【免费下载】概率论与数理统计试卷A 及答案

合集下载

概率论与数理统计试题-a_(含答案)

概率论与数理统计试题-a_(含答案)

第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分) 1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生(C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生答:选D ,根据A B 的定义可知。

2. 假设事件A 与事件B 互为对立,则事件A B ( )(A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。

3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。

4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

《概率论与数理统计》期末考试试题(A)及解答

《概率论与数理统计》期末考试试题(A)及解答
X
0 1
1 4
0
1 2
1 4
1 2 1 2
0
1 4
0
1 4
1 2
………….4 分 (2) 因为 所以
P X 0 , Y 0 0 P X 0 P Y 0 1 2 1 2 1 4
X
与 Y 不相互独立 …………8 分
七、 8 (
分)
1 2
解: (1) P ( 0 X 1, 0 Y 2 ) dx 12 e ( 3 x 4 y ) dy

(B) P ( A ) P ( A1 ) P ( A 2 ) 1 (D) P ( A ) P ( A1 ) P ( A 2 ) 1
(C ) N ( 0 , 4 6 );
(5)设 X 1, X 2 , , X n 为正态总体 N ( , 2 ) 的一个简单随机样本,其中 2 ,
0 . 7 0 . 7 0 . 6 0 . 28
…………6 分
四、 6 分) (
解:用 X 表示时刻 T 运行的电梯数, 则 X ~ b ( 4 , 0 . 7 ) 所求概率
P X 1 1 P X 0
1 C 4 ( 0 . 7 ) (1 0 . 7 )
《概率论与数理统计》期末考试试题(A)
专业、班级: 题 号 得 分 一、单项选择题(每题 3 分 共 18 分)
(1)
若 事 件 A 、B 适 合 P ( A B ) 0 , 则 以 下 说 法 正 确 的 是 ( (A ) (B ) (C ) (D ) A 与 B 互 斥 ( 互 不 相 容 ); P ( A) 0 或 P (B ) 0 ; A 与 B 同时出现是不可能事件 ; P ( A) 0 , 则 P ( B A ) 0. ).

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

《概率论与数理统计》期末考试试卷(A)答案

《概率论与数理统计》期末考试试卷(A)答案

2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。

设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。

5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。

概率论与数理统计 期末试卷及答案 A

概率论与数理统计 期末试卷及答案 A

第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。

1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。

概率论与数理统计A考试题及答案

概率论与数理统计A考试题及答案

概率论与数理统计A考试题及答案一、选择题(每题5分,共20分)1. 设随机变量X服从标准正态分布,P(X > 1)的值为:A. 0.1587B. 0.8413C. 0.1587D. 0.1587答案:B2. 某次实验中,事件A和事件B互斥,且P(A) = 0.6,P(B) = 0.4,则P(A∪B)的值为:A. 0.6B. 0.4C. 1D. 0.2答案:C3. 已知随机变量X的期望为2,方差为4,则E(2X-3)的值为:A. 1B. 4C. -1D. 1答案:B4. 设随机变量X服从参数为λ的泊松分布,若P(X=0) = 0.25,则λ的值为:A. 0.5B. 1C. 2D. 4答案:B二、填空题(每题5分,共20分)1. 设随机变量X服从二项分布B(n, p),若n=10,p=0.1,则P(X=2)的值为______。

答案:0.04862. 设随机变量X服从均匀分布U(a, b),若P(X > 2) = 0.2,则b的值为______。

答案:43. 设随机变量X服从正态分布N(μ, σ^2),若μ=5,σ^2=9,则P(X > 8)的值为______。

答案:0.02284. 设随机变量X服从指数分布,其概率密度函数为f(x) = λe^(-λx) (x ≥ 0),若P(X > 3) = 0.25,则λ的值为______。

答案:0.25三、解答题(每题10分,共60分)1. 设随机变量X服从正态分布N(μ, σ^2),已知P(X < 1) = 0.5,P(X < 2) = 0.8,求μ和σ^2的值。

