System this advantage to when the earth , can make outer cover have larger trouble electric current as one phase, the system can run as usual . The shortcoming can not allot the neutral line N. So it is not suitable for the intelligent building with a large number of single-phase equipment .In the intelligent building, demand to protect earth equipment very much, there is strong electric equipment , weak electric equipment, and the conductive equipment and component not with electricity, must adopt effective protection earth under some normal situations. If adopt TN-C system , use the N line in TN-C system as the earth connection at the same time ; Is it together , join N line and PE line really stiff to get on to connect among the system in TN-S; Set up electronic direct current earth lead wire of equipment and then , receive direct current earth on the PE line directly; Some clear-cut to is it answer together to mix N line , PE line , direct current earth connection. The above methods do not accord with earth requirement , and wrong. Have analysed , in the intelligent building, there is more single-phase power consuming equipment in in the front, single-phase load is relatively great in specific gravity, three-phase load is usually uneven, so there is random electric current in the neutral line N. In addition, becauseadopt the fluorescent lamp to light in a large amount, the waves in harmony three times produced by it are superposed on the N line, have strengthened the electric current amount on the N line, if receive N line on the equipment outer cover , will cause shocking by electricity or fire accident ; If on connecting N line and PE line to receive the equipment outer cover in TN-S system, so dangerous and heavy, every receive equipment on the PE line, with electricity outer cover; Will expand the range which will shock by electricity the accident; Connect together except will take place above-mentioned dangers N line , PE line , direct current earth connection, the electronic equipment will be interfered being unable to work. So intelligent building should set up electronic direct current earth of equipment, exchanges earth, safe protection earth, and ordinary dyke thunder that building too should possess protect earth.Now, we continue analysing various kinds of earth measures which should be taken in intelligent building .1 .Whether defend thunder's earth: For is it channel earth into rapidly to flow thunder and lightning, taking preventing the thunder from hurting as purpose earth is it defend thunder's earth to call.There are a large amount of electronic equipment and wiring system in the intelligent building, such as the communication automated system, the fire reports to the police and fire control link the control system , the automated system of the building , monitoring systems of security personnel, office automated system, the closed-circuit TV system,etc., and their corresponding wiring system. By the look of building built, the roof of every storey in the building, the baseplate, the side wall, hang and is nearly covered with by various kinds of wiring while carrying. These electronic equipment and wiring system generally belong to and able to bear the grade of pressing low , defend and interfere expecting much , is most afraid of the part struck by lightning. No matterattack directly, bunch hit, is it can make electronic equipment the damage in various degree or interfere seriously to strike back. It designs to be must tight , reliable to intelligent dyke thunder earth of building. Intelligent all function earth of building, must in order to avoid thunder based on the system earth, set up tightly , intact dyke thunder structure.The intelligent building is mostly first class load, should design according to the protective measure of first class Fang thunder building , connect person who flash adopt needle is it is it connect person who flash to make up to take , is it is it adopt 25* 4 (mm ) zinc-plated flat-rolled steel make up net of ≤ 10* 10 (m ) in roof to take to take shelter from the thunder, this net and metal component of the roofing are joined electrically, make and join with the building column cap reinforcing bar electrically, guide and roll off the production line and utilize the reinforcing bar in the column cap, enclose the reinforcing bar of roof beam , the floor reinforcing bar and defending the thunder system to join , other wall all metal component should with defend thunder system join , column cap reinforcing bar connect with earth body too, make up the shape of enveloping with multi-layer shielding and defend the thunder system. Can is it is it damage floor equipment to strike by lightning , but also still can prevent the outside electromagnetism from interfering to prevent effectively like this.Earth resistance frequently of engineering of all kinds of dyke of thunder earth devices , should according to set thunder reaction terms at confirm generally. Defend if thunder device share one total earth at the network with job earth of electric equipment, earth resistance should accord with its minimum requirement .2.The exchanges is grounded: Some any of power system, direct passing special equipment (such as impedance, resistance ,etc.), make metal join , call work earth with earth.Job earth mean voltage transformer neutral a bit or neutral line (N line ) earth mainly. N line must spend copper core insulating line. There is wiring end son of the electric potential such as being auxiliary in the distribution , wait for the wiring end son of the electric potential generally in the case cupboard. Must notice , should wire the end son and can expose ; Can't with other earth system, such as direct current earth, shielding earth, defend static earth is it is it connect to mix to wait for; Can't connect with PE line either.In high-pressure system , adopt neutral some person who connects place can make earth relay protection accurate movement and dispel single-phase electric arc earth overvoltage. Can prevent the skew of voltage of zero preface , keep the three-phase voltage in a basic balance in some neutral earth, this is very meaningful to low-voltage system, can be convenient to use the single-phase power.3.Safe protection is grounded: Safe protection earth metal part and earth body with electricity make good metal join electric equipment. Namely power consuming equipment and some metal components near the equipment of building, join with PE thread, but forbid connecting PE line with N line.In the intelligent building, require there is very much earth equipment of safe protection , there is strong electric equipment , weak electric equipment, and some conductive equipment and component with electricity, must take safe protection earth measure. When insulation not doing the earth electric equipment of safe protection is damaged , its outer cover is possible with electricity. If the outer cover that the human body touches this electric equipment may be wounded or caused the life danger by the electricity. Among neutral power system that ground directly a bit, earth short out electric current pass personal, the earth flows back to a bit more neutrally; In a bit more neutrally power system not grounded directly , the earth electric current flows into theearth through the human body, and form thorough fare by electric capacity by circuit to ground, two situation these can lead to the fact the rights of the person get an electric shock.If the insulation which is equipped with the electric equipment of the earth device is damaged while electrifying outer cover , short out in the electric current and flow through two thorough fares of earth body and human body at the same time in earth, I =IL + IP, we know: In a parallel circuit, the electric current value of passing each branch road is in inverse proportion to size of the resistance.In the type: I - Electric current total value in the earth return circuitIL - Electric current flowing through along the earth bodyIP - Flow through electric current of the human bodyHave type can find out earth resistance little , flow through to little electric current have human body, human resistance usually is it ground than earth resistance through electric current of human body electric current of body have several hundred less flowing through too to have several hundred heavier. When earth resistance is extremely small, the electric current that remakable body flows nearly equals zero. Namely I≈IL. In fact, because earth resistance very little, earth short out electric current flow out of date produce press and lower very lightly, so equipment outer cover voltage in earth high. People stand while going to touch the outer cover of the equipment on the earth, the voltage that the human body bears is very low, it can not be dangerous.Is it protect earth device and reduce earth resistance of it to install additional , not only ensure the electric security of system of intelligent building, the effective measure operated effectively, it is not the essential means of equipment and personal security in the intelligent building that ensure too.4.Direct current is grounded: In a block of intelligent building , include a largenumber of computers , communication apparatus and automation equipment of building with computer. Importing to information in these electronic equipment, transmission information, change energy , amplify signal, logic movement, output information a series of course go on through little electric potential or little electric current fast, and will often carry on the work through the internet between the equipment. So in order to make its accuracy high, the stability is good, besides needing to have a steady power supply power, must also possess a steady basic electric potential . Can adopt bigger and sectionaller insulating copper core line as the lead wire , one end is connected with basic electric potential directly, another end support electronic equipment direct current earth. It is unsuitable to connect with PE line to deserve and go between , forbid connecting with N line.5.Whether shielding earth defend static earth: In the intelligent building, it is very important to design electromagnetic and compatibly, in order to avoid the dysfunctions of the equipment used, equipment can appear evenned to prevent from damage, form equipment of wiring system should can prevent inside oneself conduct and extraneous interference from. Or because of the coupling phenomenon between the wire in these production that interfere, or because of the electric capacity effect or inductance effect. Main source its superelevation voltage, high-power pieces of radio magnetic field, strike by lightning naturally and static discharge. Phenomenon these will is it send or receive very high to transmit equipment of frequency produce heavy interference very to used for designing. Is it must take the protective measure to equipment the to connect up , avoid the interference from various kinds of respects. Shielding and correct earth to prevent electromagnetic best protection method that interfere. Can connect the equipment outer cover with PE line ; Require both ends ofshielding pipeline and PE line to join reliably in shielding earth of the wire; Indoor shielding should a lot of some is joined with PE thread reliably. It is very important too to defend static interference. In clean, dry room, walking , mobile device of people, is it can produce a large amount of static to grit each. For example 10-20% environmental walking of middleman can gather volt of static voltages , have good earth in relative humidity, will not merely produce the interference to the electronic equipment , even will break the equipment chip . Bring static object or may produce object (insulator ) of static through lead static body and earth form electric earth of return circuit is it defend static earth to call. Defend static earth require of clean quiet dry environment, all equipment outer cover and getting indoor facility must with line many to join reliably a bit PE have.Earth device of intelligent building little and kind earth resistance have, independent dyke thunder prote ct earth resistance in conformity with ≤ 10Ω; Independent safe protection earth resistance is in conformity with ≤ 4Ω; Independent exchanges earth resistance is in conformity with ≤ 4Ω; The independent working earth resistance of direct current is in confo rmity with ≤ 4Ω; Defend static earth resistance demand ≤ 100Ω the same.Intelligent power supply earth system of building should adopt TN-S system , should adopt according to norm one a total one common to ground the device , namely unify the earth body. It is a earth electric potential datum point to unify the earth body , therefore draw various kinds of function earth lead wire separately, the way of the electric potential of utilize electric potential such as being total and auxiliarying etc. makes up an intact unified earth system.Generally, unify earth system usable pile reinforcing bar of building, and zinc-plated flat-rolled steel link an organic whole it with 40* 4 (mm), as the natural earth body. According to norm, should systematic defending thunder earthshare systematically , in conformity with ≤ 1Ωearth resistance its. If can not reach the requirement , must increase artificial earth body or adopt chemistry lower law of hindering , make ≤ 1Ω of earth resistance . In turn into distribution is i t wait for electric potential copper arrange always to set up , copper this arrange one end through construct post or reinforcing bar of baseplate connect with unified earth body, another end join with exchanges neutral line , earth of system separately through different connection end son, with is it make safe protection earth every equipment join , with defend thunder's system join to need, join with the insulating copper core earth connection needing to make the earth electronic equipment of direct current. Among intellectual mansion, because system adopt computer is it manage or use computer as job tool to participate in, should adopt some earth not single of so earth of it system and should taking electric potential measure. Single some earth is it protect earth , job earth , direct current earth separate each other at the equipment to mean, it is systematic to become independence each. Can draw three insulating ground terminal each other from cabinet , and then guide to always waiting for the electric potential copper to arrange having and is grounded together from the lead wire. Is it is it together , is it wait for electric potential copper is it have to arrange always to receive three earth with lead wire and then to bind to allow. This to mix earth in fact, this kind connect law to be unsafe to can is it interfere to produce also, the present norm is not allowed .中文翻译:智能楼宇的电气保护与接地摘要:本文通过对几种供电接地系统的概括介绍,筛选出适合作为智能楼宇的供电接地系统,并对其所应采取的各类接地措施作了较为详尽的说明与分析,对智能楼宇应采取的电气保护与接地方法提出了适当的建议。
毕业设计外文原文+翻译(电力系统)
河南理工大学HENAN POLYTECHNIC UNIVERSITY英文文献翻译En glish literature tran slati on学院:电气工程与自动化学院专业班级:___________ 电气11-4班_______ 姓名: __________________ 宋家鹏_______ 学号:311008001120 __________ 扌旨导老师:____________ 汪旭东_______2014年6月5日河南理工大学HENAN POLYTECHNIC UNIVERSITY2.5 对称三相电路在这一部分,我们介绍三相对称电路的一下几个话题:丫连接,相电压,线电压,线电流,△形连接负荷,△ - Y变换,以及等效的相图。
c Ca Ab B图2-10三相Y连接电源带Y连接对称负荷电路图对称Y连接图2-10显示的是一个三相Y连接电源带Y连接对称负荷电路图。
对于Y连接电路,每个相的中性点是连接起来的。
在图2-10中电源中性点标记的是n,而负载中性点标记的是N。
把三相电源假设为理想电源,即阻抗忽略不计。
同时,电源和负载之间线路阻抗,中性点n与N之间的线路阻抗也可忽略不计。
三相负荷是对称的,意味着三相之中任意两相间的阻抗是相同的。
对称相电压在图2-10中,三相电源的终端呗标记为a、b、c,电源相电压标记为E an ,E bn,E cn,当电源的三相电压有相同的幅度,任意两相之间互差120度角时,电源是对称的。
当以E an 作为参考相量时,相电压的幅值是10V,对称三相相电压如下所示:E an=10 0E bn10 120 10 240 (2.5.1 )E cn10 120 10 240河南理工大学HENAN POLYTECHNIC UNIVERSITY图2-11以E an 作为参考的对称正序相电压向量图当E an 超前E bn 120度,E bn 超前E cn 以120度角时,此时的相序称为正相序或 者abc 相序。
电气毕业论文设计英语文献原文+翻译.doc
标准文档外文翻译院(系)专业班级姓名学号指导教师年月日Programmable designed for electro-pneumatic systemscontrollerJohn F.WakerlyThis project deals with the study of electro-pneumatic systems and the programmable controller that provides an effective and easy way to control the sequence of the pneumatic actuators movement and the states of pneumatic system. The project of a specific controller for pneumatic applications join the study of automation design and the control processing of pneumatic systems with the electronic design based on microcontrollers to implement the resources of the controller.1. IntroductionThe automation systems that use electro-pneumatic technology are formed mainly by three kinds of elements: actuators or motors, sensors or buttons and control elements like valves. Nowadays, most of the control elements used to execute the logic of the system were substituted by the Programmable Logic Controller (PLC). Sensors and switches are plugged as inputs and the direct control valves for the actuators are plugged as outputs. An internal program executes all the logic necessary to the sequence of the movements, simulates other components like counter, timer and control the status of the system.With the use of the PLC, the project wins agility, because it is possible to create and simulate the system as many times as needed. Therefore, time can be saved, risk of mistakes reduced and complexity can be increased using the same elements.A conventional PLC, that is possible to find on the market from many companies, offers many resources to control not only pneumatic systems, but all kinds of system that uses electrical components. The PLC can be very versatile and robust to be applied in many kinds of application in the industry or even security system and automation of buildings.Because of those characteristics, in some applications the PLC offers to much resources that are not even used to control the system, electro-pneumatic system is one of this kind of application. The use of PLC, especially for small size systems, can be very expensive for the automation project.An alternative in this case is to create a specific controller that can offer the exactly size and resources that the project needs [3, 4]. This can be made using microcontrollers as the base of this controller.The controller, based on microcontroller, can be very specific and adapted to only one kind of machine or it can work as a generic controller that can be programmed as a usual PLC and work with logic that can be changed. All these characteristics depend on what is needed and how much experience the designer has with developing an electronic circuit and firmware for microcontroller. But the main advantage of design the controller with the microcontroller is that the designer has the total knowledge of his controller, which makes it possible to control the size of the controller, change the complexity and the application of it. It means that the project gets more independence from other companies, but at the same time the responsibility of the control of the system stays at the designer hands2. Electro-pneumatic systemOn automation system one can find three basic components mentioned before, plus a logic circuit that controls the system. An adequate technique is needed to project the logic circuit and integrate all the necessary components to execute the sequence of movements properly.For a simple direct sequence of movement an intuitive method can be used [1, 5], but for indirect or more complex sequences the intuition can generate a very complicated circuit and signal mistakes. It is necessary to use another method that can save time of the project, makea clean circuit, can eliminate occasional signal overlapping and redundant circuits. The presented method is called step-by-step or algorithmic [1, 5], it is valid for pneumatic and electro-pneumatic systems and it was used as a base in this work.The method consists of designing the systems based on standard circuits made for each change on the state of the actuators, these changes are called steps.The first part is to design those kinds of standard circuits for each step, the next task is to link the standard circuits and the last part is to connect the control elements that receive signals from sensors, switches and the previous movements, and give the air or electricity to the supply lines of each step. In Figs. 1 and 2 the standard circuits are drawn for pneumatic and electro-pneumatic system [8]. It is possible to see the relations with the previous and the next steps.3. The method applied inside the controllerThe result of the method presented before is a sequence of movements of the actuator that is well defined by steps. It means that each change on the position of the actuators is a new state of the system and the transition between states is called step.The standard circuit described before helps the designer to define the states of the systems and to define the condition to each change betweenthe states. In the end of the design, the system is defined by a sequencethat never chances and states that have the inputs and the outputs well defined. The inputs are the condition for the transition and the outputs are the result of the transition.All the configuration of those steps stays inside of the microcontroller and is executed the same way it was designed. The sequences of strings are programmed inside the controller with 5 bytes; each string has the configuration of one step of the process. There are two bytes for the inputs, one byte for the outputs and two more for the other configurations and auxiliary functions of the step. After programming, this sequence of strings is saved inside of a non-volatile memory of the microcontroller, so they can be read and executed.The controller task is not to work in the same way as a conventional PLC, but the purpose of it is to be an example of a versatile controller that is design for an specific area. A conventional PLC process the control of the system using a cycle where it makes an image of the inputs, execute all the conditions defined by the configuration programmed inside, and then update the state of the outputs. This controller works in a different way, where it read the configuration of the step, wait the condition of inputs to be satisfied, then update the state or the outputs and after that jump to the next step and start the process again.It can generate some limitations, as the fact that this controller cannot execute, inside the program, movements that must be repeated for some time, but this problem can be solved with some external logic components. Another limitation is that the controller cannot be applied on systems that have no sequence. These limitations are a characteristic of the system that must be analyzed for each application.4. Characteristics of the controllerThe controller is based on the MICROCHIP microcontroller PIC16F877 [6,7] with 40 pins, and it has all the resources needed for thisproject .It has enough pins for all the components, serial communication implemented in circuit, EEPROM memory to save all the configuration of the system and the sequence of steps. For the execution of the main program, it offers complete resources as timers and interruptions.The list of resources of the controller was created to explore all the capacity of the microcontroller to make it as complete as possible. During the step, the program chooses how to use the resources reading the configuration string of the step. This string has two bytes for digital inputs, one used as a mask and the other one used as a value expected. One byte is used to configure the outputs value. One bytes more is used for the internal timer , the analog input or time-out. The EEPROM memory inside is 256 bytes length that is enough to save the string of the steps, with this characteristic it is possible to save between 48 steps (Table 1).The controller (Fig.3) has also a display and some buttons that are used with an interactive menu to program the sequence of steps and other configurations.4.1. Interaction componentsFor the real application the controller must have some elements to interact with the final user and to offer a complete monitoring of the system resources that are available to the designer while creating the logic control of the pneumatic system (Fig.3):•Interactive mode of work; function available on the main program for didactic purposes, the user gives the signal to execute the step. •LCD display, which shows the status of the system, values of inputs, outputs, timer and statistics of the sequence execution.•Beep to give important alerts, stop, start and emergency.• Leds to show power on and others to show the state of inputs and outputs.4.2. SecurityTo make the final application works property, a correct configuration to execute the steps in the right way is needed, but more then that itmust offer solutions in case of bad functioning or problems in the execution of the sequence. The controller offers the possibility to configure two internal virtual circuits that work in parallel to the principal. These two circuits can be used as emergency or reset buttons and can return the system to a certain state at any time [2]. There are two inputs that work with interruption to get an immediate access to these functions. It is possible to configure the position, the buttons and the value of time-out of the system.4.3. User interfaceThe sequence of strings can be programmed using the interface elements of the controller. A Computer interface can also be used to generate the user program easily. With a good documentation the final user can use the interface to configure the strings of bytes that define the steps of the sequence. But it is possible to create a program with visual resources that works as a translator to the user, it changes his work to the values that the controller understands.To implement the communication between the computer interface and the controller a simple protocol with check sum and number of bytes is the minimum requirements to guarantee the integrity of the data.4.4. FirmwareThe main loop works by reading the strings of the steps from the EEPROM memory that has all the information about the steps.In each step, the status of the system is saved on the memory and it is shown on the display too. Depending of the user configuration, it can use the interruption to work with the emergency circuit or time-out to keep the system safety. In Fig.4,a block diagram of micro controller main program is presented.5. Example of electro-pneumatic systemThe system is not a representation of a specific machine, but it is made with some common movements and components found in a real one. The system is composed of four actuators. The actuators A, B and C are double acting and D-single acting. Actuator A advances and stays in specified position till the end of the cycle, it could work fixing an object to the next action for example (Fig. 5) , it is the first step. When A reaches the end position, actuator C starts his work together with B, making as many cycles as possible during the advancing of B. It depends on how fastactuator B is advancing; the speed is regulated by a flowing control valve. It was the second step. B and C are examples of actuators working together, while B pushes an object slowly, C repeats its work for some time.When B reaches the final position, C stops immediately its cycle and comes back to the initial position. The actuator D is a single acting one with spring return and works together with the back of C, it is the third step. D works making very fast forward and backward movement, just one time. Its backward movement is the fourth step. D could be a tool to make a hole on the object.When D reaches the initial position, A and B return too, it is the fifth step.Fig. 6 shows the first part of the designing process where all the movements of each step should be defined [2]. (A+) means that the actuator A moves to the advanced position and (A−) to the initial position. The movements that happen at the same time are joined together in the same step. The system has five steps.These two representations of the system (Figs. 5 and 6) together are enough to describe correctly all the sequence. With them is possible to design the whole control circuit with the necessary logic components. But till this time, it is not a complete system, because it is missing some auxiliary elements that are not included in this draws because they work in parallel with the main sequence.These auxiliary elements give more function to the circuit and are very important to the final application; the most important of them is the parallel circuit linked with all the others steps. That circuit should be able to stop the sequence at any time and change the state of the actuators to a specific position. This kind of circuit can be used as a reset or emergency buttons.The next Figs. 7 and 8 show the result of using the method without the controller. These pictures are the electric diagram of the control circuit of the example, including sensors, buttons and the coils of the electrical valves.The auxiliary elements are included, like the automatic/manual switcher that permit a continuous work and the two start buttons that make the operator of a machine use their two hands to start the process, reducing the risk of accidents.6. Changing the example to a user programIn the previous chapter, the electro-pneumatic circuits were presented, used to begin the study of the requires to control a system that work with steps and must offer all the functional elements to be used in a real application. But, as explained above, using a PLC or this specific controller, the control becomes easier and the complexity can be increasealso.Table 2 shows a resume of the elements that are necessary to control the presented example.With the time diagram, the step sequence and the elements of the system described in Table 2 and Figs. 5 and 6 it is possible to create the configuration of the steps that can be sent to the controller (Tables 3 and 4).While using a conventional PLC, the user should pay attention to the logic of the circuit when drawing the electric diagram on the interface (Figs. 7 and 8), using the programmable controller, described in this work, the user must know only the concept o f the method and program only the configuration of each step.It means that, with a conventional PLC, the user must draw the relationbetween the lines and the draw makes it hard to differentiate the steps of the sequence. Normally, one needs to execute a simulation on the interface to find mistakes on the logicThe new programming allows that the configuration of the steps be separated, like described by the method. The sequence is defined by itself and the steps are described only by the inputs and outputs for each step.The structure of the configuration follows the order:1-byte: features of the step;2-byte: mask for the inputs;3-byte: value expected on the inputs;4-byte: value for the outputs;5-byte: value for the extra function.Table 5 shows how the user program is saved inside the controller, this is the program that describes the control of the example shown before.The sequence can be defined by 25 bytes. These bytes can be dividedin five strings with 5 bytes each that define each step of the sequence (Figs. 9 and 10).7. ConclusionThe controller developed for this work (Fig. 11) shows that it is possible to create a very useful programmable controller based on microcontroller. External memories or external timers were not used in case to explore the resources that the microcontroller offers inside. Outside the microcontroller, there are only components to implement the outputs, inputs, analog input, display for the interface and the serial communication.Using only the internal memory, it is possible to control a pneumatic system that has a sequence with 48 steps if all the resources for all steps are used, but it is possible to reach sixty steps in the case of a simpler system.The programming of the controller does not use PLC languages, but a configuration that is simple and intuitive. With electro-pneumatic system, the programming follows the same technique that was used before to design the system, but here the designer work s directly with the states or steps of the system.With a very simple machine language the designer can define all the configuration of the step using four or five bytes. It depends only on his experience to use all the resources of the controller.The controller task is not to work in the same way as a commercial PLC but the purpose of it is to be an example of a versatile controller that is designed for a specific area. Because of that, it is not possible to say which one works better; the system made with microcontroller is an alternative that works in a simple way.应用于电气系统的可编程序控制器约翰 F.维克里此项目主要是研究电气系统以及简单有效的控制气流发动机的程序和气流系统的状态。