答案:μ = 1.5, σ^2 = 0.252. 某工厂生产的零件长度服从正态分布N(μ, σ^2),已知P(L < 5) = 0.95,P(L > 7) = 0.05,求μ和σ^2的值。

答案:μ = 6, σ^2 = 43. 设随机变量X和Y相互独立,X服从参数为λ的泊松分布,Y服从参数为p的二项分布B(n, p),求P(X+Y=k)。

概率论与数理统计试题A及其标准答案

概率论与数理统计试题A及其标准答案

概率论与数理统计 C 试题(A )一、填空题(每小题3分,共24分)1. 设A 、B 、C 表示三个事件,用事件的关系和运算表示下列事件: (1)A 、B 、C 中最多两个发生 。

(2)A 、B 、C 中恰有两个发生 。

(3)A 、B 、C 中至少有一个发生 。

2. 在n 次独立重复试验中,设q p p A P =-=1,)(,那么,事件A 发生k 次的概率为 。

3. 设随机变量X 的密度函数为⎩⎨⎧><≤≤=10,010,)(4x x x cx x f 或,则常数c = 。

4. 两口袋,甲袋中有8白、4黑大小全同的球,乙袋有5白3黑个球,现从甲袋任取一球放入乙袋,再从乙袋取一球,问此球为黑球的概率为 .5. 已知3)(,1)(=-=X D X E ,则)]2(3[2-XE = 。