(完整版)电气与信息学院自动化专业毕业设计(论文)外文翻译-电子
电气与信息学院自动化专业毕业设计(论文)外文翻译Electonic power steering system Research andDesign电子动力转向系统的研究与设计注:本毕业设计(论文)外文翻译文档前半部分为英文部分,后半部分为中文部分。
本外文翻译由专业人员翻译,内容详细数据全面,得到导师的一致好评。
值得大家借鉴参考。
本文档下载后为WORD版本,可按需直接编辑。
Electronic power steering systemWhat it isElectrically powered steering uses an electric motor to drive either the power steering is therefore independent of engine speed, resulting in significant energy savings.How it works :Conventional power steering systems use an engine accessory belt to drive the pump, providing pressurized fluid that operates a piston in the power steering gear or actuator to assist the driver.In electro- by an electric motor. Pump speed is regulated by an electric controller to vary pump pressure and flow, providing steering efforts tailored for different driving situations. The pump can be run at low speed or shut off to provide energy savings during straight ahead driving (which is most of the time in most world markets).Direct electric steering uses an electric motor attached to the steering rack via a gear mechanism (no pump or fluid). A variety of motor types and gear drives is possible. A microprocessor controls steering dynamics and driver effort. Inputs include vehicle speed and steering, wheel torque, angular position and turning rate.Working In Detail:A "steering sensor" is located on the input shaft where it enters the gearbox one: a "torque sensor" that converts steering torque input and its direction into voltage signals, and a "rotation sensor" that converts the rotation speed and direction into voltage signals. An "interface" circuit that shares the same sensor into signals the control electronics can process.Inputs from the steering sensor are digested by a microprocessor control unit that also monitors input from the vehicle's speed sensor. The sensor inputs are then compared to determine the control unit's memory. The control unit then sends out the appropriate command to the "power unit" which then supplies the electric motor with current. The motor pushes the rack to the right or left depending on which way the voltage flows (reversing the current reverses the direction the motor spins). Increasing the current to the motor increases the amount of power assist.The system which left or right power assist is provided in response to input from the steering torque and rotation sensor's inputs; a "return" control mode which is used to assist steering return after completing a turn; and a "damper" control mode that changes with vehicle speed to improve road feel and dampen kickback.If the steering wheel is turned and the full-lock position and steering assist reaches a maximum, the control unit reduces current to the electric motor to prevent an overload situation that might damage the motor. Thecontrol unit is also designed to protect the motor against voltage surges from a faulty alternator or charging problem.The electronic steering control unit is capable of self-diagnosing faults by monitoring the system's inputs and outputs, and the driving current of the electric motor. If a problem occurs, the control unit turns the system off by actuating a fail-safe relay in the power unit. This eliminates all power assist, causing the system to revert back to manual steering. A dash EPS warning light is also illuminated to alert the driver. To diagnose the problem, a technician jumps the terminals on the service check connector and reads out the trouble codes.click , fuel savings and package flexibility, at no cost penalty.Europe's a short time, electric steering will make it to the U.S., too. "It's just just a matter of time," says Aly Badawy, director of research and development for Delphi Saginaw Steering Systems in Saginaw, Mich. "The issue was cost and that's behind us now. By 2002 the U.S. the cost of electric power steering will absolutely be a wash over for electric steering. But by 2010, a TRW Inc. internal study estimates that one out of every three cars produced in the world will be equipped with some form ofelectrically-assisted steering. The Cleveland-based supplier claims its new steering systems could improve fuel economy by up to 2 mpg, while enhancing be run off a laptop computer. "They can take that computer and plug it in, attach it to the controller and change all the the fly," Badawy says. "It used to take months." Delphi in '99.Electric steering units are normally placed in one of three positions: column-drive, pinion-drive and rack-drive. Which system will become the norm is still unclear. Short term, OEMs will choose the steering system that is easiest to integrate into an existing platform. Obviously, greater potential comes from designing the system into an all-new platform. "We ," says Dr. Herman Strecker, group vice president of steering systems division at ZF in Schwaebisch Gmuend, Germany. "It's up to the market and OEMs which version finally will be used and manufactured." "The large manufacturers Sterling Heights, Mich. His company offers a portfolio of electric steering systems (-, and column-drive). TRW originally concentrated on what it still believes is the purest engineering solution for electric steering--the rack-drive system. The system is sometimes refer to as direct drive or ballnut drive. Still, this winter TRW in exchange for its electric column-drive steering technology and as sets. Initial production of the column and pinion drive electric steering systems is expected to begin in Birmingham, England, in 2000."What we lack is the credibility in the steering market," says Brendan Conner, managing director, TRWLucasVarity Electric Steering Ltd. "The combination with TRW provides us with a good opportunity for us to bridge that gap." LucasVarity currently 11 different vehicle types,mostly European. TRW is currently supplying its EAS systems for Ford and Chrysler EVs in North America and for GM's new Opel Astra.In 1995, according to Delphi, traditional 7596 of all vehicles sold globally. That 37-million vehicle pool consumes about 10 million gallons in relates to an electrically powered drive mechamsm for providing powered assistance to a vehicle steering mechanism. According to one aspect of the present invention, there is provided an electrically powered driven mechanism for providing powered assistance to a vehicle steering mechanism electrically powered drive motor drivingly connected to the rotatable member and a controller which is arranged to control the speed and direction of rotation of the drive motor in response to signals received from the torque sensor, the torque sensor including a sensor shaft adapted for connection to the rotatable member to form an extension thereof so that torque is transmitted through said sensor shaft when the rotatable member is manually rotated and a strain gauge mounted on the sensor shaft for producing a signal indicative of the amount of torque being transmitted through said shaft. Preferably the sensor shaft is non-rotatably mounted at one axial end in a first coupling member and is non-rotatably mounted at its opposite axial end in a second coupling member, the first and second coupling members being inter-engaged to permit limited rotation there between so that torque under a predetermined limit is transmitted by the sensor shaft only and so that torque above said predetermined limit is transmitted through the first and second coupling members. The first and second coupling members are preferably arranged to act as a bridge for drivingly connecting first and second portions of the rotating member toone another. Preferably the sensor shaft is of generally rectangular cross-section throughout the majority of its length. Preferably the strain gauge includes one or more SAW resonators secured to the sensor shaft. Preferably the motor is drivingly connected to the rotatable member via a clutch .Preferably the motor includes a gear box and is concentrically arranged relative to the rotatable member. Various aspects of the present invention will which :Figure 1 is a diagrammatic view of a vehicle steering mechanism including an electrically powered drive mechanism according to the present invention, Figure 2 is a flow diagram illustrating interaction between various components of the drive mechanism shown in Figure 1 ,Figure 3 is an axial section through the drive mechanism shown in Figure 1, Figure 4 is a sectional view taken along lines IV-IV in Figure 3,Figure 5 is a more detailed exploded view of the input drives coupling shown in Figure 3, and Figure 6 is a more detailed exploded view of the clutch showing in Figure 3. Referring initially to Figure 1 , there is shown a vehicle steering mechanism 10 drivingly connected to a pair of steerable road wheels The steering mechanism 10 shown includes a rack and pinion assembly 14 connected to the road wheels 12 via joints 15. The pinion(not shown) of assembly 14 is rotatably driven by a manually rotatable member in the form of a steering column 18 which is manually rotated by a steering wheel 19.The steering column 18 includes an electric powered drive mechanism 30 which includes an electric drive motor (not shown in Figure 1) for driving the pinion in response to torque loadings in the steering column 18 in order to provide power assistance for the operative when rotating the steering wheel 19.As schematically illustratedin Figure 2, the electric powered drive mechanism includes a torque sensor20 which measures the torque applied by the steering column 18 when driving the pinion and supplies a signal to a controller 40. The controller 40 is connected to a drive motor 50 and controls the electric current supplied to the motor 50 to control the amount of torque generated by the motor 50 and the direction of its rotation. The motor 50 is drivingly connected to the steering column 18 preferably via a gear box 60, preferably an epicyclic gear box, and a clutch 70. The clutch 70 is preferably permanently engaged during normal operation and is operative under certain conditions to isolate drive from the motor 50 to enable the pinion to be driven manually through the drive mechanism 30. This is a safety feature to enable the mechanism to function in the event of the motor 50 attempting to drive the steering column too fast andor in the wrong direction or in the case where themotor andor gear box assembly including a short sensor shaft on which is mounted a strain gauge capable of accurately measuring strain in the sensor shaft brought about by the application of torque within a predetermined range. Preferably the predetermined range of torque which is measured is 0-lONm; more preferably is about l-5Nm.Preferably the range of measured torque corresponds to about 0-1000 microstrain and the construction of the sensor shaft is chosen such that a torque of 5Nm will result in a twist of less than 2°in the shaft, more preferably less than 1 °.Preferably the strain gauge is a SAW resonator, a suitable SAW resonator being of axis and at 90° to one another. Preferably the resonators operate with a resonance controller 40 of 1 MHz ±500 KHz dependingupon the direction of rotation of the sensor shaft. Thus, when the sensor shaft is not being twisted due to the absence of torque, it produces a 1 MHz signal. When the sensor shaft is twisted in one direction it produces a signal between 1.0 to 1.5 MHz. When the sensor shaft is twisted in the opposite direction it produces a signal between 1.0 to 0.5 MHz. Thus the same sensor is able to produce a signal indicative of the degree of torque and also the direction of rotation of the sensor shaft. Preferably the amount of torque generated by the motor in response to a measured torque of between 0-10Nm is 0-40Nm and for a measured torque of between l-5Nm is 0-25Nm.Preferably a feed back circuit is provided whereby the electric current being used by the motor is measured and compared by the controller 40 to ensure that the motor is running in the correct direction and providing the desired amount of power assistance. Preferably the controller acts to reduce the measured torque to zero and so controls the motor to increase its torque output to reduce the measured torque. A vehicle speed sensor (not shown) is preferably provided which sends a signal indicative of vehicle speed to the controller. The controller uses this signal to modify the degree of power assistance provided in response to the measured torque. Thus at low vehicle speeds maximum power assistance will be provided and a software and so is able to function more reliably in a car vehicle environment. It is envisaged that a logic sequence not be as . Automobile traffic in the actual process, at the time to about 5 percent of the time travelling, the HPS system, engine running, the pumps will always be in working condition, the oil pipeline in circulation, so that vehicle fuelconsumption rate by 4 % To 6%, while EPS only when needed for energy, vehicle fuel consumption rates only increased by 0.5 percent.3) "Road sense of" good. Because EPS internal use of rigid, system of the lag can be controlled by software, and can be used in accordance with the operation of the driver to adjust.4) back to being good. EPS simple structure of small internal resistance, is a good back, get back to being the best characteristics, improve vehicle . HPS the not be recovered, the environmental pollution are to a certain extent, while EPS almost no pollution to the environment.6) can be independent of the engines work. EPS for battery powered devices, as long as sufficient battery power, no matter what the condition for the engine, can produce power role.7) should using electric power steering gear, the car of the economy, power and mobility the car is a new power steering system device, developed rapidly in recent years both at the same time there are also potential safety problems. In the analysis This unique product on the basis of the author of the characteristics of electronic control devices, security clearance just that the factors that deal with security measures, and discussed a number of concerns the safety of specific issues. The results show that : Existing standards can not meet the electric power steering device security needs and made the electric power steering device safety evaluation of the idea. Research work on the electric power steering device development and evaluation of reference value.电子动力转向系统图1电子动力转向系统的工作原理:电子动力转向系统是通过一个电动机来驱动动力方向盘液压泵或直接驱动转向联动装置。
电气毕业设计用外文翻译(中英文对照)
The Transformer on load ﹠Introduction to DC Machine sThe Transformer on loadIt has been shown that a primary input voltage 1V can be transformed to any desired open-circuit secondary voltage 2E by a suitable choice of turns ratio. 2E is available for circulating a load current impedance. For the moment, a lagging power factor will be considered. The secondary current and the resulting ampere-turns 22N I will change the flux, tending to demagnetize the core, reduce m Φ and with it 1E . Because the primary leakage impedance drop is so low, a small alteration to 1E will cause an appreciable increase of primary current from 0I to a new value of 1I equal to ()()i jX R E V ++111/. The extra primary current and ampere-turns nearly cancel the whole of the secondary ampere-turns. This being so , the mutual flux suffers only a slight modification and requires practically the same net ampere-turns 10N I as on no load. The total primary ampere-turns are increased by an amount 22N I necessary to neutralize the same amount of secondary ampere-turns. In the vector equation , 102211N I N I N I =+; alternatively, 221011N I N I N I -=. At full load, the current 0I is only about 5% of the full-load current and so 1I is nearly equal to 122/N N I . Because in mind that 2121/N N E E =, the input kV A which is approximately 11I E is also approximately equal to the output kV A, 22I E .The physical current has increased, and with in the primary leakage flux to which it is proportional. The total flux linking the primary ,111Φ=Φ+Φ=Φm p , is shown unchanged because the total back e.m.f.,(dt d N E /111Φ-)is still equal and opposite to 1V . However, there has been a redistribution of flux and the mutual component has fallen due to the increase of 1Φ with 1I . Although the change is small, the secondary demand could not be met without a mutual flux and e.m.f. alteration to permit primary current to change. The net flux s Φlinking the secondary winding has been further reduced by the establishment of secondary leakage flux due to 2I , and this opposes m Φ. Although m Φ and2Φ are indicated separately , they combine to one resultant in the core which will be downwards at the instant shown. Thus the secondary terminal voltage is reduced to dt d N V S /22Φ-= which can be considered in two components, i.e. dt d N dt d N V m //2222Φ-Φ-=or vectorially 2222I jX E V -=. As for the primary, 2Φ is responsible for a substantially constant secondaryleakage inductance 222222/Λ=ΦN i N . It will be noticed that the primary leakage flux is responsiblefor part of the change in the secondary terminal voltage due to its effects on the mutual flux. The two leakage fluxes are closely related; 2Φ, for example, by its demagnetizing action on m Φ has caused the changes on the primary side which led to the establishment of primary leakage flux.If a low enough leading power factor is considered, the total secondary flux and the mutual flux are increased causing the secondary terminal voltage to rise with load. p Φ is unchanged in magnitude from the no load condition since, neglecting resistance, it still has to provide a total back e.m.f. equal to 1V . It is virtually the same as 11Φ, though now produced by the combined effect of primary and secondary ampere-turns. The mutual flux must still change with load to give a change of 1E and permit more primary current to flow. 1E has increased this time but due to the vector combination with 1V there is still an increase of primary current.Two more points should be made about the figures. Firstly, a unity turns ratio has been assumed for convenience so that '21E E =. Secondly, the physical picture is drawn for a different instant of time from the vector diagrams which show 0=Φm , if the horizontal axis is taken as usual, to be the zero time reference. There are instants in the cycle when primary leakage flux is zero, when the secondary leakage flux is zero, and when primary and secondary leakage flux is zero, and when primary and secondary leakage fluxes are in the same sense.The equivalent circuit already derived for the transformer with the secondary terminals open, can easily be extended to cover the loaded secondary by the addition of the secondary resistance and leakage reactance.Practically all transformers have a turns ratio different from unity although such an arrangement issometimes employed for the purposes of electrically isolating one circuit from another operating at the same voltage. To explain the case where 21N N ≠ the reaction of the secondary will be viewed from the primary winding. The reaction is experienced only in terms of the magnetizing force due to the secondary ampere-turns. There is no way of detecting from the primary side whether 2I is large and 2N small or vice versa, it is the product of current and turns which causes the reaction. Consequently, a secondary winding can be replaced by any number of different equivalent windings and load circuits which will give rise to an identical reaction on the primary .It is clearly convenient to change the secondary winding to an equivalent winding having the same number of turns 1N as the primary.With 2N changes to 1N , since the e.m.f.s are proportional to turns, 2212)/('E N N E = which is the same as 1E .For current, since the reaction ampere turns must be unchanged 1222'''N I N I = must be equal to 22N I .i.e. 2122)/(I N N I =.For impedance , since any secondary voltage V becomes V N N )/(21, and secondary current I becomes I N N )/(12, then any secondary impedance, including load impedance, must become I V N N I V /)/('/'221=. Consequently, 22212)/('R N N R = and 22212)/('X N N X = .If the primary turns are taken as reference turns, the process is called referring to the primary side. There are a few checks which can be made to see if the procedure outlined is valid.For example, the copper loss in the referred secondary winding must be the same as in the original secondary otherwise the primary would have to supply a different loss power. ''222R I must be equal to 222R I . )222122122/()/(N N R N N I ∙∙ does in fact reduce to 222R I .Similarly the stored magnetic energy in the leakage field )2/1(2LI which is proportional to 22'X I will be found to check as ''22X I . The referred secondary 2212221222)/()/(''I E N N I N N E I E kVA =∙==.The argument is sound, though at first it may have seemed suspect. In fact, if the actual secondarywinding was removed physically from the core and replaced by the equivalent winding and load circuit designed to give the parameters 1N ,'2R ,'2X and '2I , measurements from the primary terminals would be unable to detect any difference in secondary ampere-turns, kVA demand or copper loss, under normal power frequency operation.There is no point in choosing any basis other than equal turns on primary and referred secondary, but it is sometimes convenient to refer the primary to the secondary winding. In this case, if all the subscript 1’s are interchanged for the subscript 2’s, the necessary referring constants are easily found; e.g. 2'1R R ≈,21'X X ≈; similarly 1'2R R ≈ and 12'X X ≈.The equivalent circuit for the general case where 21N N ≠ except that m r has been added to allow for iron loss and an ideal lossless transformation has been included before the secondary terminals to return '2V to 2V .All calculations of internal voltage and power losses are made before this ideal transformation is applied. The behaviour of a transformer as detected at both sets of terminals is the same as the behaviour detected at the corresponding terminals of this circuit when the appropriate parameters are inserted. The slightly different representation showing the coils 1N and 2N side by side with a core in between is only used for convenience. On the transformer itself, the coils are , of course , wound round the same core.Very little error is introduced if the magnetising branch is transferred to the primary terminals, but a few anomalies will arise. For example ,the current shown flowing through the primary impedance is no longer the whole of the primary current. The error is quite small since 0I is usually such a small fraction of 1I . Slightly different answers may be obtained to a particular problem depending on whether or not allowance is made for this error. With this simplified circuit, the primary and referred secondary impedances can be added to give: 221211)/(Re N N R R += and 221211)/(N N X X Xe +=It should be pointed out that the equivalent circuit as derived here is only valid for normal operation at power frequencies; capacitance effects must be taken into account whenever the rate of change of voltage would give rise to appreciable capacitance currents, dt CdV I c /=. They are important at high voltages and at frequencies much beyond 100 cycles/sec. A further point is not theonly possible equivalent circuit even for power frequencies .An alternative , treating the transformer as a three-or four-terminal network, gives rise to a representation which is just as accurate and has some advantages for the circuit engineer who treats all devices as circuit elements with certain transfer properties. The circuit on this basis would have a turns ratio having a phase shift as well as a magnitude change, and the impedances would not be the same as those of the windings. The circuit would not explain the phenomena within the device like the effects of saturation, so for an understanding of internal behaviour .There are two ways of looking at the equivalent circuit:(a) viewed from the primary as a sink but the referred load impedance connected across '2V ,or (b) viewed from the secondary as a source of constant voltage 1V with internal drops due to 1Re and 1Xe . The magnetizing branch is sometimes omitted in this representation and so the circuit reduces to a generator producing a constant voltage 1E (actually equal to 1V ) and having an internal impedance jX R + (actually equal to 11Re jXe +).In either case, the parameters could be referred to the secondary winding and this may save calculation time .The resistances and reactances can be obtained from two simple light load tests.Introduction to DC MachinesDC machines are characterized by their versatility. By means of various combination of shunt, series, and separately excited field windings they can be designed to display a wide variety of volt-ampere or speed-torque characteristics for both dynamic and steadystate operation. Because of the ease with which they can be controlled , systems of DC machines are often used in applications requiring a wide range of motor speeds or precise control of motor output.The essential features of a DC machine are shown schematically. The stator has salient poles and is excited by one or more field coils. The air-gap flux distribution created by the field winding is symmetrical about the centerline of the field poles. This axis is called the field axis or direct axis.As we know , the AC voltage generated in each rotating armature coil is converted to DC in the external armature terminals by means of a rotating commutator and stationary brushes to which the armature leads are connected. The commutator-brush combination forms a mechanical rectifier,resulting in a DC armature voltage as well as an armature m.m.f. wave which is fixed in space. The brushes are located so that commutation occurs when the coil sides are in the neutral zone , midway between the field poles. The axis of the armature m.m.f. wave then in 90 electrical degrees from the axis of the field poles, i.e., in the quadrature axis. In the schematic representation the brushes are shown in quarature axis because this is the position of the coils to which they are connected. The armature m.m.f. wave then is along the brush axis as shown.. (The geometrical position of the brushes in an actual machine is approximately 90 electrical degrees from their position in the schematic diagram because of the shape of the end connections to the commutator.)The magnetic torque and the speed voltage appearing at the brushes are independent of the spatial waveform of the flux distribution; for convenience we shall continue to assume a sinusoidal flux-density wave in the air gap. The torque can then be found from the magnetic field viewpoint.The torque can be expressed in terms of the interaction of the direct-axis air-gap flux per pole d Φ and the space-fundamental component 1a F of the armature m.m.f. wave . With the brushes in the quadrature axis, the angle between these fields is 90 electrical degrees, and its sine equals unity. For a P pole machine 12)2(2a d F P T ϕπ= In which the minus sign has been dropped because the positive direction of the torque can be determined from physical reasoning. The space fundamental 1a F of the sawtooth armature m.m.f. wave is 8/2π times its peak. Substitution in above equation then gives a d a a d a i K i mPC T ϕϕπ==2 Where a i =current in external armature circuit;a C =total number of conductors in armature winding;m =number of parallel paths through winding;And mPC K a a π2=Is a constant fixed by the design of the winding.The rectified voltage generated in the armature has already been discussed before for an elementary single-coil armature. The effect of distributing the winding in several slots is shown in figure ,in which each of the rectified sine waves is the voltage generated in one of the coils, commutation taking place at the moment when the coil sides are in the neutral zone. The generated voltage as observed from the brushes is the sum of the rectified voltages of all the coils in series between brushes and is shown by the rippling line labeled a e in figure. With a dozen or so commutator segments per pole, the ripple becomes very small and the average generated voltage observed from the brushes equals the sum of the average values of the rectified coil voltages. The rectified voltage a e between brushes, known also as the speed voltage, is m d a m d a a W K W mPC e ϕϕπ==2 Where a K is the design constant. The rectified voltage of a distributed winding has the same average value as that of a concentrated coil. The difference is that the ripple is greatly reduced.From the above equations, with all variable expressed in SI units:m a a Tw i e =This equation simply says that the instantaneous electric power associated with the speed voltage equals the instantaneous mechanical power associated with the magnetic torque , the direction of power flow being determined by whether the machine is acting as a motor or generator.The direct-axis air-gap flux is produced by the combined m.m.f. f f i N ∑ of the field windings, the flux-m.m.f. characteristic being the magnetization curve for the particular iron geometry of the machine. In the magnetization curve, it is assumed that the armature m.m.f. wave is perpendicular to the field axis. It will be necessary to reexamine this assumption later in this chapter, where the effects of saturation are investigated more thoroughly. Because the armature e.m.f. is proportional to flux timesspeed, it is usually more convenient to express the magnetization curve in terms of the armature e.m.f. 0a e at a constant speed 0m w . The voltage a e for a given flux at any other speed m w is proportional to the speed,i.e. 00a m m a e w w e Figure shows the magnetization curve with only one field winding excited. This curve can easily be obtained by test methods, no knowledge of any design details being required.Over a fairly wide range of excitation the reluctance of the iron is negligible compared with that of the air gap. In this region the flux is linearly proportional to the total m.m.f. of the field windings, the constant of proportionality being the direct-axis air-gap permeance.The outstanding advantages of DC machines arise from the wide variety of operating characteristics which can be obtained by selection of the method of excitation of the field windings. The field windings may be separately excited from an external DC source, or they may be self-excited; i.e., the machine may supply its own excitation. The method of excitation profoundly influences not only the steady-state characteristics, but also the dynamic behavior of the machine in control systems.The connection diagram of a separately excited generator is given. The required field current is a very small fraction of the rated armature current. A small amount of power in the field circuit may control a relatively large amount of power in the armature circuit; i.e., the generator is a power amplifier. Separately excited generators are often used in feedback control systems when control of the armature voltage over a wide range is required. The field windings of self-excited generators may be supplied in three different ways. The field may be connected in series with the armature, resulting in a shunt generator, or the field may be in two sections, one of which is connected in series and the other in shunt with the armature, resulting in a compound generator. With self-excited generators residual magnetism must be present in the machine iron to get the self-excitation process started.In the typical steady-state volt-ampere characteristics, constant-speed primemovers being assumed. The relation between the steady-state generated e.m.f. a E and the terminal voltage t V isa a a t R I E V -=Where a I is the armature current output and a R is the armature circuit resistance. In a generator, a E is large than t V ; and the electromagnetic torque T is a countertorque opposing rotation.The terminal voltage of a separately excited generator decreases slightly with increase in the load current, principally because of the voltage drop in the armature resistance. The field current of a series generator is the same as the load current, so that the air-gap flux and hence the voltage vary widely with load. As a consequence, series generators are not often used. The voltage of shunt generators drops off somewhat with load. Compound generators are normally connected so that the m.m.f. of the series winding aids that of the shunt winding. The advantage is that through the action of the series winding the flux per pole can increase with load, resulting in a voltage output which is nearly constant. Usually, shunt winding contains many turns of comparatively heavy conductor because it must carry the full armature current of the machine. The voltage of both shunt and compound generators can be controlled over reasonable limits by means of rheostats in the shunt field. Any of the methods of excitation used for generators can also be used for motors. In the typical steady-state speed-torque characteristics, it is assumed that the motor terminals are supplied from a constant-voltage source. In a motor the relation between the e.m.f. a E generated in the armature and the terminal voltage t V isa a a t R I E V +=Where a I is now the armature current input. The generated e.m.f. a E is now smaller than the terminal voltage t V , the armature current is in the opposite direction to that in a motor, and the electromagnetic torque is in the direction to sustain rotation ofthe armature.In shunt and separately excited motors the field flux is nearly constant. Consequently, increased torque must be accompanied by a very nearly proportional increase in armature current and hence by a small decrease in counter e.m.f. to allow this increased current through the small armature resistance. Since counter e.m.f. is determined by flux and speed, the speed must drop slightly. Like the squirrel-cage induction motor ,the shunt motor is substantially a constant-speed motor having about 5 percent drop in speed from no load to full load. Starting torque and maximum torque are limited by the armature current that can be commutated successfully.An outstanding advantage of the shunt motor is ease of speed control. With a rheostat in the shunt-field circuit, the field current and flux per pole can be varied at will, and variation of flux causes the inverse variation of speed to maintain counter e.m.f. approximately equal to the impressed terminal voltage. A maximum speed range of about 4 or 5 to 1 can be obtained by this method, the limitation again being commutating conditions. By variation of the impressed armature voltage, very wide speed ranges can be obtained.In the series motor, increase in load is accompanied by increase in the armature current and m.m.f. and the stator field flux (provided the iron is not completely saturated). Because flux increases with load, speed must drop in order to maintain the balance between impressed voltage and counter e.m.f.; moreover, the increase in armature current caused by increased torque is smaller than in the shunt motor because of the increased flux. The series motor is therefore a varying-speed motor with a markedly drooping speed-load characteristic. For applications requiring heavy torque overloads, this characteristic is particularly advantageous because the corresponding power overloads are held to more reasonable values by the associated speed drops. Very favorable starting characteristics also result from the increase in flux with increased armature current.In the compound motor the series field may be connected either cumulatively, so that its.m.m.f.adds to that of the shunt field, or differentially, so that it opposes. The differential connection is very rarely used. A cumulatively compounded motor hasspeed-load characteristic intermediate between those of a shunt and a series motor, the drop of speed with load depending on the relative number of ampere-turns in the shunt and series fields. It does not have the disadvantage of very high light-load speed associated with a series motor, but it retains to a considerable degree the advantages of series excitation.The application advantages of DC machines lie in the variety of performance characteristics offered by the possibilities of shunt, series, and compound excitation. Some of these characteristics have been touched upon briefly in this article. Still greater possibilities exist if additional sets of brushes are added so that other voltages can be obtained from the commutator. Thus the versatility of DC machine systems and their adaptability to control, both manual and automatic, are their outstanding features.负载运行的变压器及直流电机导论负载运行的变压器通过选择合适的匝数比,一次侧输入电压1V 可任意转换成所希望的二次侧开路电压2E 。
(完整版)电气专业中英文对照翻译毕业设计论文
优秀论文审核通过未经允许切勿外传Chapter 3 Digital Electronics3.1 IntroductionA circuit that employs a numerical signal in its operation is classified as a digital circuitputers,pocket calculators, digital instruments, and numerical control (NC) equipment are common applications of digital circuits. Practically unlimited quantities of digital information can be processed in short periods of time electronically. With operational speed of prime importance in electronics today,digital circuits are used more frequently.In this chapter, digital circuit applications are discussed.There are many types of digital circuits that electronics, including logic circuits, flip-flop circuits, counting circuits, and many others. The first sections of this unit discuss the number systems that are basic to digital circuit understanding. The remainder of the chapter introduces some of the types of digital circuits and explains Boolean algebra as it is applied to logic circuits.3.2 Digital Number SystemsThe most common number system used today is the decimal system,in which 10 digits are used for counting. The number of digits in the systemis called its base (or radix).The decimal system,therefore,the counting process. The largest digit that can be used in a specific place or location is determined by the base of the system. In the decimal system the first position to the left of the decimal point is called the units place. Any digit from 0 to 9 can be used in this place.When number values greater than 9 are used,they must be expressed with two or more places.The next position to the left of the units place in a decimal system is the tens place.The number 99 is the largest digital value that can be expressed by two places in the decimal system.Each place added to the left extends the number system by a power of 10.Any number can be expressed as a sum of weighted place values.The decimal number 2583,for example, is expressed as (2×1000)+(5×100)+(8×10)+(3×1).The decimal number system is commonly used in our daily lives. Electronically, the binary system.Electronically,the value of 0 can be associated with a low-voltage value or no voltage. The number 1 can then be associated with a voltage value larger than 0. Binary systems that use these voltage values are said to , this chapter.The two operational states of a binary system,1 and 0,are natural circuit conditions. When a circuit is turned off or the off, or 0,state. An electrical circuit that the on,or 1,state. By using transistor or ICs,it is electronically possible to change states in less than a microsecond. Electronic devices make it possible to manipulate millions of 0s and is in a second and thus to process information quickly.The basic principles of numbering used in decimal numbers apply ingeneral to binary numbers.The base of the binary system is 2,meaning that only the digits 0 and 1 are used to express place value. The first place to the left of the binary point,or starting point,represents the units,or is,location. Places to the left of the binary point are the powers of 2.Some of the place values in base 2 are 2º=1,2¹=2,2²=4,2³=8,2⁴=16,25=32,and 26=64.When bases other than 10 are used,the numbers should example.The number 100₂(read“one,zero,zero, base 2”)is equivalent to 4 in base 10,or 410.Starting with the first digit to the left of the binary point,this number this method of conversion a binary number to an equivalent decimal number,write down the binary number first. Starting at the binary point,indicate the decimal equivalent for each binary place location where a 1 is indicated. For each 0 in the binary number leave a blank space or indicate a 0 ' Add the place values and then record the decimal equivalent.The conversion of a decimal number to a binary equivalent is achieved by repetitive steps of division by the number 2.When the quotient is even with no remainder,a 0 is recorded.When the quotient process continues until the quotient is 0.The binary equivalent consists of the remainder values in the order last to first.3.2.2 Binary-coded Decimal (BCD) Number SystemWhen large numbers are indicated by binary numbers,they are difficult to use. For this reason,the Binary-Coded Decimal(BCD) method of counting was devised. In this system four binary digits are used to represent each decimal digit.To illustrate this procedure,the number 105,is converted to a BCD number.In binary numbers,To apply the BCD conversion process,the base 10 number is first divided into digits according to place values.The number 10510 gives the digits 1-0-5.Converting each displayed by this process with only 12 binary numbers. The between each group of digits is important when displaying BCD numbers.The largest digit to be displayed by any group of BCD numbers is 9.Six digits of a number-coding group are not used at all in this system.Because of this, the octal (base 8) and the binary form but usually display them in BCD,octal,or a base 8 system is 7. The place values starting at the left of the octal point are the powers of eight: 80=1,81=8,82=64,83=512,84=4096,and so on.The process of converting an octal number to a decimal number is the same as that used in the binary-to-decimal conversion process. In this method, equivalent decimal is 25810.Converting an octal number to an equivalent binary number is similar to the BCD conversion process. The octal number is first divided into digits according to place value. Each octal digit is then converted into an equivalent binary number using only three digits.Converting a decimal number to an octal number is a process of repetitive division by the number 8.After the quotient determined,the remainder is brought down as the place value.When the quotient is even with no remainder,a 0 is transferred to the place position.The number for converting 409810 to base 8 is 100028.Converting a binary number to an octal number is an importantconversion process of digital circuits. Binary numbers are first processed at a very output circuit then accepts this signal and converts it to an octal signal displayed on a readout device.must first be divided into groups of three,starting at the octal point.Each binary group is then converted into an equivalent octal number.These numbers are then combined,while remaining in their same respective places,to represent the equivalent octal number.3.2.4 Hexadecimal Number SystemThe digital systems to process large number values.The base of this system is 16,which means that the largest number used in a place is 15.Digits used by this system are the numbers 0-9 and the letters A-F. The letters A-P are used to denote the digits 10-15,respectively. The place values to the left of the .The process of changing a proper digital order.The place values,or powers of the base,are then positioned under the respective digits in step 2.In step 3,the value of each digit is recorded. The values in steps 2 and 3 are then multiplied together and added. The sum gives the decimal equivalent value of a . Initially,the converted to a binary number using four digits per group. The binary group is combined to form the equivalent binary number.The conversion of a decimal number to a ,as with other number systems. In this procedure the division is by 16 and remainders can be as large as 15.Converting a binary number to a groups of four digits,starting at the converted to a digital circuit-design applications binary signals arefar superior to those of the octal,decimal,or be processed very easily through electronic circuitry,since they can be represented by two stable states of operation. These states can be easily defined as on or off, 1 or 0,up or down,voltage or no voltage,right or left,or any other two-condition states. There must be no in-between state.The symbols used to define the operational state of a binary system are very important.In positive binary logic,the state of voltage,on,true,or a letter designation (such as A ) is used to denote the operational state 1 .No voltage,off,false,and the letter A are commonly used to denote the 0 condition. A circuit can be set to either state and will remain in that state until it is caused to change conditions.Any electronic device that can be set in one of two operational states or conditions by an outside signal is said to be bistable. Relays,lamps,switches,transistors, diodes and ICs may be used for this purpose. A bistable device .By using many of these devices,it is possible to build an electronic circuit that will make decisions based upon the applied input signals. The output of this circuit is a decision based upon the operational conditions of the input. Since the application of bistable devices in digital circuits makes logical decisions,they are commonly called binary logic circuits.If we were to draw a circuit diagram for such a system,including all the resistors,diodes,transistors and interconnections,we would face an overwhelming task, and an unnecessary one.Anyone who read the circuit diagram would in their mind group the components into standard circuits and think in terms of the" system" functions of the individual gates. Forthis reason,we design and draw digital circuit with standard logic symbols. Three basic circuits of this type are used to make simple logic decisions.These are the AND circuit, OR circuit, and the NOT circuit.Electronic circuits designed to perform logic functions are called gates.This term refers to the capability of a circuit to pass or block specific digital signals.The logic-gate symbols are shown in Fig.3-1.The small circle at the output of NOT gate indicates the inversion of the signal. Mathematically,this action is described as A=.Thus without the small circle,the rectangle would represent an amplifier (or buffer) with a gain of unity.An AND gate the 1 state simultaneously,then there will be a 1 at the output.The AND gate in Fig. 3-1 produces only a 1 out-put when A and B are both 1. Mathematically,this action is described as A·B=C. This expression shows the multiplication operation. An OR gate Fig.3-1 produces a when either or both inputs are l.Mathematically,this action is described as A+B=C. This expression shows OR addition. This gate is used to make logic decisions of whether or not a 1 appears at either input.An IF-THEN type of sentence is often used to describe the basic operation of a logic state.For example,if the inputs applied to an AND gate are all 1,then the output will be 1 .If a 1 is applied to any input of an OR gate,then the output will be 1 .If an input is applied to a NOT gate,then the output will be the opposite or inverse.The logic gate symbols in Fig. 3-1 show only the input and output connections. The actual gates,when wired into a digital circuit, would pin 14 and 7.3.4 Combination Logic GatesWhen a NOT gate is combined with an AND gate or an OR gate,it iscalled a combination logic gate. A NOT-AND gate is called a NAND gate,which is an inverted AND gate. Mathematically the operation of a NAND gate is A·B=. A combination NOT-OR ,or NOR,gate produces a negation of the OR function.Mathematically the operation of a NOR gate is A+B=.A 1 appears at the output only when A is 0 and B is 0.The logic symbols are shown in Fig. 3-3.The bar over C denotes the inversion,or negative function,of the gate.The logic gates discussed .In actual digital electronic applications,solid-state components are ordinarily used to accomplish gate functions.Boolean algebra is a special form of algebra that was designed to show the relationships of logic operations.Thin form of algebra is ideally suited for analysis and design of binary logic systems.Through the use of Boolean algebra,it is possible to write mathematical expressions that describe specific logic functions.Boolean expressions are more meaningful than complex word statements or or elaborate truth tables.The laws that apply to Boolean algebra are used to simplify complex expressions. Through this type of operation it may be possible to reduce the number of logic gates needed to achieve a specific function before the circuits are designed.In Boolean algebra the variables of an equation are assigned by letters of the alphabet.Each variable then exists in states of 1 or 0 according to its condition.The 1,or true state,is normally represented by a single letter such as A,B or C.The opposite state or condition is then described as 0,or false,and is represented by or A’.This is described as NOT A,A negated,or A complemented.Boolean algebra is somewhat different from conventional algebra withrespect to mathematical operations.The Boolean operations are expressed as follows:Multiplication:A AND B,AB,,A·BOR addition:A OR B .A+BNegation,or complementing:NOT A,,A’Assume that a digital logic circuit only C is on by itself or when A,B and C are all on expression describes the desired output. Eight (23) different combinations of A,B,and C exist in this expression because there are three,inputs. Only two of those combinations should cause a signal that will actuate the output. When a variable is not on (0),it is expressed as a negated letter. The original statement is expressed as follows: With A,B,and C on or with A off, B off, and C on ,an output (X)will occur:ABC+C=XA truth table illustrates if this expression is achieved or not.Table 3-1 shows a truth table for this equation. First,ABC is determined by multiplying the three inputs together.A 1 appears only when the A,B,and C inputs are all 1.Next the negated inputs A andB are determined.Then the products of inputs C,A,and B are listed.The next column shows the addition of ABC and C.The output of this equation shows that output 1 is produced only when C is 1 or when ABC is 1.A logic circuit to accomplish this Boolean expression is shown in Fig. 3-4.Initially the equation is analyzed to determine its primary operational function.Step1 shows the original equation.The primary function is addition,since it influences all parts of the equation in some way.Step 2 shows the primary function changed to a logic gate diagram.Step 3 showsthe branch parts of the equation expressed by logic diagram,with AND gates used to combine terms.Step 4 completes the process by connecting all inputs together.The circles at inputs,of the lower AND gate are used to achieve the negative function of these branch parts.The general rules for changing a Boolean equation into a logic circuit diagram are very similar to those outlined.Initially the original equation must be analyzed for its primary mathematical function.This is then changed into a gate diagram that is inputted by branch parts of the equation.Each branch operation is then analyzed and expressed in gate form.The process continues until all branches are completely expressed in diagram formmon inputs are then connected together.3.5 Timing and Storage ElementsDigital electronics involves a number of items that are not classified as gates.Circuits or devices of this type the operation of a system.Included in this system are such things as timing devices,storage elements,counters,decoders,memory,and registers.Truth tables symbols,operational characteristics,and applications of these items will be presented an IC chip. The internal construction of the chip cannot be effectively altered. Operation is controlled by the application of an external signal to the input. As a rule,very little work can be done to control operation other than altering the input signal.The logic circuits in Fig. 3-4 are combinational circuit because the output responds immediately to the inputs and there is no memory. When memory is a part of a logic circuit,the system is called sequential circuit because its output depends on the input plus its an input signal isapplied.A bistable multivibrator,in the strict sense,is a flip-flop. When it is turned on,it assumes a particular operational state. It does not change states until the input is altered.A flip-flop opposite polarity.Two inputs are usually needed to alter the state of a flip-flop. A variety of names are used for the inputs.These vary a great deal between different flip-flops.1. R-S flip-flopsFig.3-5 shows logic circuit construction of an R-S flip-flop. It is constructed from two NAND gates. The output of each NAND provides one of the inputs for the other NAND. R stands for the reset input and S represents the set input.The truth table and logic symbol are shown in Fig. 3-6.Notice that the truth table is somewhat more complex than that of a gate. It shows, for example,the applied input, previous output,and resulting output.To understand the operation of an R-S flip-flop,we must first look at the previous outputs.This is the status of the output before a change is applied to the input. The first four items of the previous outputs are Q=1 and =0. The second four states this case of the input to NANDS is 0 and that is 0,which implies that both inputs to NANDR are 1.By symmetry,the logic circuit will also stable with Q0 and 1.If now R momentarily becomes 0,the output of NANDR,,will rise to resulting in NANDS be realized by a 0 at S.The outputs Q and are unpredictable when the inputs R and S are 0 states.This case is not allowed.Seldom would individual gates be used to construct a flip-flop,rather than one of the special types for the flip-flop packages on a single chipwould be used by a designer.A variety of different flip-flops are used in digital electronic systems today. In general,each flip-flop type R-S-T flip-flop for example .is a triggered R-S flip-flop. It will not change states when the R and S inputs assume a value until a trigger pulse is applied. This would permit a large number of flip-flops to change states all at the same time. Fig. 3-7 shows the logic circuit construction. The truth table and logic symbol are shown in Fig. 3-8. The R and S input are thus active when the signal at the gate input (T) is 1 .Normally,such timing,or synchronizing,signals are distributed throughout a digital system by clock pulses,as shown in Fig. 3-9.The symmetrical clock signal provides two times each period.The circuit can be designed to trigger at the leading or trailing edge of the clock. The logic symbols for edge trigger flip-flops are shown in Fig.3-10.2. J-K flip-flopsAnother very important flip-flop unpredictable output state. The J and K inputs addition to this,J-K flip-flops may employ preset and preclear functions. This is used to establish sequential timing operations. Fig.3-11 shows the logic symbol and truth table of a J-K flip-flop.3. 5. 2 CountersA flip-flop be used in switching operations,and it can count pulses.A series of interconnected flip-flops is generally called a register.Each register can store one binary digit or bit of data. Several flip-flops connected form a counter. Counting is a fundamental digital electronic function.For an electronic circuit to count,a number of things must beachieved. Basically,the circuit must be supplied with some form of data or information that is suitable for processing. Typically,electrical pulses that turn on and off are applied to the input of a counter. These pulses must initiate a state change in the circuit when they are received. The circuit must also be able to recognize where it is in counting sequence at any particular time. This requires some form of memory. The counter must also be able to respond to the next number in the sequence. In digital electronic systems flip-flops are primarily used to achieve counting. This type of device is capable of changing states when a pulse is applied,output pulse.There are several types of counters used in digital circuitry today.Probably the most common of these is the binary counter.This particular counter is designed to process two-state or binary information. J-K flip-flops are commonly used in binary counters.Refer now to the single J-K flip-flop of Fig. 3-11 .In its toggle state,this flip-flop is capable of achieving counting. First,assume that the flip-flop is in its reset state. This would cause Q to be 0 and Q to be 1 .Normally,we are concerned only with Q output in counting operations. The flip-flop is now connected for operation in the toggle mode. J and K must both be made the 1 state. When a pulse is applied to the T,or clock,input,Q changes to 1.This means that with one pulse applied,a 1 is generated in the output. The flip-flop the next pulse arrives,Q resets,or changes to 0. Essentially,this means that two input pulses produce only one output pulse. This is a divide-by-two function.For binary numbers,counting is achieved by a number of divide-by-two flip-flops.To count more than one pulse,additional flip-flops must be employed. For each flip-flop added to the counter,its capacity is increased by the power of 2. With one flip-flop the maximum count was 20,or 1 .For two flip-flops it would count two places,such as 20 and 21.This would reach a count of 3 or a binary number of 11.The count would be 00,01,10,and 11. The counter would then clear and return to 00. In effect, this counts four state changes. Three flip-flops would count three places,or 20,21,and 22.This would permit a total count of eight state changes.The binary values are 000,001,010,011,100,101,110 and 111.The maximum count is seven,or 111 .Four flip-flops would count four places,or 20,21,22,and 23.The total count would make 16 state changes. The maximum count would be 15,or the binary number 1111.Each additional flip-flop would cause this to increase one binary place.河南理工大学电气工程及其自动化专业中英双语对照翻译。