6. 设总体X ~)(λP ,m X X X ,,,21 是来自总体X 的样本,X 是样本均值,则=)(X E ,=)(X D 。

7.设总体X ~)1,0(N ,nX X X ,,,21 是来自总体X 的样本,则统计量2222121nXXX nXY +++=~ 分布。

8. 设n X X X ,,21 是来自正态总体),(2σμN 的样本,♦2为已知常数,要 检验假设H 0:❍=❍0(❍0为已知常数)应用 检验法,检验的统计量是 .二、选择题(每小题3分,共18分)1.设每次试验成功的概率为p (0<p <1),则在3次重复试验中至少失败1次的概率为( ) (A) p 3; (B) 1-p 3 ; (C) (1-p )3 ; (D) (1-p )3+p (1-p )2+p 2(1-p ).2.设θˆ是❑的无偏估计量,且0)ˆ(>θD ,则2ˆθ是❑2的( )(A) 无偏估计量; (B) 有效估计量; (C) 有偏估计量; (D) A 和B 同时成立.3.随机变量X 服从参数为2的泊松分布且Y=2X -3,则Y 的方差D(Y)为( ) (A ) 1 (B) 4 (C) 8 (D) 164. 设n X X X ,,21 是来自正态总体),(2σμN 的样本,则有( )(A) μ10)(=X E ; (B)2)(2σ=X D ;(C) )1,0(~N X σμ-; (D))1,0(~/N nX σμ-.5.已知X~B (n , p ),且E(X)=2.4 ,D(X)=1.44,则二项分布n ,p 的值为( ). (A) n =4,p =0.6; (B) n =6,p =0.4; (C) n =8,p =0.3; (D) n =24,p =0.1. 6.设n θ是满足θθ=∞→)(lim n n E 和)(lim =∞→n n D θ的统计量,则下列结论正确的是( )(A) n θ是❑的有效估计量; (B) n θ是❑的一致估计量;(C) n θ是❑的有偏估计量; (D) A 和B 同时成立.三、计算题(共50分)2.(10分)(注意:公办学生做第[1]题,民办学生做第[2]题,选错不给分)[1] 已知随机变量X 的概率密度为其它00)1(2)(2>⎪⎩⎪⎨⎧+=x x x f π,有XYln =,求Y 的概率密度.[2] 设随机变量X 的概率密度为⎩⎨⎧<≤+=其他,020,1)(x Ax x f求(1)A 的值;(2)X 的分布函数)(x F .3.( 10分) (注意:公办学生做第[1]题,民办学生做第[2]题,选错不给分) [1] 设分别从甲、乙两批苗木中各随机抽出6株测其苗高得67.14087.72==甲甲x s ,5.1381.72==乙乙x s 假设两批苗木的高度均服从正态分布,(1)试以90%的可靠性判断,两批苗木的方差是否有显著差异?(2)并以0.05的显著水平检验甲批苗木平均高是否超过了乙批苗木平均高?[2] 设青年人的血压(收缩压mmHg)服从均值为120的正态分布.现对从事某项职业的青年人抽查20人,测得其平均血压为124,标准差为9.05,试在♋=0.05下判断该项职业是否对血压有影响(即平均血压与120是否有显著差异)?4.(10分) (注意:公办学生做第[1]题,民办学生做第[2]题,选错不给分)[1] 设某种清漆的9个样品,其干燥时间(单位:h)分别为6.0, 5.7, 5.8, 6.5, 7.0, 6.3, 5.6, 6.1, 5.0.设干燥时间总体服从正态分布),(2σμN ,求❍的置信水平为0.95的置信区间.[2] 已知一批零件的长度X(单位:cm)服从正态分布),(2σμN ,2σ未知,从中随机抽取n 个零件,得到样本平均值x ,试求❍的置信度为1-♋的置信区间.5.(10分) 设总体分布为指数分布,其分布密度函数为时当时当0001),(-≤>⎩⎨⎧=x x e x f xλλλ (λ>0)又设n X X X ,,21 为从总体中抽出的简单随机样本,试求参数λ的极大似然估计.四、证明题(8分)设某总体其均值和方差分别为μ,2σ,21,x x 是总体的一个简单随机样本,试验证下列统计量(1)21143+41=ˆx x μ; (2)21232+31=ˆx x μ; (3)21385+83=ˆx x μ均为μ 的无偏估计量,并比较其有效性.附表:注:可带计算器F0.10 (5,5)=3.45 F0.10 (6,6)=3.05 F0.10 (5,6)=3.11F0.05 (5,5)=5.05 F0.05 (6,6)=4.28 F0.05 (5,6)=4.39t0. 05 (10)=1.812 t0.05 (11)=1.796 t0.05 (12)=1.782t0.025(18)=2.101 t0.025 (19)=2.093 t0.025 (20)=2.086t0.025(8)=2.306 t0.025 (9)=2.262 t0.025 (10)=2.2282008年2月25日。

概率论与数理统计(A)卷参考答案

概率论与数理统计(A)卷参考答案

商学院课程考核试卷参考答案与评分标准 (A )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部二年级各本科专业 考核学期:一. 填空题(每小题3分,共30分)1.0.7;2.0.38;3.0,1,2,3;4.0.6915;5.2;6.0;7.⎩⎨⎧>>--=--其他00,0)1)(1(),(y x e e y x F y x ;8.23π; 9. 11)(-=∏θθni i nx ; 10.0.4。

二. 选择题(每小题3分,共15分)1.B ;2.D ;3.C ;4.A ;5.C 。

三. 计算题(第1题10分,其余5小题每题9分,共55分)1. 设321,,A A A 分别表示取到第一、二、三个箱子,B 表示取到白球, 则321,,A A A 是一个完备事件组,且:31)()()(321===A P A P A P , 52)|(53)|(51)|(321===A B P A B P A B P ,, 2分(1)由全概率公式:)|()()|()()|()(P(B)332211A B P A P A B P A P A B P A P ++=52523153315131=⨯+⨯+⨯= 6分(2)由贝叶斯公式:31)()|()()|(333==B P A B P A P B A P 10分2.(1)122)(222====⎰⎰∞+∞-λλλxxdx dx x f X ,21=λ; 3分 (2)21400()()02;12xX x F x f t dt xx x -∞<⎧⎪==≤<⎨⎪≥⎩⎰6分 (3) {}1313(3)(1)144P X F F <<=-=-=。