电子电气专业毕业外文翻译
DC Switching Power Supply Protection TechnologyAbstract: The DC switching power supply protection system, protection system design principles and machine protection measures, an analysis of switching power supply in the range of protected characteristics and its design methodology, introduced a number of practical protection circuit.Keywords: switching power supply protection circuit system designA、IntroductionDC switching regulator used in the price of more expensive high-power switching devices, the control circuit is also more complex, In addition, the load switching regulators are generally used a large number of highly integrated electronic systems installed devices. Transistors and integrated device tolerance electricity, less heat shocks. Switching Regulators therefore should take into account the protection of voltage regulators and load their own safety. Many different types of circuit protection, polarity protection, introduced here, the program protection, over-current protection, over-voltage protection, under-voltage protection and over-temperature protection circuit. Usually chosen to be some combination of protection, constitutes a complete protection system.B、Polarity protectionDC switching regulator input is generally not regulated DC power supply. Operating errors or accidents as a result of the situation will take its wrong polarity; switching power supply will be damaged. Polarity protection purposes, is to make the switching regulator only when the correct polarity is not connected to DC power supply regulator to work at. Connecting a single device can achieve power polarity protection. Since the diode D to flow through switching regulator input total current, this circuit applied in a low-power switching regulator more suitable. Power in the larger occasion,while the polarity protection circuit as a procedure to protect a link, save the power required for polarity protection diodes, power consumption will be reduced. In order to easy to operate, make it easier to identify the correct polarity or not, collect the next light.C、Procedures to protectSwitching power supply circuit is rather complicated, basically can be divided into low-power and high-power part of the control part of the switch. Switch is a high-power transistors, for the protection of the transistor switch is turned on or off power safety, we must first modulator, amplifier and other low-power control circuit. To this end, the boot to ensure the correct procedures. Switching Regulators generally take the input of a small inductor, the input filter capacitor. Moment in the boot, filter capacitor will flow a lot of surge current, the surge current can be several times more than the normal input current. Such a large surge current may contact the general power switch or relay contact melting, and the input fuse. In addition, the capacitor surge current will damage to shorten the life span of premature damage. To this end, the boot should be access to a current limiting resistor, through the current limiting resistor to capacitor charging. In order not to make the current limiting resistor excessive power consumption, thus affecting the normal switching regulator, and the transient process in the boot after a short period then automatically relays it to DC power supply directly to the switching regulator power supply. This circuit switching regulator called a "soft start" circuit.Switching regulator control circuit of the logic components required or op-amp auxiliary power supply. To this end, the auxiliary power supply must be in the switch circuit. This control circuit can be used to ensure the boot. Normal boot process is: to identify the polarity of input power, voltage protection procedures → boot → auxiliary power supply circuit and through current limiting resis tor R of the switching regulator input capacitor C →charge modulation switching regulator circuit, → short-circuit current limiting resistor stability switching regulator.In the switching regulator, the machines just because the output capacitance, and charge to the rated output voltage value of the need for a certain period of time. During this time, sampling the output amplifier with low input voltage sampling, closed-loop regulation characteristics of the system will force the switching of the transistor conduction time lengthened, so that switching transistor during this period will tend to continuous conduction, and easily damaged. To this end, the requirements of this paragraph in the boot time, the switch to switch the output modulation circuit transistor base drive signal of the pulse width modulation, can guarantee the switching transistor by the cut-off switches are becoming more and more normal state, therefore the protection of the setting up of a boot to tie in with the soft start.D、Over-current protectionWhen the load short-circuit, overload control circuit failure or unforeseen circumstances, such as would cause the flow of switching voltage regulator transistor current is too large, so that increased power tubes, fever, if there is no over-current protection device, high power switching transistor may be damaged. Therefore, the switching regulator in the over-current protection is commonly used. The most economical way is to use simple fuse. As a result of the heat capacity of small transistors, general fuse protection in general can not play a role in the rapid fuse common fuse. This method has the advantage of the protection of vulnerable, but it needs to switch transistor in accordance with specific security requirements of the work area to select the fuse specifications. This disadvantage is over-current protection measures brought about by the inconvenience of frequent replacement of fuses.Linear voltage regulator commonly used in the protection and currentlimiting to protect the cut-off in the switching regulator can be applied. However, according to the characteristics of switching regulators, the protection circuit can not directly control the output transistor switches, and over current protection must be converted to pulse output commands to control the modulator to protect the transistor switch. In order to achieve over-current protection are generally required sampling resistor in series in the circuit, this will affect the efficiency of power supply, so more for low-power switching regulator of occasions. In the high-power switching power supply, by taking into account the power consumption should be avoided as far as possible access to the sampling resistor. Therefore, there will usually be converted to over-current protection, and under-voltage protection.E、Over-voltage protectionSwitching regulator's input over-voltage protection, including over-voltage protection and output over-voltage protection. Switching regulator is not used in DC power supply voltage regulator and rectifier, such as battery voltage, if too high, so switching regulator is not working properly, or even damage to internal devices, therefore, it is necessary to use the input over-voltage protection circuit. Using transistors and relays protection circuit.In the circuit, when the input DC power supply voltage higher than the voltage regulator diode breakdown voltage value, the breakdown voltage regulator tube, a current flowing through resistor R, so that V turn-on transistor, relay, normally closed contact off open, cut off the input. Voltage regulator voltage regulator which controls the value of Vs. = Earwax-UBE. The polarity of input power with the input protection circuit can be combined with over-voltage protection, polarity protection constitute a differential circuit and over voltage protection.Output over-voltage protection switching power supply is essential. In particular, for the 5V output of the switching regulator, it is a lot of load on a high level of integration of the logic device. If at work, switching regulator sudden damage to the switch transistor, the output potential may be increased immediately to the importation of non-regulated DC power supply voltage value, causing great loss instantaneous. Commonly used method is short-circuit protection thirsted. The simplest over-voltage protection circuit. When the output voltage is too high, the regulator tube breakdown triggered thirstier turn-on, the output short-circuit, resulting in over-current through the fuse or circuit protective device to cut off the input to protect the load. This circuit is equivalent to the response time of the opening time of thirstier is about 5 ~ 10μs. The disadvantage is that its action is fixed voltage, temperature coefficient, and action points of instability. In addition, there is a voltage regulator control parameters of the discrete, model over-voltage start-up the same but has different values, difficult to debug. Esc a sudden increase in output voltage, transistors V1, V2 conduction, the thruster conduction. Reference voltage Vs. by type.F、Under-voltage protectionOutput voltage below the value to reflect the input DC power supply, switching regulator output load internal or unusual occurrence. Input DC power supply voltage drops below the specified value would result in switching regulator output voltage drops, the input current increases, not only endanger the switching transistor, but also endanger the input power. Therefore, in order to set up due to voltage protection. Due to simple voltage protection.When no voltage regulator input normal, ZD breakdown voltage regulator tube, transistors V conduction, the relay action, contact pull-in, power-switching regulator. When the input below the minimum allowable voltage value, the regulator tube ZD barrier, V cut-off, contact Kai-hop,switching regulator can not work. Internal switching regulator, as the control switch transistor circuit disorders or failure will decrease the output voltage; load short-circuit output voltage will also decline.Especially in the reversed-phase step-up or step-up switching regulator DC voltage of the protection due to over-current protection with closely related and therefore more important. Implementation of Switching Regulators in the termination of the output voltage comparators.Normally, there is no comparator output, once the voltage drops below the allowable value in the comparator on the flip, drive alarm circuit; also fed back to the switching regulator control circuit, so that switching transistor cut-off or cut off the input power.G、Over-temperature protectionSwitching regulator and the high level of integration of light-weight small volume, with its unit volume greatly increased the power density, power supply components to its work within the requirements of the ambient temperature is also a corresponding increase. Otherwise, the circuit performance will deteriorate premature component failure. Therefore, in high-power switching regulator should be set up over-temperature protection.Relays used to detect the temperature inside the power supply temperature, when the internally generated power supply overheating, the temperature of the relay on the action, so that whole circuit in a warning alarm, and the realization of the power supply over-temperature protection. Temperature relay can be placed in the vicinity of the switching transistor, the general high-power tube shell to allow the maximum temperature is 75 ℃, adjust the temperature setting to 60 ℃. When the shell after the temperature exceeds the allowable value to cut off electrical relay on the switch protection. Semiconductor switching device thermal "hot thirstier," in the over-temperature protection, played an important role. It can be used asdirected circuit temperature. Under the control of p-hot-gate thirstier (TT102) characteristics, by RT value to determine the temperature of the device turn-on, RT greater the temperature the lower the turn-on. When placed near the power switching transistor or power device, it will be able to play the role of temperature instructions. When the power control the temperature of the shell or the internal device temperature exceeds the allowed value, the heat conduction thirstier on, so that LED warning light. If the opt coupler with, would enable the whole circuit alarm action to protect the switching regulator. It can also be used as a power transistor as the over-temperature protection, crystal switch the base current by n-type gate control thirstier TT201 thermal bypass, cut-off switch to cut off the collector current to prevent overheating.I、ConclusionDiscussed above in the switching regulator of a variety of conservation, and introduces a number of specific ways to achieve. Of a given switching power supply is concerned, but also protection from the whole to consider the following points:1) The switching regulator used in the switching transistor in the DC security restrictions on the work of regional work. The transistor switches selected by the manual available transistors get DC safe working area. According to the maximum collector current to determine the input value of over-current protection. However, the instantaneous maximum value should be converted to the average current. At rated output current and output voltage conditions, the switch of the dynamic load line does not exceed a safe working area DC maximum input voltage, input over-voltage protection is the voltage value.2)The switching regulator output limit given by the technical indicators within. Work within the required temperature range, the switching regulator's output voltage, the lower limit of the output is off, due to thevoltage value of voltage protection. Over-current protection can be based on the maximum output current to determine. False alarm in order not to protect the value of a certain margin to remain appropriate.3)From the above two methods to determine the protection after the power supply device in accordance with the needs of measures to determine the alarm. Measures the general alarm sound and light alarm two police. Voice of the police applied to more complex machines, power supply parts and do not stand out in a place, it can give staff an effective warning of failure; optical Police instructions can be eye-catching and fault alarm and pointed out that the fault location and type. Protection measures should be protected as to determine the location. In the high-power, multi-channel power supply, always paying, DC circuit breakers, relays, etc. high-sensitivity auto-protection measures, to cut off the input power supply to stop working the system from damage. Through the logic control circuit to make the appropriate program cut-off switch transistor is sensitive it is convenient and economic. This eliminated large, long response time, the price of your high-power relay or circuit breaker.4) The power of putting in the protection circuit will be affected after the reliability of the system, for which want to protect the reliability of the circuit itself is higher in order to improve the reliability of the entire power system, thereby increasing its own power supply MTBF. This requires the protection of strict logic, the circuit is simple, at least components, In addition to the protection circuit should also be considered a failure of maintenance of their difficulty and their power to protect the damage.Therefore, we must be comprehensive and systematic consideration of a variety of switching power supply protection measures to ensure the normal operation of switching power supplies and high-efficiency and high reliability.直流开关稳压电源的保护技术摘要:讨论了直流开关稳压电源的保护系统,提出保护系统设计的原则和整机保护的措施,分析了开关稳压电源中的各种保护的特点及其设计方法,介绍了几种实用保护电路。
电气工程及其自动化专业毕业论文外文翻译
本科毕业设计(论文)中英文对照翻译院(系部)工程学院专业名称电气工程及其自动化年级班级 11级2班学生姓名蔡李良指导老师赵波Infrared Remote Control SystemAbstractRed outside data correspondence the technique be currently within the scope of world drive extensive usage of a kind of wireless conjunction technique, drive numerous hardware and software platform support。
Red outside the transceiver product have cost low,small scaled turn, the baud rate be quick,point to point SSL, be free from electromagnetism thousand Raos etc. characteristics,can realization information at dissimilarity of the product fast,convenience,safely exchange and transmission, at short distance wireless deliver aspect to own very obvious of advantage。
Along with red outside the data deliver a technique more and more mature, the cost descend, red outside the transceiver necessarily will get at the short distance communication realm more extensive of application.The purpose that design this s ystem is transmit customer’s operation information with infrared rays for transmit media, then demodulate original signal with receive circuit。
毕业设计毕业论文电气工程及其自动化外文翻译中英文对照
毕业设计毕业论文电气工程及其自动化外文翻译中英文对照电气工程及其自动化外文翻译中英文对照一、引言电气工程及其自动化是一门涉及电力系统、电子技术、自动控制和信息技术等领域的综合学科。
本文将翻译一篇关于电气工程及其自动化的外文文献,并提供中英文对照。
二、文献翻译原文标题:Electric Engineering and Its Automation作者:John Smith出版日期:2020年摘要:本文介绍了电气工程及其自动化的基本概念和发展趋势。
首先,介绍了电气工程的定义和范围。
其次,探讨了电气工程在能源领域的应用,包括电力系统的设计和运行。
然后,介绍了电气工程在电子技术领域的重要性,包括电子设备的设计和制造。
最后,讨论了电气工程与自动控制和信息技术的结合,以及其在工业自动化和智能化领域的应用。
1. 介绍电气工程是一门研究电力系统和电子技术的学科,涉及发电、输电、配电和用电等方面。
电气工程的发展与电力工业的发展密切相关。
随着电力需求的增长和电子技术的进步,电气工程的重要性日益凸显。
2. 电气工程在能源领域的应用电气工程在能源领域的应用主要包括电力系统的设计和运行。
电力系统是由发电厂、输电线路、变电站和配电网络等组成的。
电气工程师负责设计和维护这些设施,以确保电力的可靠供应。
3. 电气工程在电子技术领域的重要性电气工程在电子技术领域的重要性体现在电子设备的设计和制造上。
电子设备包括电脑、手机、电视等消费电子产品,以及工业自动化设备等。
电气工程师需要掌握电子电路设计和数字信号处理等技术,以开发出高性能的电子设备。
4. 电气工程与自动控制和信息技术的结合电气工程与自动控制和信息技术的结合是电气工程及其自动化的核心内容。
自动控制技术可以应用于电力系统的运行和电子设备的控制,以提高系统的稳定性和效率。
信息技术则可以用于数据采集、处理和传输,实现对电力系统和电子设备的远程监控和管理。
5. 电气工程在工业自动化和智能化领域的应用电气工程在工业自动化和智能化领域的应用越来越广泛。
(完整版)电气工程毕业设计外文资料翻译
附录:外文资料翻译外文资料原文:A Virtual Environment for Protective Relaying Evaluationand TestingA. P. Sakis Meliopoulos and George J. CokkinidesAbstract—Protective relaying is a fundamental discipline of power system engineering. At Georgia Tech, we offer three courses that cover protective relaying: an undergraduate course that devotes one-third of the semester on relaying, a graduate courseentitled “Power System Protection,” and a three-and-a- the concepts,theory, and technology associated with protective relaying, we a virtual environment. The virtual environment includes a) a power system simulator, b) a simulator of instrumentation for protective relaying with visualization and animation modules, c) specific protective relay models with visualization and animation modules, and d) interfaces to be performed. We refer to this set of software as the “virtual power system.” The virtual power system permits the in-depth coverage of the protective relaying concepts in minimum time and maximizes student understanding. The tool is not used in a passive way. Indeed, the students actively participate with well-designed projects such as a) design and implementation of multifunctional relays, b) relay testing for specific disturbances, etc. The paper describes the virtual power system organization and “engines,” such as solver, visualization, and animation of protective relays, etc. It also discusses the utilization of this tool in the courses via specific applicationexamples and student assignments.Index Terms—Algebraic companion form, animation, relaying,time-domain simulation, visualization.I. INTRODUCTIONRELAYING the security and reliability of electric power systems. As the technology advances, relaying of the system. It is indisputable that relaying the safety of systems and protection of equipment. Yet, because of the complexity of the system and multiplicity of competing factors, relaying is a challenging discipline.Despite all of the advances in the field, unintended relay operations (misoperations) do occur. Many events of outages and blackouts can be attributed to inappropriate relaying settings, unanticipated system conditions, and inappropriate selection of instrument transformers. Design of relaying schemes strives to anticipate all possible conditions for the purpose of avoiding undesirable operations. Practicing relay engineers utilize a two-step procedure to minimize the possibility of such events. First, in the design phase, comprehensive analyses are utilized to determine the best relaying schemes and settings. Second, if such an event occurs, an exhaustive post-mortem analysis is performed to reveal the root cause of the event and what “was missed” in the design phase. The post-mortem analysis of these events is facilitated with the existing technology of disturbance recordings (via fault disturbance recorders or embedded in numerical relays). This process results in accumulation of experience that passes from one generation of engineers to the next.An important challenge for educators is the training of students tobecome effective protective relaying engineers. Students must be provided with an understanding of relaying technology that encompasses the multiplicity of the relaying functions, communications, protocols, and automation. In addition, a deep understanding of power system operation and behavior during disturbances is necessary for correct relaying applications. In today’s crowded curricula, the challenge is to achieve this training within a very short period of time, for example, one semester. This paper presents an approach to meet this challenge. Specifically, we propose the concept of the virtual power system for the purpose of teaching students the complex topic of protective relaying within a short period of time.The virtual power system approach is possible because of two factors: a) recent developments in software engineering and visualization of power system dynamic responses, and b) the new generation of power system digital-object-oriented relays. Specifically, it is possible to integrate simulation of the power system, visualization, and animation of relay response and relay testing within a virtual environment. This approach permits students to study complex operation of power systems and simultaneously observe relay response with precision and in a short time.The paper is organized as follows: First, a brief description of the virtual power system is provided. Next, the mathematical models to enable the features of the virtual power system are presented together with the modeling approach for relays and relay instrumentation. Finally, few samples of applications of this tool for educational purposes are presented. II. VIRTUAL POWER SYSTEMThe virtual power system integrates a number of application software in a multitasking environment via a unified graphical user interface. The application software includes a) a dynamic power system simulator, b) relay objects, c) relay instrumentation objects, and d) animation and visualization objects. The virtual power system simulation of the system under study;2) ability to modify (or fault) the system under study during the simulation, and immediately observe the effects of thechanges;3) advanced output data visualization options such as animated 2-D or 3-D displays that illustrate the operation of any device in the system under study.The above properties are fundamental for a virtual environment intended for the study of protective relaying. The first property guarantees the uninterrupted operation of the system under study in the same way as in a physical laboratory: once a system assembled, it will continue to operate. The second property guarantees the ability to connect and disconnect devices into the system without interrupting the simulation of the system or to apply disturbances such as a fault. This property duplicates the capability of physical laboratories where one can connect a component to the physical system and observe the reaction immediately (e.g., connecting a new relay to the system and observing the operation of the protective relaying logic, applying a disturbance and observing the transients as well as the relay logic transients, etc.). The third property duplicates the ability to observe the simulated system operation, in a similar way as in a physical laboratory. Unlike the physical laboratorywhere one cannot observe the internal operation of a relay, motor, etc., the virtual power system and animation of the internal “workings” of a relay, motor, etc. This capability to animate and visualize the internal “workings” of a relay, an instrumentation channel, or any other device is based on the MS Windows multidocument-viewarchitecture. Each document object constructs a single solver object, which computations. The simulated system is represented by a set of objects—one for each system device (i.e. generators, motors, transmission lines, relays, etc). The document object can generate any number of view window objects. Two basic view classes are available: a) schematic views and b) result visualization views. Schematic view objects allow the user to define the simulated system connectivity graphically, by manipulating a single line diagram using the mouse. Result visualization views allow the user to observe calculated results in a variety of ways. Several types of result visualization views are supported and will be discussed later.Fig. 1 illustrates the organization of device objects, network solver, and view objects and their interactions. The network solver object is the basic engine that provides the time-domain solution of the device operating conditions. To maintain object orientation, each device is represented with a generalized mathematical model of a specific structure, the algebraic companion form (ACF). The mathematics of the algebraic companion form are described in the next section. Implementationwise, the network solver is an independent background computational thread, allowing both schematic editor and visualization views to be active during the simulation. The network solver continuously updates the operating states of the devicesand “feeds” all other applications, such as visualization views,etc.The network solver speed is user selected, thus allowing speeding-up or slowing-down the visualization and animation speed. The multitasking environment permits system topology changes, device parameter changes, or connection of new devices (motors, faults) to the system during the simulation. In this way, the user can immediately observe the system response in the visualization views.The network solver interfaces with the device objects. This interface requires at minimum three virtual functions:Initialization: The solver calls this function once before the simulation starts. It initializes all device-dependent parameters and models needed during the simulation.Reinitialization: The solver calls this function any time the user modifies any device parameter. Its function is similar to the initialization virtual function.Time step: The solver calls this function at every time step of the time-domain simulation. It transfers the solution from the previous time step to the device object and updates the algebraic companion form of the device for the next time step (see next section “network solver.”) In addition to the above functions, a device object the schematic editor graphical user interface. Specifically,the device diagram can be moved, resized, and copied using the mouse. Also, a function is included in this set, which implements a device parameter editing dialog window which “pops-up” by double clicking o n the device icon. Furthermore,the schematic module interface allows for device icons that reflect thedevice status. For example, a breaker schematic icon can be implemented to indicate the breaker status.Finally, each device class (or a group of device classes) may optionally include a visualization module, consisting of a set of virtual functions that and animation output. The visualization module interface allows for both two-dimensional (2-D) and three-dimensional (3-D) graphics. Presently, 2-D output is implemented via the Windows graphical device interface (GDI) standard. The 3-D output is implemented using the open graphics library (OpenGL). Both 2-D and 3-D outputs generate animated displays, which are dynamically updated by the network solver to reflect the latest device state. The potential applications of 2-D or 3-D animated visualization objects are only limited by the imagination of the developer. These objects can generate photorealistic renderings of electromechanical components that clearly illustrate their internal operation and can be viewed from any desired perspective,slowed down, or paused for better observation.III. NETWORK SOLVERAny power system device is described with a set of algebraicdifferential-integral equations. These equations are obtained directlyfrom the physical construction of the device. It is alwayspossible to cast these equations in the following general formNote that this form includes two sets of equations, which arenamed external equations and internal equations, respectively.The terminal currents appear only in the external equations.Similarly, the device states consist of two sets: external states[i.e., terminal voltages, v(t)] and internal states [i.e. y(t)]. Theset of (1) is consistent in the sense that the number of externalstates and the numberof internal states equals the number of externaland internal equations, respectively.Note that (1) may contain linear and nonlinear terms. Equation(1) is quadratized (i.e., it is converted into a set of quadraticequations by introducing a series of intermediate variables and expressing the nonlinear components in terms of a series of quadratic terms). The resulting equations are integrated using a suitable numerical integration method. Assuming an integration time step is given with a second-order equation of the formwhere , are past (2) is referred to as the algebraic companion form (ACF) of the device model. Note that this form is a generalizationof the resistive companion form (RCF) that is used by the EMTP [3]. The difference is that the RCF is a linear model that represents a linearized equivalent of the device while the ACF is quadratic and represents the detailed model of the device.The network solution is obtained by application of Kirchoff’s current law at each node of the system (connectivity constraints). This procedure results in the set of (3). To these equations, the internal equations are appended resulting to the following set of equations:(3)internal equations of all devices (4)where is a component incidence matrix withif node of component is connected to node otherwise is the vector of terminal currents of component k.Note that (3) correspond one-to-one with the external system states while (4) correspond one-to-one with the internal system states. The vector of component k terminal voltages isrelated to the nodal voltage vector by(5)Upon substitution of device (2), the set of (3) and (4) become a set of quadratic equations (6)where x(t) is thevector of all external and internal system states.These equations are solved using Newton’s method. Specifically,the solution is given by the following expression(7)where is the Jacobian matrix of (6) and are the values ofthe state variables at the previous iteration.IV. RELAY INSTRUMENTATION MODELINGRelays and, in general, IEDs use a system of instrument transformers to scale the power system voltages and currents into instrumentation level voltages and currents. Standard instrumentation level voltages and currents are 67 V or 115 V and 5 A, respectively. These standards were established many years ago to accommodate the electromechanical relays. Today, the instrument transformers are still in use but because modern relays (and IEDs) operate at much lower voltages, it is necessary to apply an additional transformation to the new standard voltages of 10 or 2 V. This means that the modern instrumentation channel consists of typically two transformations and additional wiring and possibly burdens. Fig. 2 illustrates typical instrumentation channels, a voltage channel and a current channel. Note that each component of the instrumentation channel will introduce an error. Of importance is the net error introduced by all of the components of the instrumentation channel. The overallerror can be defined as follows. Let the voltage or current at the power system be and , respectively. An ideal instrumentation channel will generate a waveform at the output of the channel that will be an exact replica of the waveform at the power system. If the nominal transformation ratio is and for the voltage and current instrumentation channels, respectively, then the output of an “ideal” system and the instrumentation channel error will bewherethe subscript “out” refers to the actual output of the instrumentation channel. The error waveforms can be analyzed to provide the rms value of the error, the phase error, etc.Any relaying course should include the study of instrumentation channels. The virtual power system is used to study the instrumentation error by including an appropriate model of the entire instrumentation channel. It is important to model the saturation characteristics of CTs and PTs, resonant circuits of CCVTs, etc. (see [6]). In the virtual power system, models of instrumentation channel components developed. The resulting integrated model provides, with precision, the instrumentation channel error.With the use of animation methods, one can study the evolution of instrumentation errors during transients as well as normal operation.V. PROTECTIVE RELAY MODELINGToday, all new relays are numerical relays. These types of relays can be easily modeled within the virtual power system. Consider, for example, a directional relay. The operation of this relay is based on the phase angle between the polarizing voltage and the current. Modeling of this relay then requires that the phase angle between the polarizing voltage and the current be computed. For this purpose, as the power system simulation progresses, the relay model retrieves the instantaneous values of the polarizing voltage and the current. A Fourier transform is applied to the retrieved data (a running time Fourier transform over a user-specified time window). The result will be the phasors of the polarizing voltage and current from which the phase angles are retrieved. The directional element of the relay will trip if the phase angle difference is within the operatingregion. It should be also self understood that if the relay to be modeled be also included in the model.It is important that students be also involved in the design of numerical relays. A typical semester project is to define the functionality of a specific relay and a set of test cases. The student assignment is to develop the code that will mimic the operation of the relay and demonstrate its correct operation for the test cases.The new technology of the virtual power system offers another more practical way to model relays. The virtual power system uses object-oriented programming. As such, it is an open architecture and can accept dynamic link libraries of third parties. A natural extension of the work reported in this paper is to use this feature to interface with commercially available digital “relays.” The word “relay” is in quotation marks to indicate that the relay is simply a digital program that takes inputs of voltages and currents, performs an analysis of these data, applies logic, and issues a decision. This program is an object and can be converted into a dynamic link library. If this DLL is “linked” with the virtual power system, in the sense that the inputs come from the virtual power system, then the specific relay can be evaluated within the virtual environment. The technology for this approach is presently available. Yet, our experience is that relay manufacturers are not presently perceptive in making their “relay” objects available as DLLs that can be interfaced with third-party software.VI. APPLICATIONSThe described virtual environment used in a variety of educationalassignments. The possible uses are only limited by the imagination of the educator. In this section, we describe a small number of educational application examples.Figs. 3 and 4 illustrate an exercise of studying instrumentation channel performance. Fig. 3 illustrates an example integrated model of a simple power system and the model of an instrumentation channel (voltage). The instrumentation channel consists of a PT, a length of control cable, an attenuator, and an AD converter (Fig. 3 illustrates the icons of these components and their interconnection). Fig. 4 illustrates two waveforms: the voltage of phase A of the power system when it is experiencing a fault and the error of the instrumentation channel. The upper part of the figure illustrates the actual voltage of Phase A and the output of the instrumentation channel (multiplied by the nominal transformation ratio). The two traces are quite close. The lower part of the figure illustrates the error between the two waveforms of the upper part of the figure. The two curves illustrate the normalized error at the input of the AD converter and at the output of the AD converter. The figure is self-explanatory and a substantial error occurs during the transient of the fault. When the transients subside, the error of the instrumentation channel is relatively small. The intention of this exercise is to study the effects of different parameters of the instrumentation channel.For example, the students can change the length of the control cable and observe the impact on the error. Or in case of a current channel, they can observe the effects of CT saturation on the error of the instrumentation channel, etc.Fig. 5 illustrates the basics of an example application of the virtualpower system for visualization and animation of a modified impedance relay. The example system consists of a generator, a transmission line, a step-down transformer, a passive electric load (constant impedance load), an induction motor, and a mechanical load of the motor (fan). A modified distance relay (mho relay) monitors the transmission line. The operation of thi s relay is based on the apparent impedance that the relay “sees” and the trajectory of this impedance.The visualization object of this relay displays what the relay “sees” during a disturbance in the system and superimposes this information on the relay settings. Typical examples are illustrated in Figs. 6 and 7. The relay monitors the three-phase voltages and currents at the point of its application. The animation model retrieves the information that the relay monitors from the simulator at each time step. Subsequently, it computes the phasors of the voltages and currents as well as the sequence components of these voltages and currents. Fig. 6 illustrates a 2-D visualization of the operation of this relay over a period that encompasses a combined event of an induction motor startup followed by a single-phase fault on the shows the voltages and currents “seen” by the relay(the snapshot is after the fault cleared). The graph also shows the trajectory (” by the relay. The graph shows the trajectory “seen” o ver a user-specified time interval preceding present time. The impedance trajectory is superimposed on the trip characteristics of this relay. In this case, the impedance trajectory does not visit the trip “region” of the relay.Fig. 7 provides the recorded impedance trajectory for the combined event of an induction motor startup followed by a three-phase fault nearthe low-voltage bus of the transformer. The impedance trajectory is superimposed on the trip characteristics of this relay. In this case, the i mpedance trajectory does visit the trip “region” of the relay. This example can be extended to more advanced topics. For example, the animated display may also include stability limits for the “swing” of the generator. For this purpose, the stability limits for the particular condition must be computed and displayed.This exercise can be the topic of a term project.Another important protective relaying example is the differential relay. In this example, we present the animated operation of a differential relay scheme for a delta-wye connected transformer with tap changing under load. The example system is shown in Fig. 8. It consists of an equivalent source, a transmission line, a 30-MVA delta-wye connected transformer, a distribution line, and an electric load. A transformer differential relay Fig.7. Animation of a mho relay for a three phase fault on the 13.8-kV bus. is protecting the transformer. The differential relay of a differential relay visualization is shown in Fig. 9 based on the electromechanical equivalent relay. Note that the 2-D visualization shows the “operating” coils and “restraining” coils and the currents that flow in these coils at any instant of time. Instantaneous values, rms values, and phasor displays are displayed. Fig. 9 illustrates one snapshot of the system. In reality, as the system operation progresses, this figure is continuously updated, providing an animation effect. The system may operate under steady-state or under transient conditions. The effects of tap changing on the operation of the relay are demonstrated. The importance of this animation module is that one can study the effects of various parameters and phenomena on theoperation of the relay. Examples are: a) effects of tap setting. The differential relay settings are typically selected for the nominal tap setting. As the tap setting changes under load, the current in the operating coil changes and may be nonzero even under normal operating conditions. It is very easy to change the tap setting andobserve the operation of the relay in an animated fashion. It is also easy to observe the operation of the relay during a through fault for different values of tap settings. Thus, this tool is very useful in determining the optimal level of percent restraint for the relay. b) effects of inrush currents. One can perform energization simulations of the transformer by various types of breaker-closing schemes. Since the transformer model includes the nonlinear magnetization model of the transformer core, the magnetization inrush currents will appear in the terminals of the transformer and, therefore, in the differential relay. The display of Fig. 9 provides a full picture of the evolution of the electric currents. One can study the effects of inrush currents by bypassing the even study these phenomena indepth and in very short time with the aid of animation and visualization methods.The virtual power system also used for testing of physical relays. This application is quite simple. The virtual power system COMTRADE format. Then, the COMTRADE file is fed into commercial equipment that generates the actual voltages and currents and feeds them into the physical relays. The actual response of the relays is then observed. This application was performed on the premises of a utility with limited access to students.Recently, a major relay manufacturer (SEL) the process of setting upthe laboratory for routine use of this function by students. There are numerous other applications of the proposed virtual power system. The pedagogical objective is to instill a deep understanding of protective relaying concepts and problems in the very short time of one semester. The effectiveness of the proposed approach increases as new examples are generated and stored in the database.Aclassical example that demonstrates the effectiveness of the virtual power system is the issue of sympathetic tripping. Usually, this topic requires several lectures and long examples. With the virtual power system, one can very thoroughly teach the concept of sympathetic tripping within onelecture. For example, a simple system with mutually coupled lines can be prepared, with relays at the ends of all lines. Then with a fault in one line, the relays of the be visualized and animated. The students can observe that the relays of the another line. And more important, the students can make changes to the designs of the lines and observe the relative effect of design parameters on induced voltages and currents, etc.VII. CONCLUSIONThis paper for visualization and animation of protective relaying. The virtual power system the instruction of protective relaying courses. It is also an excellent tool for assigning term projects on various aspects of protective relaying. One important feature of the tool is that the user can apply disturbances to the system while the system operates (i.e., faults, load shedding, motor start-up, etc.). The response of the relays is instantaneously observed. The paper a multitasking environment.The paper and animation of instrumentation channel error, b)impedance relay, and c) a transformer differential relay. From these examples, it is clear that virtual laboratories can be quite beneficial from the educational point of view as they can provide insight of the system under study that are impossible in a physical laboratory. In addition, the virtual power system is valuable for testing commercially available digital relays with appropriate interfaces between the virtual power system and the numerical relay software.The effectiveness of this approach assessed informally with discussions with students and evaluation of the term projects. The response is positive and enthusiastic (for example, two of the term project reports were over 100 pages long and the content reflected an excellent understanding of protective relaying concepts and technology). We plan to conduct formal evaluation of the approach by the students.The tool is continuously under development as additional relay functions and animation and visualization objects of various protective relay functions are being developed. This task is open ended because of the plethora of existing power system relaying devices and possible ways to visualize and animate their functions. There is also a multiplicity of term projects that can be designed and assigned to students with the virtual power system as the basic tool. We also plan to make this tool available to power educators. Presently, the tool is posted on the course web site, when the course is offered. The web site is terminated when the course is completed. In the next offering of the course, the web site will be made permanent and accessible to power educators.附录1 外文资料译文。
电气专业毕业设计外文翻译2--变压器
外文资料翻译TRANSFORMER1. INTRODUCTIONThe high-voltage transmission was need for the case electrical power is to be provided at considerable distance from a generating station. At some point this high voltage must be reduced, because ultimately is must supply a load. The transformer makes it possible for various parts of a power system to operate at different voltage levels. In this paper we discuss power transformer principles and applications.2. TOW-WINDING TRANSFORMERSA transformer in its simplest form consists of two stationary coils coupled by a mutual magnetic flux. The coils are said to be mutually coupled because they link a common flux.In power applications, laminated steel core transformers (to which this paper is restricted) are used. Transformers are efficient because the rotational losses normally associated with rotating machine are absent, so relatively little power is lost when transforming power from one voltage level to another. Typical efficiencies are in the range 92 to 99%, the higher values applying to the larger power transformers.The current flowing in the coil connected to the ac source is called the primary winding or simply the primary. It sets up the flux φ in the core, which varies periodically both in magnitude and direction. The flux links the second coil, called the secondary winding or simply secondary. The flux is changing; therefore, it induces a voltage in the secondary by electromagnetic induction in accordance with Lenz’s law. Thus the primary receives its power from the source while the secondary supplies this power to the load. This action is known as transformer action.3. TRANSFORMER PRINCIPLESWhen a sinusoidal voltage V p is applied to the primary with the secondary open-circuited, there will be no energy transfer. The impressed voltage causes a small current Iθ to flow in the primary winding. This no-load current has two functions: (1) it produces the magnetic flux in the core, which varies sinusoidally between zero and φm, where φm is the maximum value of the core flux; and (2) it provides a component to account for the hysteresis and eddy current losses in the core. There combined losses are normally referred to as the core losses.The no-load current Iθ is usually few percent of the rated full-load current of the transformer (about 2 to 5%). Since at no-load the primary winding acts as a large reactance due to the iron core, the no-load current will lag the primary voltage by nearly 90º. It is readily seen that the current component I m= I0sinθ0, called the magnetizing current, is 90º in phase behind the primary voltage V P. It is this component that sets up the flux in the core; φ is therefore in phase with I m.The second component, I e=I0sinθ0, is in phase with the primary voltage. It is the current component that supplies the core losses. The phasor sum of these twocomponents represents the no -load current, ore m o I I I +=It should be noted that the no -load current is distortes and nonsinusoidal. This is the result of the nonlinear behavior of the core material.If it is assumed that there are no other losses in the transformer, the induced voltage In the primary, E p and that in the secondary, E s can be shown. Since the magnetic flux set up by the primary winding ,there will be an induced EMF E in the secondary winding in accordance with Faraday’s law, namely, t N E ∆∆⋅=/ϕ. This same flux also links the primary itself, inducing in it an EMF, E p . As discussed earlier, the induced voltage must lag the flux by 90º, therefore, they are 180º out of phase with the applied voltage. Since no current flows in the secondary winding, E s =V s . The no -load primary current I 0 is small, a few percent of full -load current. Thus the voltage in the primary is small and V p is nearly equal to E p . The primary voltage and the resulting flux are sinusoidal; thus the induced quantities E p and E s vary as a sine function. The average value of the induced voltage given byE avg = turns× change in flux in a given time given timewhich is Faraday’s law applied to a finite time interval. It follows thatE avg = N 21/(2)m f ϕ = 4fNφm which N is the number of turns on the winding. Form ac circuit theory, the effective or root -mean -square (rms) voltage for a sine wave is 1.11 times the average voltage; thusE = 4.44fNφmSince the same flux links with the primary and secondary windings, the voltage per turn in each winding is the same. HenceE p = 4.44fN p φmandE s = 4.44fN s φmwhere E p and Es are the number of turn on the primary and secondary windings, respectively. The ratio of primary to secondary induced voltage is called the transformation ratio. Denoting this ratio by a, it is seen that a = p sE E = p s N N Assume that the output power of a transformer equals its input power, not a bad sumption in practice considering the high efficiencies. What we really are saying is that we are dealing with an ideal transformer; that is, it has no losses. ThusP m = P outorV p I p × primary PF = V s I s × secondary PFwhere PF is the power factor. For the above -stated assumption it means that the power factor on primary and secondary sides are equal; thereforeV p I p = V s I sfrom which is obtained p s V V = p s I I ≌ p sE E ≌ a It shows that as an approximation the terminal voltage ratio equals the turns ratio. The primary and secondary current, on the other hand, are inversely related to the turns ratio. The turns ratio gives a measure of how much the secondary voltage is raised or lowered in relation to the primary voltage. To calculate the voltage regulation, we need more information.The ratio of the terminal voltage varies somewhat depending on the load and its power factor. In practice, the transformation ratio is obtained from the nameplate data, which list the primary and secondary voltage under full -load condition.When the secondary voltage V s is reduced compared to the primary voltage, the transformation is said to be a step -down transformer: conversely, if this voltage is raised, it is called a step -up transformer. In a step -down transformer the transformation ratio a is greater than unity (a>1.0), while for a step -up transformer it is smaller than unity (a<1.0). In the event that a=1, the transformer secondary voltage equals the primary voltage. This is a special type of transformer used in instances where electrical isolation is required between the primary and secondary circuit while maintaining the same voltage level. Therefore, this transformer is generally knows as an isolation transformer.As is apparent, it is the magnetic flux in the core that forms the connecting link between primary and secondary circuit. In section 4 it is shown how the primary winding current adjusts itself to the secondary load current when the transformer supplies a load.Looking into the transformer terminals from the source, an impedance is seen which by definition equals V p / I p . From p s V V = p s I I ≌ p sE E ≌ a , we have V p = aV s and I p = I s /a.In terms of V s and I s the ratio of V p to I p isp p V I = /s s aV I a= 2s s a V I But V s / I s is the load impedance Z L thus we can say thatZ m (primary) = a 2Z LThis equation tells us that when an impedance is connected to the secondary side, it appears from the source as an impedance having a magnitude that is a 2 times its actual value. We say that the load impedance is reflected or referred to the primary. It is this property of transformers that is used in impedance -matching applications.译文变压器1. 介绍要从远端发电厂送出电能,必须应用高压输电。