9分3. (1)该设备的平均寿命是41=λ年(设备寿命服从41=λ的指数分布) 2分(2)设Y 是工厂出售一台设备的赢利,则⎩⎨⎧≤->=12001100X X Y 4分)1(200)1(100)(≤->=X P X P Y E ⎰⎰-∞+--=104144120041100dx e dx e xx 8分64.3330020041=-=-e万元 9分4. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分 (2)324)(1012==⎰⎰ydy dx x X E ;324)(10210==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov 9分5. 解:令第i 次轰炸命中目标的炸弹数为X i ,100次轰炸中命中目标炸弹数X =∑=1001i iX,应用定理5.5,X 渐近服从正态分布,期望值为200,方差为169,标准差为13. 2分所以P {180≤X ≤220}=P {|X -200|≤20} 4分=⎭⎬⎫⎩⎨⎧≤-132013200X P ≈2Φ(1.54)-1=0.8764. 9分 6.222)1(σχS n -=~2χ(n-1),对05.0=α, 2分查表知:535.17)8(,18.2)8(2025.02975.0==χχ 4分使得2σ置信度为0.95的置信区间为:22220.0250.975(1)(1),(8)(8)n S n S χχ⎛⎫-- ⎪⎝⎭ 计算可得:)8(82025.02χS =12.77,)8(82975.02χS =102.75;(12.77, 102.75)即为总体方差2σ置信度为0.95的置信区间. 9分。

(完整版)概率论与数理统计试题及答案

(完整版)概率论与数理统计试题及答案

2008-2009学年 第1学期 概率论与数理统计(46学时) A一、单项选择题(本大题共5小题,每小题3分,共15分)。

1、A B 、为两个随机事件,若()0P AB =,则(A )A B 、一定是互不相容的; (B )AB 一定是不可能事件; (C )AB 不一定是不可能事件; (D )()0P A =或()0P B =.2、二维离散型随机变量(,)X Y 的分布律为(,)F x y 为(,)X Y 的联合分布函数,则(1.5,1.5)F 等于(A )1/6; (B )1/2; (C )1/3; (D )1/4.3、X Y 、是两个随机变量,下列结果正确的是 (A )若()E XY EXEY =,则X Y 、独立; (B )若X Y 、不独立,则X Y 、一定相关;(C )若X Y 、相关,则X Y 、一定不独立; (D )若()D X Y DX DY -=+,则X Y 、独立.YX 0 1 2 1 1/61/3 0 21/41/61/124、总体2212~(,),,,,,n X N X X X μσμσ均未知,为来自X 的一个简单样本,X 为样本均值,2S 为样本方差。

若μ的置信度为0.98的置信区间为(X c X c -+,则常数c 为(A )0.01(1)t n -; (B )0.01()t n ;(C )0.02(1)t n -; (D )0.02()t n .5、随机变量12,,,n X X X 独立且都服从(2,4)N 分布,则__11ni i X X n ==∑服从(A )(0,1)N ; (B )(2,4)N n ;(C )(2,4)N n n ; (D )4(2,)N n .二、填空题(本大题共5小题,每小题3分,共15分)。

6、已知A B 、为两个随机事件,若()0.6,()0.1,P A P AB ==则(|)P A AB =1.7、已知随机变量X 服从区间(0,2)上的均匀分布,则(2)E X =( ).8、已知连续型随机变量X 的概率密度函数为2,01()0,x x f x <<⎧=⎨⎩其它,则概率(||12)P X <=( ).9、随机变量12(3,),(3,)33Xb Yb ,且,X Y 独立,则()D X Y -=( ).10、已知随机变量,1,2,3i X i =相互独立,且都服从(0,9)N 分布,若随机变量2222123()(3)Y a X X X χ=++,则常数a =( ).三、解答题(本大题共6小题,每小题10分,共60分)。

(完整版)大学概率论与数理统计试题库及答案a

(完整版)大学概率论与数理统计试题库及答案a

<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

《概率论与数理统计》复习题(附答案)

《概率论与数理统计》复习题(附答案)