电气毕业设计 英文翻译
The Role of the Power Supply within theSystem and Design ProgramThe power supply assumes a very unique role within a typical system. In many respects, it is the mother of the system. It gives the system life by providing consistent and repeatable power to its circuits. It defends the systemagainst the harsh world outside the confines of the enclosure and protects its wards by not letting them do harm to themselves. If the supply experiences a failure within itself, it must fail gracefully and not allow the failure to reach the system.Alas, mothers are taken for granted, and their important functions are not appreciated. The power system is routinely left until late in the design program for two main reasons. First, nobody wants to touch it because everybody wants to design more exciting circuits and rarely do engineers have a background in power systems. Secondly, bench supplies provide all the necessary power during the system debugging stage and it is not until the product is at the integration stage t hat one says “Oops, we forgot to design the power supply!” All too frequently, the designer assigned to the power supply has very little experience in power supply design and has very little time to learn before the product isscheduled to enter production.This type of situation can lead to the “millstone effect” which in simple terms means “You designed it, you fix it ( forever).” No wonder no one wants to touch it and, when asked, disavows any knowledge of having ever designeda power supply.1.1 Getting Started. This Journey Starts with the First QuestionIn order to produce a good design, many questions must be asked prior to the beginning of the design process. The earlier they are asked the better off you are. These questions also avoid many problems later in the design program due to lack of communication and forethought. The basic questions to be asked include the following.From the marketing department1. From what power source must the system draw its power? There are different design approaches for each power system and one can also get information as to what adverse operating conditions are experienced for each.2. What safety and radio frequency interference and electro magnetic interference(RFI/EMI) regulations must the system meet to be able to be sold into the target market? This would affect not only the electrical design butalso the physical design.3. What is the maintenance philosophy of the system? This dictates what sort of protection schemes and physical design would match theapplication.4. What are the environmental conditions in which the product must operate? These are temperature range, ambient RF levels, dust, dirt,shock, vibration, and any other physical considerations.5. What type of graceful degradation of product performance is desired when portions of the product fail? This would determine the type of power busing scheme and power sequencing that may be necessary within the system.From the designers of the other areas of the product1. What are the technologies of the integrated circuits that are being used within the design of the system? One cannot protect something, if one doesn’t know how it breaks.2. What are the “best guess” maximum and minimum limits of the load current and are there any intermittent characteristics in its current demand such as those presented by motors, video monitors, pulsed loads, and so forth? Always add 50 percent more to what is told to you since these estimates always turn out to be low. Also what are the maximum excursions in supply voltage that the designer feels that the circuit can withstand. This dictates the design approaches of the cross-regulation of theoutputs, and feedback compensation in order to provide the needs of the loads.3. Are there any circuits that are particularly noise-sensitive? These include analog-to-digital and digital-to-analog converters, video monitors, etc. This may dictate that the supply has additional filtering or may need to be synchronized to the sensitive circuit.4. Are there any special requirements of power sequencing that are necessary for each respective circuit to operate reliably?5. How much physical space and what shape is allocated for the power supply within the enclosure? It is always too small, so start negotiating for your fair share.6. Are there any special interfaces required of the power supply? This would be any power-down interrupts, etc., that may be required by any of theproduct’s circuits.This inquisitiveness also sets the stage for the beginning of the design by defining the environment in which the power supply must operate. This then forms the basis of the design specification of the power supply.1.2 Power System OrganizationThe organization of the power system within the final product should complement the product philosophy. The goal of the power system is to distribute power effectively to each section of the entire product and to do it in a fashion that meets the needs of each subsection within the product. To accomplish this, one or more power system organization can be used within the product.For products that are composed of one functional “module” that is inseparable during the product’s life, such as a cellular telephone, CRT monitor, RF receiver, etc., an integrated power system is the traditional system organization. Here, the product has one main power supply which is completely self-contained and outputs directly to the product’s circuits. An integrated power system may actually have more than one power supply within it if one of the load circuits has power demand or sequencing requirements which cannot be accommodated by the main power supply without compromising its operation.For those products that have many diverse modules that can be reconfigured over the life of the product, such as PCB card cage systems and cellular telephone ground stations, etc., then the distributed power system is more appropriate. This type of system typically has one main “bulk” power supply that provides power to a bus which is distributed throughout the entire product. The power needs of any one module within the system are provided by smaller, board-level regulators. Here, voltage drops experienced across connectors and wiring within the system do not bother the circuits.The integrated power system is inherently more efficient (less losses). The distributed system has two or more power supplies in series, where the overall power system efficiency is the product of the efficiencies of the two power supplies. So, for example, two 80 percent efficient power supplies in series produces an overall system efficiency of 64 percent.The typical power system can usually end up being a combination of the two systems and can use switching and linear power supplies.The engineer’s motto to life is “Life is a tradeoff” and it comes into play here. It is impossible to design a power supply system that meets all the requirements that are initially set out by the other engineers and management and keep it within cost, space, and weight limits. The typical initial requirement of a power supply is to provide infinitely adaptable functions, deliver kilowatts within zero space, and cost no money. Obviously, some compromise is in order.1.3 Selecting the Appropriate Power Supply TechnologyOnce the power supply system organization has been established, the designer then needs to select the technology of each of the power supplies within the system. At the early stage of the design program, this process may be iterative between reorganizing the system and the choice of power supply technologies. The important issues that influence this stage of the design are:1. Cost.2. Weight and space.3. How much heat can be generated within the product.4. The input power source(s).5. The noise tolerance of the load circuits.6. Battery life (if the product is to be portable).7. The number of output voltages required and their particular characteristics.8. The time to market the product.The three major power supply technologies that can be considered withina power supply system are:1. Linear regulators.2. Pulsewidth modulated (PWM) switching power supplies.3. High efficiency resonant technology switching power supplies.Each of these technologies excels in one or more of the system considerations mentioned above and must be weighed against the other considerations to determine the optimum mixture of technologies that meet the needs of the final product. The power supply industry has chosen to utilize each of the technologies within certain areas of product applications as detailed in the following.LinearLinear regulators are used predominantly in ground-based equipments where the generation of heat and low efficiency are not of major concern and also where low cost and a short design period are desired. They are very popular as boardlevel regulators in distributed power systems where the distributed voltage is less than 40VDC. For off-line (plug into the wall) products, a power supply stage ahead of the linear regulator must be provided for safety in order to produce dielectric isolation from the ac power line. Linear regulators can only produce output voltages lower than their input voltages and each linear regulator can produce only one output voltage. Each linear regulator has an average efficiencyof between 35 and 50 percent. The losses are dissipated as heat.PWM switching power suppliesPWM switching power supplies are much more efficient and flexible in their use than linear regulators. One commonly finds them used within portable products, aircraft and automotive products, small instruments, off-line applications, and generally those applications where high efficiency and multiple output voltages are required. Their weight is much less than that of linear regulators since they require less heatsinking for the same output ratings. They do, however, cost more to produce and require more engineering development time.High efficiency resonant technology switching power suppliesThis variation on the basic PWM switching power supply finds its place in applications where still lighter weight and smaller size are desired, and most importantly, where a reduced amount of radiated noise (interference) is desired. The common products where these power supplies are utilized are aircraft avionics, spacecraft electronics, and lightweight portable equipment and modules. The drawbacks are that this power supply technology requires the greatest amount of engineering design time and usually costs more than the other two technologies.The trends within the industry are away from linear regulators (except for board-level regulators) towards PWM switching power supplies. Resonant and quasi-resonant switching power supplies are emerging slowly as the technology matures and their designs are made easier.1.4 Developing the Power System Design SpecificationBefore actually designing the power system, the designer should developthe power system design specification. The design specification acts as the performance goal that the ultimate power supply must meet in order for the entire product to meet its overall performance specification. Once developed, it should be viewed as a semi-firm document and should only be changed after the needs of the product formally change. When developing the design specification, the power supply designer must keep in mind what is a reasonable requirement and what is an idealistic requirement. Engineers not experienced in power supply design often will produce requirements on the power supply that either will cost an unnecessary fortune and take up too much space or will be impossible to meet with the present state of the technology. Here the power supply designer should press the other engineers, managers, and marketers for compromises that will prompt them to review their requirements to decide what they can actually live with.The power system specification will be based upon the questions that should previously have been asked of the other departments involved in defining and designing the product. Some of the requirements can be anticipated to grow, such as the current needed by various subsystems within the product. Always add 25 to 50 percent to the output current capabilities of the power supply during the design process to accommodate this inevitable event. Also, the space allocated to the power system and its cost will almost always be less than what will be finally required. Some negotiations will be in order. Since the power system is a support function within the product, its design will always be modified in reaction to design issues within the other sections of the product. This will always make the power supply design the last circuit to be released for production. Recognizing and addressing these potential trouble areas early in the design period will help avoid delays later in the program.电源在系统中的作用和电源设计流程电源在一个典型系统中担当着非常重要的角色。
毕业设计毕业论文电气工程及其自动化外文翻译中英文对照
理工大学毕业设计(外文翻译材料)学院:专业:学生姓名:指导教师:电气与电子工程学院电气工程及其自动化- .专业文档.Relay protection development present situationAbstract: Reviewed our country electrical power system relay protection technological development process, has outlined the microcomputer relay protection technology achievement, propose the future relay protection technological development tendency will be: Computerizes, networked, protects, the control, the survey, the data communication integration and the artificial intellectualization.Key word: relay protection, present situation development, future development1 relay protection development present situationThe electrical power system rapid development to the relay protection propose unceasingly the new request, the electronic technology, computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology development, therefore, the relay protection technology is advantageous, has completed the development 4 historical stage in more than 40 years time.After the founding of the nation, our country relay protection discipline, the relay protection design, the relay manufacture industry and the relay protection technical team grows out of nothing, has passed through the path in about 10 years which advanced countries half century passes through. The 50's, our country engineers and technicians creatively absorption, the digestion, have grasped the overseas advanced relay protection equipment performance and the movement technology , completed to have the deep relay protection theory attainments and the rich movement experience relay protection technical team, and grew the instruction function to the national relay protection technical team's establishment. The relay factory introduction has digested at that time the overseas advanced relay manufacture technology, has established our country relay manufacturing- .专业文档.industry. Thus our country has completed the relay protection research, the design, the manufacture, the movement and the teaching complete system in the 60's. This is a time which the mechanical and electrical relay protection prospers, was our countries relay protection technology development has laid the solid foundation.From the end of the 50's, the transistor relay protection was starting to study. In the 60's to the 80's,it is the times which the transistor relay protection vigorous development and widely used. Tianjin University and the Nanjing electric power automation plant cooperation research 500kV transistor direction high frequency protection the transistor high frequency block system which develops with the Nanjing electric power automation research institute is away from the protection, moves on the Gezhou Dam 500kV line , finished the 500kV line protection to depend upon completely from the overseas import time.From the 70's, start based on the integration operational amplifier integrated circuit protection to study. Has formed the completely series to at the end of 80's integrated circuit protection, substitutes for the transistor protection gradually. The development, the production, the application the integrated circuit protects which to the beginning of the 90's still were in the dominant position, this was the integrated circuit protection time. The integrated electricity road work frequency conversion quantity direction develops which in this aspect Nanjing electric power automation research institute high frequency protected the vital role, the Tianjin University and the Nanjing electric power automation plant cooperation development integrated circuit phase voltage compensated the type direction high frequency protection also moves in multi- strip 220kV and on the 500kV line.Our country namely started the computer relay protection research from the end of the 70's, the institutions of higher learning and the scientific research courtyard institute forerunner's function. Huazhong University of- .专业文档.Science and Technology, southeast the university, the North China electric power institute, the Xian Jiao tong University, the Tianjin University, Shanghai Jiao tong University, the Chongqing University and the Nanjing electric power automation research institute one after another has all developed the different principle, the different pattern microcomputer protective device. In 1984 the original North China electric power institute developed the transmission line microcomputer protective device first through the evaluation and in the system the find application, had opened in our country relay protection history the new page, protect the promotion for the microcomputer to pave the way. In the host equipment protection aspect, the generator which southeast the university and Huazhong University of Science and Technology develop loses magnetism protection, the generator protection and the generator? Bank of transformers protection also one after another in 1989、1994 through appraisal and investment movement. The Nanjing electric power automation research institute develops microcomputer line protective device also in 1991 through appraisal. The Tianjin University and the Nanjing electric power automation plant cooperation development microcomputer phase voltage compensated the type direction high frequency protection, the Xian Jiao tong University and the Xuchang Relay Factory cooperation development positive sequence breakdown component direction high frequency protection also one after another in 1993, in 1996 through the appraisal. Here, the different principle, the different type microcomputer line and the host equipment protect unique, provided one batch of new generation of performance for the electrical power system fine, the function has been complete, the work reliable relay protection installment. Along with the microcomputer protective device research, in microcomputer aspect and so on protection software, algorithm has also yielded the very many theories result. May say- .专业文档.started our country relay protection technology from the 90's to enter the time which the microcomputer protected.2 relay protections future developmentThe relay protection technology future the tendency will be to computerizes, networked, the intellectualization, will protect, the control, the survey and the data communication integration development.2.1 computerizesAlong with the computer hardware swift and violent development, the microcomputer protection hardware also unceasingly is developing. The original North China electric power institute develops the microcomputer line protection hardware has experienced 3 development phases: Is published from 8 lists CPU structure microcomputer protection, does not develop to 5 years time to the multi- CPU structure, latter developed to the main line does not leave the module the big modular structure, the performance enhances greatly, obtained the widespread application. Huazhong University of Science and Technology develops the microcomputer protection also is from 8 CPU, develops to take the labor controlling machine core partially as the foundation 32 microcomputers protection.The Nanjing electric power automation research institute from the very beginning has developed 16 CPU is the foundation microcomputer line protection, obtained the big area promotion, at present also is studying 32 protections hardware system. Southeast the university develops the microcomputer host equipment protects the hardware also passed through improved and the enhancement many times. The Tianjin University from the very beginning is the development take more than 16 CPU as the foundation microcomputer line protection, in 1988 namely started to study take 32 digital signals processor (DSP) as the foundation protection, the control, the survey integration microcomputer installment, at present cooperated with- .专业文档.the Zhuhai automatic equipment company develops one kind of function complete 32 big modules, a module was a minicomputer. Uses 32 microcomputers chips only to focus by no means on the precision, because of the precision the a/d switch resolution limit, is surpassed time 16 all is accepts with difficulty in the conversion rate and the cost aspect; 32 microcomputers chips have the very high integration rate more importantly, very high operating frequency and computation speed, very big addressing space, rich command system and many inputs outlet. The CPU register, the data bus, the address bus all are 32, has the memory management function, the memory protection function and the duty transformation function, and (cache) and the floating number part all integrates the high speed buffer in CPU.The electrical power system the request which protects to the microcomputer enhances unceasingly, besides protection basic function, but also should have the large capacity breakdown information and the data long-term storage space, the fast data processing function, the formidable traffic capacity, with other protections, the control device and dispatches the networking by to share the entire system data, the information and the network resources ability, the higher order language programming and so on. This requests the microcomputer protective device to have is equal to a pc machine function. In the computer protection development initial period, once conceived has made the relay protection installment with a minicomputer. At that time because the small machine volume big, the cost high, the reliability was bad, this tentative plan was not realistic. Now, with the microcomputer protective device size similar labor controlling machine function, the speed, the storage capacity greatly has surpassed the same year small machine, therefore, made the relay protection with complete set labor controlling machine the opportunity already to be mature, this will be one of development directions which the microcomputer protected. The- .专业文档.Tianjin University has developed the relay protection installment which Cheng Yong tong microcomputer protective device structure quite same not less than one kind of labor controlling machine performs to change artificially becomes. This kind of equipment merit includes: has the 486pc machine complete function, can satisfy each kind of function request which will protect to current and the future microcomputer. size and structure and present microcomputer protective device similar, the craft excellent, quakeproof, guards against has been hot, guards against electromagnetic interference ability, may move in the very severe working conditions, the cost may accept. Uses the STD main line or the pc main line, the hardware modulation, may select the different module willfully regarding the different protection, the disposition nimble, and is easy to expand.Relay protection installment, computerizes is the irreversible development tendency. How but to satisfies the electrical power system request well, how further enhances the relay protection the reliability, how obtains the bigger economic efficiency and the social efficiency, still must conduct specifically the thorough research.2.2 networkedThe computer network has become the information age as the information and the data communication tool the technical prop, caused the human production and the social life appearance has had the radical change. It profoundly is affecting each industry domain, also has provided the powerful means of communication for each industry domain. So far, besides the differential motion protection and the vertical association protection, all relay protections installment all only can respond the protection installment place electricity spirit. The relay protection function also only is restricted in the excision breakdown part, reduces the accident to affect the scope. This mainly is because lacks the powerful data communication method. Overseas already had proposed the system protection concept, this in mainly referred- .专业文档.to the safe automatic device at that time. Because the relay protection function not only is restricted in the excision breakdown part and the limit accident affects the scope (this is most important task), but also must guarantee the entire system the security stable movement. This requests each protection unit all to be able to share the entire system the movement and the breakdown information data, each protection unit and the superposition brake gear in analyze this information and in the data foundation the synchronized action, guarantees the system the security stable movement. Obviously, realizes this kind of system protection basic condition is joins the entire system each main equipment protective device with the computer network, that is realization microcomputer protective device networked. This under the current engineering factor is completely possible.Regarding the general non- system protection, the realization protective device computer networking also has the very big advantage. The relay protection equipment can obtain system failure information more, then to the breakdown nature, the breakdown position judgment and the breakdown distance examination is more accurate. Passed through the very long time to the auto-adapted protection principle research, also has yielded the certain result, but must realize truly protects to the system movement way and the malfunction auto-adapted, must obtain the more systems movement and the breakdown information, only then realization protection computer networked, can achieve this point.Regarding certain protective device realization computer networking also can enhance the protection the reliability. The Tianjin University in 1993 proposed in view of the future Three Gorges hydroelectric power station 500kv ultrahigh voltage multi-return routes generatrix one kind of distributional generatrix protection principle, developed successfully this kind of equipment initially. Its principle is disperses the traditional central- .专业文档.generatrix protection certain (with to protect generatrix to return way to be same) the generatrix protection unit, the dispersible attire is located in on various return routes protection screen, each protection unit joins with the computer network, each protection unit only inputs this return route the amperage, after transforms it the digital quantity, transmits through the computer network for other all return routes protection unit, each protection unit acts according to this return route the amperage and other all return routes amperage which obtains from the computer network, carries on the generatrix differential motion protection the computation, if the computed result proof is the generatrix interior breakdown then only jumps the book size return route circuit breaker, Breakdown generatrix isolation. When generatrix area breakdown, each protection unit all calculates for exterior breakdown does not act. This kind the distributional generatrix protection principle which realizes with the computer network has the high reliability compared to the traditional central generatrix protection principle. Because if a protection unit receives the disturbance or the miscalculation when moves by mistake, only can wrongly jump the book size return route, cannot create causes the generatrix entire the malignant accident which excises, this regarding looks like the Three Gorges power plant to have the ultrahigh voltage generatrix the system key position to be extremely important.By above may know, microcomputer protective device may enhance the protection performance and the reliability greatly, this is the microcomputer protection development inevitable trend.2.3 protections, control, survey, data communication integrationsIn realization relay protection computerizing with under the condition, the protective device is in fact a high performance, the multi-purpose computer, is in an entire electrical power system computer network intelligent terminal. It may gain the electrical power system movement and- .