概率练习题附答案06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2. 设事件A 、B 、C 构成一完备事件组,且()0.5,()0.7,P A P B ==则()P C =3. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.4. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___5. 设),3(~),,2(~p B Y p B X ,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】 (A) 2; (B)12; (C) 3; (D) 13. 3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】 ()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ; ()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx e e Ax f -+=)(,求:(1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y 的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P >.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x 求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。

概率论与数理统计期末考试试卷及答案

概率论与数理统计期末考试试卷及答案
概率论与数理统计试卷 (A)
姓名: 班级: 学号: 得分:
一.选择题(18 分,每题 3 分) 1. 如果 P ( A ) + P ( B ) > 1 ,则 事件 A 与 B 必定 ( A ) 独立; ( B ) 不独立; (C ) 相容; ( )
( D ) 不相容.
概率统计试卷 A (评分标准)
一. 选择题(15 分,每题 3 分) [ 方括弧内为 B 卷答案 ] C A C A D . . [ A D B C A ]
二. 填空题(18 分,每题 3 分) 1.
0 . 62 [ 0 . 84 ];

ì 1 / p , x 2 + y 2 < 1 , 设 ( X , Y ) ~ f ( x , y 则 X 与 Y 为 ) = í 其 他 . î 0 ,

( A ) 独立同分布的随机变量; (C ) 不独立同分布的随机变量; 4.
( B ) 独立不同分布的随机变量; ( D ) 不独立也不同分布的随机变量.
ˆ ( A) m 1 = 1 3 1 X 1 + X 2 + X 3 ; 5 10 2
1 6 1 2

ˆ 2 = ( B ) m
1 2 4 X 1 + X 2 + X 3 ; 3 9 9 1 1 5 X 1 + X 2 + X 3 . 3 4 12
域为( ) a = 0. 1
2 2 2 2 ( A) c 2 £ c 0 n ) ; ( B ) c 2 ³ c 0 n ) ; (C ) c 2 £ c 0 n ) ; ( D ) c 2 ³ c 0 n ) . . 1 ( . 1 ( . 05 ( . 05 (

概率论与数理统计试题试卷及答案AB卷

概率论与数理统计试题试卷及答案AB卷

概率论与数理统计(A )姓名:学年学期: 学号: 考试时间: 班级:u 0.975=1.96,u 0.95=1.645t 0.995(18)=2.88, t 0.975(5)=2.57,t 0.975(4)=2.776, t 0.975(12)=2.1788F 0.95(2,37)=3.28,F 0.995(9,9)=6.54, F 0.95(1,4)=7.71, F 0.95(2,12)=3.89, F 0.99(2,12)=6.93一、选择题(从下列各题四个备选答案中选出正确答案,并将其代号写在答题纸相应位置处。

答案错选或未选者,该题不得分。

每小题3分,共15分。

) 1.设â是未知参数a 的无偏估计量,且D(â)>0,则[ ](A) â2不是a 2的无偏估计量;(B) â2是a 2的无偏估计量;(B) â2不一定是a 2的无偏估计量;(D) â2不是a 2的估计量.2. 设X~N(μ,σ2), μ,σ2为未知参数,X 1, X 2,…, X n 是来自X 的样本,则作μ的估计时,下列统计量中( )是最有效的.(A)3X -2X 1;(B)X ; (C)X 1;(D) n X X X )6/1()3/2()2/1(21-+3. 设X~N(μ,σ2), X 1, X 2,…, X n 是来自X 的样本,则σ2的极大似然估计量是( )4.. 设X~N(μ,σ2), X 1, X 2,…, X n 是来自X 的样本,X 为样本均值,记则下列统计量中( )服从t(n-1)分布.5.假设检验中,显著性水平α表示 ( )(A)P(接受H 0|H 0为假);(B) P(拒绝H 0|H 0为真);(C)P(拒绝H 0|H 0为假);(D) 无具体含义.二、填空题(将下列各题的一个或多个正确答案写在答题纸相应位置处。