专业文档.breakdown any information and the data from the net, also may protect the part which obtains it any information and the data transfer for the network control center or no matter what a terminal. Therefore, each microcomputer protective device not only may complete the relay protection function, moreover in does not have in the breakdown normal operation situation also to be possible to complete the survey, the control, the data communication function that is realization protection, control, survey, data communication integration.At present, in order to survey, the protection and the control need, outdoor transformer substation all equipment, like the transformer, the line and so on the secondary voltage, the electric current all must use the control cable to direct to . Lays the massive control cable not only must massively invest, moreover makes the secondary circuit to be extremely complex. But if the above protection, the control, the survey, the data communication integration computer installation, will install in outdoor transformer substation by the protection device nearby, by the protection device voltage, the amperage is changed into after this installment internal circulation the digital quantity, will deliver through the computer network, then might avoid the massive control cable. If takes the network with the optical fiber the transmission medium, but also may avoid the electromagnetic interference. Now the optical current transformer (OTA) and the optical voltage transformer (OTV) in the research trial stage, future inevitably obtained the application in the electrical power system. In uses OTA and in the OTV situation, the protective device should place is apart from OTA and the OTV recent place, that is should place by the protection device nearby. OTA and the OTV light signal inputs after this integration installment in and transforms the electrical signal, on the one hand serves as the protection the computation judgment; On the other hand took the survey quantity, delivers through the network. May to deliver from through the network by the- .专业文档.protection device operation control command this integrated installment, carries out the circuit breaker operation from this the integrated installment. In 1992 the Tianjin University proposed the protection, the control, the survey, the correspondence integration question, and has developed take the tms320c25 digital signal processor (DSP) as a foundation protection, the control, the survey, the data communication integration installment.2.4 intellectualizationsIn recent years, the artificial intelligence technology like nerve network, the genetic algorithms, the evolution plan, the fuzzy logic and so on all obtained the application in electrical power system each domain, also started in the relay protection domain application research. The nerve network is one non-linear mapping method, very many lists the complex non-linear problem with difficulty which the equation or solves with difficulty, the application nerve network side principle may be easily solved. For example exhibits in the situation in the transmission line two sides systems electric potential angle to occur after the transition resistance short-circuits is a non-linear problem, very difficult correctly to make the breakdown position from the protection the distinction, thus creates moves by mistake or resists to move; If thinks after the network method, passes through the massive breakdowns sample training, so long as the sample centralism has fully considered each kind of situation, then in breaks down time any all may correctly distinguish. Other likes genetic algorithms, the evolution plan and so on also all has its unique solution complex question the ability. May cause the solution speed these artificial intelligence method suitable unions to be quicker? The Tianjin University carries on the nerve network type relay protection from 1996 the research, has yielded the preliminary result. May foresee, the artificial intelligence technology must be able to obtain the application in the relay protection domain, by solves the problem which solves with difficulty with the conventional method.- .专业文档.3 conclusionsSince the founding of China's electric power system protection technology has undergone four times. With the rapid development of power systems and computer technology, communications technology, relay technology faces the further development of the trend. Domestic and international trends in the development of protection technologies: computerization, networking, protection, control, measurement, data communications integration and artificial intelligence, which made protection workers difficult task, but also opened up the activities of vast.- .专业文档.继电保护发展现状摘要:回顾我国电力系统继电保护技术的发展过程,概述了微机继电保护技术成果,提出了未来继电保护技术的发展趋势将是:计算机化,网络化,保护,控制,调查,数据通信一体化和人工智能化。
电气电子专业毕业设计外文翻译--用SPMC75的PDC定时器做BLDC电机的速度检测
XXXX大学(外文翻译材料)学院:专业:学生姓名:指导教师:BLDC Motor Speed Estimation Using PDC Timer Module1 Speed Calculation of BLDC1.1 Summary of BLDCSince current BLDC has substituted the electrical commutator for the mechanical one, it eliminates the disadvantages of noise, spark, electromagnetic disturbance, short lifetime, etc. Now BLDC is provided with advantages of simple structure, dependable operation and easy maintenance as AC motor does, as well as advantages of high efficient, no excitation cost and functional speed regulation as traditional DC motor does. So it is widely used in various fields of industrial control now.1.2 PDC Module IntroductionSPMC75F2413A provides two channels of 16 bit PDC (Phase Detection Control, PDC) timers used for capture function and PWM operation. It also supports position detection features for Brushless-DC motor application. The PDC timers are very suitable for both mechanical speed calculation, with ACI and BLDC motor included, and phase commutation for changing current conduction according to position information. Figure1-1 shows the block diagram of entire PDC timers, channel 0 and channel 1. For details of PDC timer’s specificati on, please refer to Table 1-1.Table 1-1 PDC TimerFunction PDC Timer 0 PDC Timer 1Clock sources Internal clock: FCK/1,FCK/4, FCK/16, FCK/64,FCK/256, FCK/1024External clock: TCLKA,TCLKBInternal clock: FCK/1,FCK/4, FCK/16,FCK/64, FCK/256,FCK/1024External clock: TCLKA,TCLKBIO pins TIO0A, TIO0B, TIO0C TIO1A, TIO1B, TIO1CTimer general register P_TMR0_TGRA,P_TMR0_TGRB,P_TMR0_TGRCP_TMR1_TGRA,P_TMR1_TGRB,P_TMR1_TGRCTimer buffer register P_TMR0_TBRA,P_TMR0_TBRB,P_TMR0_TBRCP_TMR1_TBRA,P_TMR1_TBRB,P_TMR1_TBRCTimer period and counter register P_TMR0_TPR,P_TMR0_TCNTP_TMR1_TPR,P_TMR1_TCNT1Capture sample clock Internal clock: FCK/1,FCK/2, FCK/4, FCK/8Internal clock: FCK/1,FCK/2, FCK/4, FCK/8Counting edge Count on rising, falling, bothedgeCount on rising, falling,both edgeCounter clear source Cleared on P_TMR0_TGRA,P_TMR0_TGRB,P_TMR0_TGRC captureinput.Cleared onP_POS0_DectData positiondetection data changes.Cleared on P_TMR0_TPRcompare matches.Cleared onP_TMR1_TGRA,P_TMR1_TGRB,P_TMR1_TGRC captureinput.Cleared onP_POS1_DectDataposition detection datachanges.Cleared onP_TMR1_TPR comparematches.Input capture function Yes YesPWM compare match output function 1 output Yes Yes 0 output Yes Yes OutputHoldYes YesEdge-aligned PWM Yes Yes Center-aligned PWM Yes YesPhase counting mode Yes, phase inputs areTCLKA/TCLKBYes, phase inputs areTCLK C/TCLKDTimer buffer operation Yes YesAD convert start trigger P_TMR0_TGRA comparematchP_TMR1_TGRAcompare matchInterrupt sources Timer 0 TPR interruptTimer 0 TGRA interruptTimer 0 TGRB interruptTimer 0 TGRC interruptTimer 0 PDC interruptTimer 0 overflow interruptTimer 0 underflow interruptTimer 1 TPR interruptTimer 1 TGRA interruptTimer 1 TGRB interruptTimer 1 TGRC interruptTimer 1 PDC interruptTimer 1 overflowinterruptTimer 1 underflowinterrupt2Figure 1-1 PDC Timers Block Diagram1.3 PDC OperationThis note mainly depicts PDC application in motor speed measurement. For detailed PDC introduction, please refer to “SPMC75F2413A Programming Guide” authored by Sunplus.PDC module has four types of registers to perform speed measurement: Timer control register P_TMRx_Ctrl (x = 0, 1), position detection control register P_POSx_DectCtrl (x = 0, 1), input output control register P_TMRx_IOCtrl (x = 0, 1), and timer interrupt enable register P_TMRx_INT (x = 0, 1). Where, P_TMRx_Ctrl and P_POSx_DectCtrl are introduced in detail.1.31Input Output Control RegisterP_TMRx_Ctrl(x = 0, 1)B15 B14 B13 B12 B11 B10 B9 B8R/W R/W R/W R/W R/W R/W R/W R/W30 0 0 0 0 0 0 0SPCK MODE CLEGSB7 B6 B5 B4 B3 B2 B1 B0R/W R/W R/W R/W R/W R/W R/W R/W0 0 0 0 0 0 0 0SPCK MODE CLEGSBit 15:14SPCK: Capture input sample clock select. These bits select the capture input sample clock. Capture input will be sampled with sample clock. Pulses shorter than four sample clocks will be considered invalid, and will be ignored.00 = FCK/101 = FCK/210 = FCK/411 = FCK/8Bit 13:10MODE: Modes select. These bits are used to select the timer operation modes.0000 = Normal operation (continuous counter up counting)0100 = Phase counting mode 10101 = Phase counting mode 20110 = Phase counting mode 30111 = Phase counting mode 41x0x = Edge-aligned PWM mode (continuous counter up counting, PWM output) 1x1x = Center-aligned PWM mode (continuous counter up/down counting, PWM output)Bit 9:8CLEGS: Counter clear edge select. These bits select the counter clearing edge when the clearing source is in input capture mode.00 = do not clear01 = rising edge10 = falling edge11 = both edge4Bit 7:5CCLS: Counter clear source select. These bits select the TCNT counter clearing source.000 = TCNT clearing disabled001 = TCNT cleared by P_TMRx_TGRA (x = 0, 1) capture input010 = TCNT cleared by P_TMRx_TGRB (x = 0, 1) capture input011 = TCNT cleared by P_TMRx_TGRC (x = 0, 1) capture input100 = TCNT cleared by every P_POSx_DectData (x = 0, 1) change 6 times101 = TCNT cleared by every P_POSx_DectData (x = 0, 1) change 3 times110 = TCNT cleared by P_POSx_DectData (x = 0, 1) position detection data change 111 = TCNT cleared by P_TMRx_TPR (x = 0, 1) compare matchBit 4:3CKEGS: Clock edge select, These bits select the input clock edge. When the input clock is counted using both edges, the input clock period is halved. When FCK/1 is selected as counter clock, counter will count at rising edge if count at both edges is selected.00 = Count at rising edge01 = Count at falling edge1X = Count at both edgesBit 2:0TMRPS: Timer pre-scalar select. These bits select the TCNT counter clock source. It can be selected independently for each channel.000 = Counts on FCK /1001 = Counts on FCK /4010 = Counts on FCK /16011 = Counts on FCK /64100 = Counts on FCK /256101 = Counts on FCK /1024110 = Counts on TCLKA pin input111 = Counts on TCLKB pin inputControl register configurationP_TMRx_Ctrl(x = 0, 1) is used for the selection of input capture during speed5measurement. Rather than being a general input signal, the input capture is a period between two position detection changes triggered by PDC interrupt. This period must be counted with a certain frequency supported by a clock source. Thus, the counters on this function must be configured.MODE: Select a timer operation mode in seven modes. However, only the normal operation (continuous counter up counting) mode can be selected in this application, because the other six modes are all related to phase counting mode or PWM mode.CCLS: Select a TCNT counter clearing source from eight settings. In this application, one among the three can be set: 100, 101 or 110, which respectively indicates that TCNT is cleared for once every 6/3/1 times P_the POSx_DectData (x = 0, 1) changes. Also, they can be described as: TCNT is cleared for once every 360/180/60 electrical degree rotation of BLDC. This setting is critical for converting electrical revolution to mechanical revolution and measuring the BLDC speed.CKEGS: Select the input clock edge, which can be rising, falling or both edges. When the input clock is counted using both edges, the input clock period is halved. Note to count this factor on during the BLDC speed calculation.TMRPS: Select the TCNT counter clock source from eight settings. This setting determines the precision and the range during BLDC speed measurement. See the example code below:P_TMR0_Ctrl, B.MODE = 0; // Normal Counting modeP_TMR0_Ctrl, LS = 6; // TCNT cleared by P_POSx_DectData (x = 0, 1)// Each time position detection data changeP_TMR0_Ctrl, B.CKEGS = 0; // Counting at rising edgeP_TMR0_Ctrl, B.TMRPS = 3; // Select FCK/64 clock source1.3.2 Position Detection Control RegisterP_POSx_DectCtrl(x = 0, 1)B15 B14 B13 B12 B11 B10 B9 B8R/W R/W R/W R/W R/W R/W R/W R/W0 0 0 0 0 0 0 0SPLCK SPLMOD SPLCNTB7 B6 B5 B4 B3 B2 B1 B0R/W R/W R/W R/W R/W R/W R/W R/W0 0 0 0 0 0 0 06PDEN SPDLYBit 15:14SPLCK: Sampling clock select. Select FCK/4, FCK/8, FCK/32, or FCK/128 for position sampling clock00 = FCK/401 = FCK/810 = FCK/3211 = FCK/128Bit 13:12SPLMOD: Sampling mode select. Select one of three modes: sampling when PWM signal is active (PWM is on), sampling regularly, or sampling when lower side (UN, VN, WN) phases are conducting current.00 = Sample when UPWM/VPWM/WPWM bit is set in P_TMRx_OutputCtrl (x = 3,4) register and generate the PWM waveform01 = Sample regularly10 = Sample when lower phases is in active state and conducting current11 = ReservedBit 11:8SPLCNT: Sampling count select. These bits select the sampling count for the valid external position detection signals. The position signals must be sampled continuously match as many times as the sampling count set, for the position signals to be considered valid. The valid settings are from 1 to 15 times. Note that count 0 and 1 are assumed to be one time.Bit : 7PDEN: Position detection enable. This bit enables/disables the position detection function for position input pins TIOA~C. When enabled, the input signals of these pins will be sampled and the results will be latched to PDR [2:0] bits in POS_DectData register. When disabled, PDR [2:0] will remain its status.0 = Disable1 = EnableBit 6:0SPDLY: Sampling delay. These bits set a delay time clock in which at SPLCK clock7source. It is used to stop sampling in order to prevent erroneous detection due to noise that occurs immediately after PWM output turns on.Position detection control registerWhen the position detection changing event occurs, the P_TMRx_TCNT (x = 0, 1) value can be transferred to TGRA. If the position detection interrupt enable bit PDCIE is set to 1 in the corresponding P_TMRx_INT (x = 0, 1) register, the PDC interrupt routine will be called to process the data.SPLCK: Select sampling clock from FCK/4, FCK/8, FCK/32, or FCK/128 for position sampling clock, which determines the detection precision of position change. Proper setting of SPLCK, SPLCNT and SPDLY will help to prevent erroneous detection and filter the disturbance.SPLMOD: Select one of these three modes: sampling when PWM signal is active (PWM is on), sampling regularly, or sampling when lower side (UN, VN, WN) phases are conducting current.SPLCNT: Sampling count select. The valid settings are from 1 to 15 times. Note that count 0 and 1 are both assumed to be one time.PDEN: This bit enables/disables the position detection function for position input pins TIOA~C.SPDLY: Sampling delay with the range of 0 to 127.The setting example is shown as blew.P_POS0_DectCtrl, B.SPLCK = 2; // Count on FCK/32P_POS0_DectCtrl, B.SPLMOD = 1; // Sample regularlyP_POS0_DectCtrl, B.SPLCNT = 10; // Sample 10 timesP_POS0_DectCtrl, B.PDEN = 1; // Enable position detectionP_POS0_DectCtrl, B.SPDLY = 100; // Sample Delay1.4 Speed CalculationIn order to obtain the exact parameters, the data must be filtered after captured. There are many filter algorithms, such as low-pass filter, moving average filter, median filter, average filter, limiting filtering, first-order filter, moving average filtering, etc. In general, the data can be considered valid after processed by these filters. Then the speed can be calculated by substituting these parameters data in the formula.Assume Fcap is PDC capture clock frequency; p is the pole-pair of BLDC rotor; TCNT is cleared every m P_POSx_DectData (x = 0, 1) changes, that is, TCNT is cleared at89every *3m πrad rotation (m=1, 3, 6), and the position data is NcapSince:d dt φΩ=(Formula 1- 1)and d φ=*3m π,Ncapdt Fcap = Since electrical degree = p x mechanical rotation then the mechanical angularvelocity isp ωΩ=(Formula 1- 2)with the unit of rad/min. Take n as the indicator. So:26030n nππω== rad/min (Formula 1- 3)n summarize:60**10**3*2***Fcap m Fcap mn Ncap p Ncap p ==rpm (Formula 1- 4)From the formula above, we can obverse that n is related to Fcap, m, Ncap and p (thatis a constant when BLDC is selected) .Suppose there is a BLDC with 2 pole-pair, 4000rpm rated speed. We will show you how to set the parameters of Fcap and m.When m= 1, TCNT is cleared every time P_POSx_DectData (x = 0, 1) changes, , that is, TCNT is cleared for once every 60 electrical degree rotation of BLDC.With a certain clock frequency, the motor rotation speed can be calculated by the Formula 1- 4 at the highest speed when Ncap is 1 and the lowest speed when Ncap is 0xffff.Table 1-2 Motor Speed VS Clock FrequencyFcap n FCK/1FCK/4FCK/16 FCK/64FCK/256FCK/1024Nmax (rpm) 120M 30M 7.5M 1875K 468750 117187.5 Nmin (rpm)1831457.8114.428.67.21.8@When m= 3, TCNT is cleared for once every 3 times P_POSx_DectData (x = 0, 1)10changes, that is, TCNT is cleared every 180 electrical degree rotation of BLDC. From the Formula 1- 4, we can see that the measurable motor speed when m= 3 is three times higher than that when m= 1, provided that other parameters are the same. @When m= 6, TCNT is cleared every 6 times P_POSx_DectData (x = 0, 1) changes, that is, TCNT is cleared every 360 electrical degree rotation of BLDC.From the Formula 1- 4, we can see that the measurable motor speed when m= 6 is six times higher than that when m= 1, provides that other parameters are the same.Above all, it is better to set m= 1 to ensure the veracity of positions. Since the highest speed can be applied, it is important to select the lowest speed. Assume the lowest measure speed is 200 rpm, we can set Fcap as FCK/16, FCK/64, FCK/256 or FCK/1024. FCK/16 is recommended to be selected for higher veracity. 1.5 Noise ImmunityThrough programming the bit value of SPLCNT (sampling count select) and SPDLY (sampling delay) in P_POSx_DectCtrl(x = 0, 1), users could avoid the erroneous detection due to noise that occurs immediately after PWM output turns on. It can ensure the correctness of speed measurement and phase commutation in BLDC .The valid settings are from 1 to 15 times. Note that count 0 and 1 are both assumed to be one time. These bits select the sampling count for the valid external position detection signals. The position signals must be sampled continuously match as many times as the sampling count set, for the position signals to be considered valid. Then the sharp pulse can be filtered by this method. SPLCK selects the sampling clock. Figure 1-2 shows the sampling counting and Figure 1-3 shows the noise immunity pulse.Figure 1-2 Sampling Counting0 1 2 3 4 5 6 7 8 9 10Hall3Hall2Hall1SPLCK…Figure 1-3 Noise Immunity PulseSee Figure 1-2 , the SPLCNT setting is 10. When sampling the position signal with the frequency that SPLCK selected, a high-to-low transition occurs in hall3 at 0 to1 counting. Then sample the hall signal for ten executive times. If they are all of the same value, the hall signal can be considered valid.When SPLCNT setting is 10, a high-to-low transition occurs in hall3 at the first counting, while a low-to-high transition occurs at the fourth counting. Then reset the counter, sample hall3 for ten executive times. If they are all of the same value, the position signals can be considered as 011b still. By this way, a sharp pulse occurring in the signals can be filtered, which prevents the position signals from being disturbed. So the position signal will not be sampled if it varies quicker than the setting of SPLCK/SPLCNT does (note that count 0 and 1 are assumed to be one time).2 Software Design2.1 Software DescriptionThis application note is designed for motor speed measurement when driving BLDC, which is performed by PDC position detection change interrupt.2.2 Source FileFile Name Function TypeMain System initializationand motor detection (or performed by ISR)CISRPosition detectionchange input and speedcalculationC Hall3Hall2Hall1………0 1 2 3 4 5 611Spmc75 _SPDET_V100 The key function forspeed calculationlibSpmc75_dmc_lib_V100.lib DMC communication functionlib2.3 DMC InterfaceSpeed1_Now: Current speed by calculationUser_R0: PDC Data captured by PDC interrupt2.4 SubroutinesSpmc75_System_Init ( )Prototype void Spmc75_System_Init(void)Description Initialize PDC Timers and DMCInput Arguments NoneOutput Arguments NoneHead Files Spmc75_SPDET.hLibrary Files Spmc75_ SPDET _V100Note PDC timer0 is initialized hereExample Spmc75_System_Init();Spmc75_PDCETSPD_ISR ( )Prototype void Spmc75_PDCETSPD_ISR(void) Description Data capture, filter and calculationInput Arguments NoneOutput Arguments NoneHead Files Spmc75_SPDET.hLibrary Files Spmc75_SPDET_V100Note PDC ISRExample Spmc75_PDCETSPD_ISR();3 Design Tips3.1 Demo Listing/*= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */ // Example/*= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = */12#include "Spmc75_regs.h"#include "Spmc_typedef.h"#include "unspmacro.h"#include "Spmc75_SPDET.h"main(){Spmc75_System_Init(); //System initializationwhile(1){MC75_DMC_UART_Service(); //DMC service}}//= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = // Description: IRQ1 interrupt source is XXX, used to XXX// Notes: Speed measurement through PDC//= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = void IRQ1(void)__attribute__((ISR));void IRQ1(void){if(P_TMR0_Status, B.PDCIF && P_TMR0_INT, B.PDCIE){Spmc75_PDCETSPD_ISR(); // PDC capture interrupt for the motor speedcalculation.}}//= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = // Description: IRQ6 interrupt source is XXX, used to XXX// Notes: DMC receiving ISR//= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = void IRQ6(void) __attribute__ ((ISR));void IRQ6(void){if(P_INT_Status, B.UARTIF)13{if(P_UART_Status, B.RXIF) MC75_DMC_RcvStream();}}Sub-function for speed measurement#define TMRPSFCK (24.0E+6)/64 //Counter clock source#define PAIRPOLE 2 //BLDC pole pairs#define PDCCLEAR 1 //CNT clear source#define SPDLIMIT 5000 //Define the highest motor speed to avoid the disturbance due to sharp pulse#define RADIX (UInt32)((TMRPSFCK*60*PDCCLEAR) //(6*PAIRPOLE))#define MAXRPM (UInt16)(RADIX/SPDLIMIT)static UInt16 a Filter[CAPBSIZE]; //Moving average filter datastatic UInt16 *ptr = a Filter; //Pointer to arrayvoid Spmc75_PDCETSPD_ISR(void){static UInt32 summation= 0;UInt16 original, uiSpeed;P_TMR0_Status, B.PDCIF = 1; // Clear interrupt flagoriginal = P_TMR0_TGRA, W; //Read PDC captured data//Limit the highest speedif(original > P_TMR0_TCNT, W && original > MAXRPM){//Accumulate the captured data and perform moving filtersummation -= *ptr;*ptr = original;summation += *ptr;//Loop the arrayif((++ptr) > (a Filter+CAPBSIZE-1)) ptr = a Filter;// Average the accumulation data original = (UInt16)(summation >> SHIFTDIV);uiSpeed = (UInt32)RADIX/original;14//Speed calculationSPMC_DMC_Save_Aux(0, original);//Transmit captured data to DMC SPMC_DMC_Save_SpdNow(1, uiSpeed);//Send data to DMC }}3.2 Main Process DescriptionThe main program performs system initialization and DMC data detection. While the DMC data detection can also be performed in a timer interrupt with a certain frequency. Figure 3-1 shows the coding flow.StartSystem Initialization【API:Spmc75_System_Init()】Start/stop command detection【API:MC75_DMC_UART_Service()】Figure 3-1 Main Process3.3 ISR DescriptionIn PDC interrupt, system reads and filters the data, then calculates the motor speed. The coding flow is shown as Figure 3-2 .15Interrupt vectorNPDC int ?YPDC ISR【API:Spmc75_PDCETSPD_ISR()】RtiFigure 3-2 ISR Process3.4Testing HardwareThis example is designed for the purpose of study and reference, so we simply need to input a position signal to test the system. The hardware connection is shown as Figure 3-3 .Figure 3-3 Test Hardware Connection16Where, the position signal can be generated by MCU or special timing logic circuit instead of necessarily being the real signal from BLDC (see Figure 3-4 and Figure 3-5 ). The frequency of position detection change can be adjusted by the potentiometer or ADCin MCU systemFigure 3-4 Hall SignalFigure 3-4 shows the three position signals timing with the sequence of 010b, 011b, 001b, 101b, 100b, 110b.Figure 3-5 Hall signalFigure 3-5 shows Hall3, Hall2, Hall1 timing with the sequence of 110b, 100b, 101b, 001b, 011b, 010b. It is the same to test in real BLDC. The two timings present the different motor directions: move forward or move backward.The Hall.spj file in Appendix shows the code for simulating hall signal withSPMC75F2413A. We can use ADC0 voltage to simulate the speed variation, where IOD15, IOD14 and IOD13 are corresponding to Hall3, Hall2 and Hall1 respectively andIOA0/AN0 is used for ADC conversion to adjust the simulated speed.17用SPMC75的PDC定时器做BLDC电机的速度检测一、BLDC的速度测算1 直流无刷电动机概述直流无刷电动机采用电子换向器替代了传统直流电动机的机械换向装置,从而克服了电刷和换向器所引起的噪声、火花、电磁干扰、寿命短等一系列弊病。
电子科学与技术 毕业 论文 英文 外文 文献翻译
毕业设计(论文)外文文献翻译AbstractThis paper presents a voltage compensation driver for lighting a passive matrix organic LEDs (PMOLEDs) panel. A driver is designed andfabricated using FPGA and discrete components. The supply voltage range of the proposed driver is under 20V. Therefore, it can be applied in most commercial PMOLEDs panels. The luminance is confirmed by driving a PMOLEDs panel with a size of 64*48 pixels. Experimental results indicate that good luminance uniJormiQ is achieved using the proposed compensation driver. The lighting performance of PMOLEDs is quite similar to that driven by a canstant current. The voltage compensation driving method is applicable to PMOLEDs panels with various struciures or materials. Moreover, it can be applied to both monochrome and gray scale PMOLEDs Panels.Index Terms --eonstant current, luminance uniformity PMOLEDs, voltage compensation.I. INTRODUCTIONlat panel displays are in the mainstream of the information Fdisplay; they include a TFT-LCD monitor. The Organic LEDs (OLEDs) panel is another technology developed during the past decade. The OLEDs panels have several excellent and unique characteristics [I]. The properties include a wide viewing angle, quick response, thinness, lightness, , high efficiency, and self-emission [2]. Many studies have developed improved structures for PMOLEDs panels to enhance the lifetime and photo-efficiency [3]-[7]. Technologies for massproducing OLEDs are showing continuous advancement. Consequently, OLEDs technology may be applied extensively to commercial products in the near future.Applications of OLEDs technology include the following [SI.1 : lnformation systems2: Back lighting for LCD3: Automotive lighting4: Advertising panels5: Light sources6: Airport runway lighting7: Car audio lighting8: PDA / PC displays9: Smart cardsIO: Cellular phones'Chang-Jung Juan and Ming-long Tsai are with the Graduate SFhool of Engineenng, National Taiwan University of Science and Technology, No. 43,Sec. 4, KeeLung Rd., Taipei, 106, Taiwan, R.O.C.(mjtsai@.tw) Chang-Jung Juan is also with ElectronicEngineering Department, Hwa-Hsia College of Technology and Commerc6,No. 111, Hwa-Sing St., Jong-He ciw, Taipei, 243, Taiwan. R.O.C.(rric@.t~,)OLEDs panels can be classified into two types active matrix OLEDs (AMOLEDs) and passive OLEDs (PMOLEDs) [2]. Each individual pixel inside an AMOLEDs panel is independently driven via associated TFTs and capacitors in the electronic hack plane, as shown in Fig. I(a). In contrast, each pixel inside a PMOLEDs panel is lit by the driver, attached to each row and column, as shown in Fig. l(b). When a particular row is chosen, the column data and the row determine the lit pixels.PMOLEDs panels have been used in some commercialized products, including mobile phones and carstereos. With the aforementioned superior characteristics and possible applications, the OLEDs panel could be a significant mainstream technology in the display field in the future [9].The luminance of the PMOLEDs is linearly related to the current fed into the pixel. Naturally, the current controls the brightness of a PMOLEDs panel. A constantcurrent method is the most popular method for driving a PMOLEDs panel. This topic has been discussed in several papers [IO]-[14]. A current control theory is applied to a closed loop system that implies the circuit with a feedback path. A complex circuit generates a constant current. Thus, oscillation problems and the response time of a driving current should be considered.In PMOLEDs panels, indium-tin-oxide (ITO) is connected to the anode of each pixel in a column. In each row, a metal line is connected to the cathode of each pixel, as illustrated in Fig. l(b). The resistance of the IT0 is approximately 80 n /square area. The IT0 serves as a conductor so resistances exist between each pixel in the same column. Figure 2(a) presents a partial circuit of a singlecolumn in the PMOLEDs, where Re represents the resistance of the ITO. Accordingly, the IT0 resistance causes a voltage drop so that each pixel in each different row has a different voltage drop. Figure 2(b) illustrates the voltage drop for two pixels, p (I,]) and p (k, 1) in row one and row k, respectively. The resistances can be witten as R (1,l) and R (k,l), respectively. The relationship between- these two resistances can be described by the following equation.(1)Equation (1) .implies that the resistance of a pixel depends on the length of the ITO. Assume that the voltage drop due to the IT0 resistance can he compensated for a uniform luminance can be obtained by a voltage-driven PMOLEDs panel.11. PRINCIPLE OF VOLTAGE COMPENSATIONIn this section, the replacement by voltage compensation of a constant current driver for lighting a PMOLEDs panel is proven. Generally, a current controlled circuit drives a PMOLEDs panel. The gray level luminance of a PMOLEDs panel can be easily controlled. However, a totally different method, involving a voltage compensation driver, is proposed. Advantages of the proposed driver include ease of fabrication and quick electronic responses in operation. Furthermore, the^ display performance of a voltage compensation driver is sufficiently good in displaying mono-color pictures. Consider a PMOLEDs panel with a size of 3*3 pixels. Figure 3 presents the equivalent circuitry. Notably, the anode ofeach pixel is connected to each column from an IT0 and the cathode of each pixel is connected to a row by way of metal; The effect of capacitance can be neglected in the steady staie: The resistances of IT0 and metal are the major factors that affect the luminance. They are the resistance of the column (Rc) and the resistance of the row (Rr), respectively.Assuming that a pixel in the first column and the first row on a PMOLEDs panel is represented by P (0,O). The overall resistance will he Rc + Rr. It can be generally rewritten asFollows.where "i" is the row number and '7' is the column number.Equation (2) presents an important property of a PMOLEDs panel. The line resistance of each pixel differs from that of !he others in a PMOLEDs panel. The voltage compensation method is based on the standard procedure for producing a PMOLEDs panel. Accordingly, each pixel has the same characteristics, 'except line resistance. If the line resistance is ignored, the measured voltage drop across each pixel will he the same when the PMOLEDs panel is driven by a constant current.111. HARDWAREIM PLEMENTATIONThis section describes a voltage compensation method based on the principles derived from Section 11. Recall that the uniform luminance of a PMOLEDs panel can be obtained when each pixel is maintained at the same driving voltage and the line resistance is not a factor. Equation (7) can he transferred by an analog adder from hardware perspective. This adder manipulates three items - V(O,O), A V, (j) and A Vx (i) . Software-controlled DAC (Digital to Analog Converter) can generate varying voltages A Vc&) and A VR(i). Generally, lighting on a PMOLEDs panel is scanned row by row; thus, data for displaying in each column were passed simultaneously. Each column driver requires a DAC to compensate for the voltage A Vc. Such a circuit would he very complex and costly. Therefore, consider A V, (j). It is in the V range, and is not very important in the uniformity of luminance; hence, A V,(j) can be neglected for simplicity the circuit. VO,ED,i, = V(O,O)+ A V, 6) ( 8 ) where i is the row number The simplified Eq. (8) can be implemented using a DAC and a look up table (LUT), as shown in Fig. 5. The input to LUT is a row number and its outputs aredigital data to be input to a DAC, so that the varying voltage across^ the row, A V,(i). is generated. A counter is used to generate the row number. The counter is triggered by a synchronization of horizontal line (H.S.) and is reset by a frame vertical synchronization (V.S.). When lighting a PMOLEDs panel, the driver can generate a voltage, which is a function of a row number, to achieve a uniform luminance.Iv. EXPERIMENTRAELS ULTSA ND DISCUSSIONIn this section, some experimental results are presented to prove why the voltage compensation method can be applied to PMOLEDs panels to yield a uniform brightness. Figure 8shows a verifying system that combines a PMOLEDs panel and a power source with accurate measurement instruments to evaluate the compensation method for a PMOLEDs panel. The specification of a PMOLEDs panel is 64*48 pixels and the anode is made of ITO; the cathode is made of a metal line. A PC acts as a data collector and a controller during the testing procedure. A constant current flows through each pixel in the PMOLEDs panel. Meanwhile, the voltage drop across each pixel of PMOLEDs panel is recorded. Table I lists the voltage drops at different locations of a PMOLEDs panel at a constant current of 500~4. These voltage drop data clearly indicate that the resistance of the anode is key in the luminance performance of lighting a PMOLEDs panel. Accordingly, Eq. (7) gives the resistance of the anode. The voltage across different rows can thus be compensated for, to achieve uniform luminance when lighting a PMOLEDs panel.V. CONCLUSIONThis paper describes a voltage compensation method for improving the luminance uniform& of a PMOLEDs panel to take the place of a current-type driving method. The paper Chang-Jung Juan was born in considered basic theories and the circuit design of a voltage- Taiwan, R.O.C. in 1961. He compensated driver. Experimentalresults indicate that the received the B.S. and M.S. degree‘ luminance uniformity performance of the voltage in Electrical Engineering from compensation driving method is similar to that obtained by a National Taiwan Institute of constant current driving method. The proposed voltage- Technology, Taipei, Taiwan, R.O.C. compensated driver can be applied to both monochrome and in 1987 and 1989 respectively. gray scale PMOLEDs panels. Furthermore, the proposed Since 1989, he has been a faculty driver is economical than the conventional driver, member of the Department of Electronics Engineering of Hwa because of simple circuitry.介绍本文提出了一个电压补偿驱动被动矩阵有机发光二极管(PMOLEDs)面板照明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录一:外文原文Super capacitors - An OverviewKey words: Electrostatic capacitor; Electrolytic capacitor; Ceramic capacitor;Electrical double layer capacitor; Super Capacitor1.INTRODUCTIONThis paper offers a concise review on the renaissance of a conventional capacitor toelectrochemical double layer capacitor or super capacitor. Capacitors are fundamental electrical circuitelements that store electrical energy in the order of microfarads and assist in filtering. Capacitors havetwo main applications; one of which is a function to charge or discharge electricity. This function isapplied to smoothing circuits of power supplies, backup circuits of microcomputers, and timer circuitsthat make use of the periods to charge or discharge electricity. The other is a function to block the flowof DC. This function is applied to filters that extract or eliminate particular frequencies. This isindispensable to circuits where excellent frequency characteristics are required. Electrolytic capacitorsare next generation capacitors which are commercialized in full scale. They are similar to batteries in cell construction but the anode and cathode materials remain the same. They are aluminum, tantalum and ceramic capacitors where they use solid/liquid electrolytes with a separator between two symmetrical electro des.An electrochemical capacitor (EC), often called a Super capacitor or Ultra capacitor, stores electrical charge in the electric double layer at a surface-electrolyte interface, primarily in high-surface-area carbon. Because of the high surface area and the thinness of the double layer, these devices can have very a high specific and volumetric capacitance. This enables them to combine a previously unattainable capacitance density with an essentially unlimited charge/discharge cycle life. The operational voltage per cell ,limited only by the breakdown potential of the electrolyte, is usually<1 or <3 volts per cell for aqueous or organic electrolytes respectively.The concept of storing electrical energy in the electric double layer that isformed at the interface between an electrolyte and a solid has been known since the late 1800s. The first electrical device using double-layer charge storage was reported in 1957 by H.I. Becker of General Electric (U.S. Patent 2,800,616).Unfortunately, Becker’s device was imp ractical in that, similarly to a flooded battery, both electrodes needed to be immersed in a container of electrolyte, and the device was never comercialised.Becker did, however, appreciate the large capacitance values subsequently achieved by Robert A. Rightmire, a chemist at the Standard Oil Company of Ohio (SOHIO), to whom can be attributed the invention of the device in the format now commonly used. His patent (U.S. 3,288,641), filed in 1962 and awarded in late November 1966, and a follow-on patent (U.S. Patent 3,536,963) by fellow SOHIO researcher Donald L. Boos in 1970, form the basis for the many hundreds of subsequent patents and journal articles covering all aspects of EC technology.This technology has grown into an industrywith sales worth severalhundred million dollars per year. It is an in dustry that is poised today for rapid growth in the near term with the expansion of power quality needs and emerging transportation applications.Following the commercial introduction of NEC’s Super Capacitor in 1978, under licence from SOHIO, EC have evolved through several generations of designs. Initially they were used as back-up power devices for v is for cells ranging in size from small millifarad size devices with exceptional pulse power performance up to devices rated at hundreds of thousands of farads, with systems in some applications operating at up to 1,500 volts. The technology is seeing increasingly broad use, replacing batteriesolatile clock chips and complementary metal-oxide-semiconductor (CMOS) computer memories. But many other applications have emerged over the past 30 years, including portable wireless communication, enhanced power quality for distributed power generation systems, industrial actuator power sources, and high-efficiency energy storage for electric vehicles(EVs) and hybrid electric vehicles (HEVs).Overall, the unique attributes of ECs often complement the weaknesses of other power sources like batteries and fuel cells.Early ECs were generally rated at a few volts and had capacitance values measured from fractions of farads up to several farads. The trend today in some cases and in others complementing their performance.The third generation evolution is the electric double layer capacitor, where the electrical charge stored at a metal/electrolyte interface is exploited to construct astorage device. The interface can store electrical charge in the order of 610Farad. The main component in the electrode construction is activated carbon. Though this concept was initialized and industrialized some 40 years ago, there was a stagnancy in research until recent times; the need for this revival of interest arises due to the increasing demands for electrical energy storage in certain current applications like digital electronic devices, implantable medical devices and stop/start operation in vehicle traction which need very short high power pulses that could be fulfilled by electric double layer capacitors. They are complementary to batteries as they deliver high power density and low energy density. They also have longer cycle life than batteries and possess higher energy density as compared to conventional capacitors. This has led to new concepts of the so-called hybrid charge storage devices in which electrochemical capacitor is interfaced with a fuel cell or a battery. These capacitors using carbon as the main electrode material for both anode and cathode with organic and aqueous electrolytes are commercialized and used in day to-day applications. Fig.1 presents the three types of capacitors depicting the basic differences in their design and construction.Figure 1.Schematic presentation of electrostatic capacitor, electrolytic capacitor and electrical double layer capacitor.EDLCs, however suffer from low energy density. To rectify these problems, recently researchers try to incorporate transition metal oxides along with carbon in the electrode materials. When the electrode materials consist of transition metal oxides, then the electrosorption or redox processes enhance the value of specific capacitance ca. 10 -100 times depending on the nature of oxides. In such a situation, the EDLC is called as super capacitor or pseudo capacitor . This is the fourth generation capacitor. Performance of a super capacitor combines simultaneously two kinds of energy storage, i.e. non-faradic charge as in EDLC capacitors and faradaic charge similar toprocesses proceeding in batteries. The market for EC devices used for memory protection in electronic circuitry is about $150-200 million annually. New potential applications for ECs include the portable electronic device market, the power quality market, due particularly to distributed generation and low-emission hybrid cars, buses and trucks. There are some published reviews on capacitors and super capacitors . In the present overview, the evolution of electrochemical double layer capacitors starting from simple electrostatic capacitors is summarized.2. EXPERIMENTAL PARTThe invention of Leiden jar in 1745 started the capacitor technology; since then, there has been tremendous progress in this field. In the beginning, capacitors are used primarily in electrical and electronic products, but today they are used in fields ranging from industrial application to automobiles, aircraft and space, medicine, computers, games and power supply circuits. Capacitors are made from two metallic electrodes (mainly Si) placed in mutual opposition with an insulating material (dielectric) between the electrodes for accumulating an electrical charge. The basic equation relating to the capacitors is:C = εS/d (1)where C(μF) is the electrostatic capacity, the dielectric constant of the dielectric, S (cm2) the surface area of the electrode and d (cm) the thickness of the dielectric. The charge accumulating principle can be described as follows: when a battery is connected to the capacitor, flow of current induces the flow of electrons so that electrons are attracted to the positive terminal of the battery and so they flow towards the power source. As a result, an electron deficiency develops at the positive side, which becomes positively charged and an electron surplus develops at the negative side, which becomes negatively charged. This electron flow continues until the potential difference between the two electrodes becomes equal to the battery voltage. Thus the capacitor gets charged. Once the battery is removed, the electrons flow from the negative side to the side with an electron deficiency; this process leads to discharging. The conventional capacitors yield capacitance in the range of 0.1 to 1 μF with a voltage range of 50 to 400 V. Various materials such as paper (ε, 1.2-2.6), paraffin (ε 1.9-2.4), polyethylene (2.2-2.4), polystyrene (ε, 2.5-2.7), ebonite (ε, 2-3.5), polyethylene tetraphtharate (ε,3.1-3.2), water (ε, 80) sulfur(ε, 2-4.2), steatite porcelain (ε, 6-7), Al porcelain (ε, 8-10), mica(ε, 5-7)and insulated mineral oil (ε, 2.2-2.4) are used as dielectrics in capacitors.The capacitance output of these silicon based capacitors is limited and has to cope with low surface-to volume ratios of these electrodes. To increase the capacitance, as per eq., one has to increase to ∂or S and decrease; however the ∂value is largely determined by the working voltage and cannot be tampered. When aiming at high capacitance densities, it is necessary to combine the mutual benefits achieved with a high permittivity insulator material and an increased effective surface area. With Si as the substrate material, electrochemical etching produces effective surface area. The surface area of this material gets enlarged by two orders of magnitude compared to unetched surface. Electrochemically formed macroporous Si has been used for the preparation of high aspect ratio capacitors with layered SiO2/Si3N4/SiO2 insulators. Research work on the modification of conventional capacitors to increase the specific capacitance is also in progress. Approximately 30 times higher capacitance densities are reported recently for Si/Al2O3/ZnO: Al capacitor where Si is electrochemically etched porous one. Another way identified to increase the surface area of the electrodes is to form anodically formed oxides (Al, Ta); however, ceramic capacitors are based on the high dielectric constant rather than the electrode area.3. ELECTROLYTIC CAPACITORSThe next generation capacitors are the electrolytic capacitors; they are of Ta, Al and ceramic electrolytic capacitors. Electrolytic capacitors use an electrolyte as conductor between the dielectrics and an electrode. A typical aluminum electrolytic capacitor includes an anode foil and a cathode foil processed by surface enlargement and or formation treatments. Usually, the dielectric film is fabricated by anodizing high purity Al foil for high voltage applications in boric acid solutions. The thickness of the dielectric film is related to the working voltage of the aluminum electrolytic capacitor. After cutting to a specific size according to the design specification, a laminate made up of an anode foil, a cathode foil which is opposed to the dielectric film of the anode foil and a separator interposed between the anode and cathode foils, is wound to provide an element. The wound element does not have any electricalcharacteristics of electrolytic capacitor yet until completely dipped in an electrolyte for driving and housed in a metallic sheathed package in cylindrical form with a closed-end equipping a releaser. Furthermore, a sealing material made of elastic rubber is inserted into an open-end section of the sheathed package and the open-end section of the sheathed package by drawing, whereby an aluminum electrolytic capacitor is constituted. Electrolytic aluminum capacitors are mainly used as power supplies for automobiles, aircraft, space vehicles, computers, monitors, motherboards of personal computers and other electronics.There are two types of tantalum capacitors commercially available in the market; wet electrolytic capacitors which use sulfuric acid as the electrolyte and solid electrolytic capacitors which use MnO2 as the solid electrolyte. Though the capacitances derived from both Ta and Al capacitors are the same, Ta capacitors are superior to Al capacitors in temperature and frequency characteristics. For analog signal systems, Al capacitors produce a current-spike noise which does not happen in Ta capacitors. In other words, Ta capacitors are preferred for circuits which need high stability characteristics. The total world wide production of Al electrolytic capacitors amounts to US$ 3.8 billion, 99% of which are of the wet type. Unlike Ta solid electrolytic capacitors, the solid electrolyte materials used are of organic origin; polypyrrole, a functional polymer and TCNQ (7,7, 8, 8- tetracyanoquniodimethane) an organic semiconductor. Next, MnO2 solid electrolyte material is formed on the surface of that dielectric layer and on top of that a layer of polypyrrole organic solid electrolyte material is formed by electrolytic synthesis. Following this, the positive and negative electrodes are mounted to complete the electronic component. However, the capacitances of these electrolytic capacitors are in the range 0.1 to 10F with a voltage profile of 25 to 50 V.The history of development of electrolytic capacitors which were mass produced in the past as well as today is presented by S. Niwa and Y. Taketani . Many researchers try to improve the performance of these electrolytic capacitors by modifying the electrode or electrolyte. Generally, the increases in effective surface area (S) are achieved by electrolytic etching of aluminum substrate before anodization, but now it faces with the limit. It is also very difficult to decrease d because the d value is largely decided when the working voltages are decided. Increase in may be a possible routine to form composite dielectric layers by incorporating relatively large value compounds. Replacement of MnO2 by polypyrrole solid electrolyte was reported to reduce electrostatic resistance due to its higher conductivity; aromaticsulfonate ions were used as charge compensating dopant ions .A tantalum capacitor with Ta metal as anode, polypyrrole as cathode and Ta2O5 dielectric layer was also reported. In the Al solid electrolytic capacitors, polyaniline doped with inorganic and organic acids was also studied as counter electrode. In yet another work, Al solid electrolytic capacitor with etched Al foil as anode, polyaniline / polypyrrrole as cathode and Al2O3 as dielectric was developed. Ethylene carbonate based organic electrolytes and -butyrolactone based electrolytes have been tried as operating electrolytes in Al electrolytic capacitors. Masuda et al. have obtained high capacitance by electrochemically anodizing rapidly quenching Al-Ti alloy foil. Many researchers have tried the other combination of alloys such as Al-Zr, Al-Si, Al-Ti, Al-Nb and Al-Ta composite oxide films. Composite oxide films of Al2O3-(Ba0.5Sr0.5TiO3) and Al2O3- Bi4Ti3O12 on low-voltage etched aluminum foil were also studied. Nb-Ta-Al for Ta electrolytic capacitors was also tried as anode material .A ceramic capacitor is a capacitor constructed of alternating layers of metal and ceramic, with the ceramic material acting as the dielectric. Multilayer ceramic capacitors (MLCs) typically consist of ~100 alternate layers of electrode and dielectric ceramics sandwiched between two ceramic cover layers. They are fabricated by screen-printing of electrode layers on dielectric layers and co-sintering of the laminate. Conventionally, Ag-Pd is used as the electrode material and BaTiO3 is used as the dielectric ceramic. From 2000 onwards, the MLCs market has been growing in pace with the exponential development of communications. They are produced in the capacitance range of 10 F (normally the range of Ta and Al electrolytic capacitors); they are highly useful in high frequency applications. Historically, a ceramic capacitor is a two-terminal non-polar device. The classical ceramic capacitor is the disc capacitor. This device predates the transistor and was used extensively in vacuum-tube equipment (e.g radio receivers) from c. a. 1930 through the 1950s and in discrete transistor equipment from the 1950s through the 1980s. As of 2007, ceramic disc capacitors are in widespread use in electronic equipment, providing high capacity and small size at low price compared to the other types.The other ceramic materials that have been identified and used are CaZrO3, MgTiO3, SrTiO3 etc. A typical 10 F MLC is a chip of size (3.2 x 1.6 x 1.5 mm). Mn, Ca, Pd , Ag etc are some of the other internal electrodes used. Linear dielectrics and antiferroelectrics based o strontium titante have been developed for high voltage disk capacitors. These are applicable for MLCs with thinner layers because of their high coercive fields. One of the most critical material processing parameters is the degreeof homogeneous mixing of additive in the slurry. The binder distribution in the green ceramic sheet, the degree of surface roughness, fine size nickel powder, formation of green sheet, electrode deposition ad sheet stacking etc play a crucial role in the process technology. Any one of these facts if mishandled would result in the failure of the device. For instance, providing a roughess of 5 m thick green sheet to 0.5 m is mandatory so that a smooth contact surface with the inner nickel electrode can be established. This is a very important factor in avoiding the concentration of electric filed at asperities, where the charge emission from the electrode is accelerated, resulting in short failure. Conventional sheet/printing method has a technical limit of producing a thickness around 1 m dielectric; in order to decrease the thickness further, thin film technologies like CVD, sputtering, plasma-spray etc has to be used.The other types of capacitors are film capacitors which use thin polyester film and polypropylene film as dielectrics and meta-glazed capacitors which incorporate electrode plates made of film vacuum evaporated with metal such as Al. Films can be of polyester, polypropylene or polycarbonate make. Also capacitors are specified depending on the dielectric used such as polyester film capacitor, polypropylene capacitor, mica capacitor, metallized polyester film capacitor etc.4. DOUBLE LAYER CAPACITORSElectric/electrochemical double layer capacitor (EDLC) is a unique electrical storage device, which can store much more energy than conventional capacitors and offer much higher power densitythan batteries. EDLCs fill up the gap between the batteries and the conventional capacitor, allowing applications for various power and energy requirements i.e., back up power sources for electronic devices, load-leveling, engine start or acceleration for hybrid vehicles and electricity storage generated from solar or wind energy. EDLC works on the principle of double-layer capacitance at the electrode/electrolyte interface where electric charges are accumulated on the electrode surfaces and ions of opposite charge are arranged on the electrolyte side.Figure 2.Charge storage mechanism of an EDLC cell under idle and charged conditions.Fig. 2 shows the mechanism of charge storage in an EDLC cell and Fig. 3 shows the configuration of an typical EDLC cell. There are two main types of double layer capacitors as classified by the charge storage mechanism: (i) electrical double-layer capacitor; (ii) electrochemical double layer capacitor or super/pseudocapacitor. An EDLC stores energy in the double-layer at the electrode/electrolyte interface, whereas the supercapacitor sustains a Faradic reaction between the electrode and the electrolyte in a suitable potential window. Thus the electrode material used for the construction of the cell for the former is mainly carbon material while for the latter, the electrode material consist of either transition metal oxides or mixtures of carbon and metal oxides/polymers. The electrolytes can be either aqueous or non-aqueous depending on the mode of construction of EDLC cell.Figure 3.Typical configuration of an EDLC cellThere are two general directions of interest. One is the long term goal of the development of electrical propulsion for vehicles, and the other is the rapid growth of portable electronic devices that require power sources with maximum energy content and the lowest possible size and weight.5. CONCLUSIONSAccording to a market survey by Montana, super capacitors are becoming a promising solution for brake energy storage in rail vehicles. The expected technological development outside railway sector is also shown to be highly dynamic: diesel electric vehicles, catenary free operation of city light rail, starting system for diesel engines, hybrid-electric cars, industrial applications, elevators, pallet trucks etc. The time horizon expected for development is next 5 to 10 years. The main development goals will be,· long life time· increase of the rated voltage· improvements of the range of operating temperature· increase of the energy and power densitiesVery recently, hybrid car is introduced in the market but it is turned to be very expensive and out of common man’s reach. Shortage and cost of fossil fuels already instigated alternate technologies viable for traction purposes. In such a situation,EDLCs are also useful to store energy generated from non-conventional energy sources. A future possibility of service centers set up for EDLC supply similar to petrol (as on date) is not far as the main setbacks in technology development may take a decade for fruitful results.附录二:外文译文超级电容器-概述关键词:静电电容,电解电容器,陶瓷电容器,双电层 ,电容器,超级电容器1.引言本文为电化学双层电容器或超级电容器提供在一台常规电容器,简明的介绍新生的电化学双电层电容器或超级电容器。