答案写错的,该题不得分。

每小题3分,共15分。

概率论与数理统计考试试题及答案

概率论与数理统计考试试题及答案

)0.6B =2.015.0121武汉理工大学教务处试题标准答案及评分标准用纸课程名称概率论与数理统计(A 卷)一、选择题(每小题3分,总计15分)1.D ;2.C ;3.C ;4.B ;5.B二、填空题(每小题3分,总计15分)6.;7.;8.;9.;10.三、计算题(共52分)11.解:设A i 分别表示所取产品是由甲、乙、丙车间生产(i=1,2,3);B 表示所取产品为不合格品.由题设有,%25)(,%35)(,%40)(321===A P A P A P.05.0)(,04.0)(,02.0)(321===A B P A B P A B P ---------4分1)由全概率公式,得345.0)|()()(31==∑=i i iA B P AP B P ---------3分2)4058.06928345.004.035.0)()()|()()()|(2222≈=⨯===B P A P A B P B P B A P B A P --------3分 12.解:1)1210)(02==+=⎰⎰⎰+∞∞-∞-+∞-A dx Ae dx dx x f x ,故A =2 --------- 3分2).3679.02)5.0(15.02≈==>-+∞-⎰e dx e X P x ----------- 3分3)对100,12<<>-=-y x e y x 时有当. 所以当0≤y 或1≥y 时,0)(=y f Y ; 当10<<y 时,分布函数{}⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=-)1ln(21)1ln(211)(2y F y X P y e P y F XX Y ; 11121)1ln(21)()(=⎪⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛--==∴y y f dy y dF y f X Y Y . ⎩⎨⎧<<=∴其他,,0101)(y y f Y . ―――― 6分 13.解:(,)X Y 的联合分布律和边缘分布律为————8分由上表可看到,j i ij p p p ..∙≠,所以X 和Y 不相互独立. --------2分14.解:设i X 表示第i 次射击时命中目标的炮弹数,则由题设有:)100,,2,1(5.1)(,2)(2 ===i X D X E i i 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前黑龙江外国语学院继续教育学院 2014 年 秋 季学期《概率论与数理统计》试卷( A 卷)题号一二三四五六总分评卷人审核人得分一、 选择题(本大题共 5小题,每空 2分,共 30分)1、A 、B 是两个随机事件,已知,则 ,0.3)B (p ,5.0)(,4.0)A (p ===A B P =)B A (p ,= , 。

=)B -A (p (B A P ⋅=)B A (p 2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 。

3、设随机变量X 服从B (2,0.5)的二项分布,则 , Y 服从二项分布B(98, {}=≥1X p 0.5), X 与Y 相互独立, 则X+Y 服从 ,E(X+Y)= ,方差D(X+Y)= 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: .5、设二维随机向量的分布律如右,则, ),(Y X =a =)(X E 。

的分布律为:2Y X Z +=本题得分X Y 0 1 -1 10.2 0.30.4 a z 1 2 概率0.6 0.4跨接对全部高中资料试备与场设备高中资料试卷布置情况与有关自动处装置。

二、(本大题共1小题,10分)已知随机变量X 的密度函数⎩⎨⎧≤≤=其它, 010 ,)(2x ax x f 求:(1)常数, (2)(3)X 的分布函数F (x )。

a )5.15.0(<<X p 三、(本大题共1小题,10分)设随机变量(X ,Y )的联合概率密度为:⎩⎨⎧≤≤≤≤=其它 , 010,10 ,2),(y x y y x f 求:(1)X ,Y 的边缘密度,(2)讨论X 与Y 的独立性。

四、(本大题共1小题,10分)设总体X~N (0,),。

是一个样本,求的矩估计量,并证明它为的无偏估计。

2σn X X ,...,12σ2σ本题得分本题得分本题得分五、(本大题共1小题,20分)从总体~中抽取容量为16的一个样本,样本均值和样本方差分别是,X ) ,(2σu N 4,752==S X 5.27)15(,26.6)15(,1315.2)15(2597.02502.0597.0===x x t 求u 的置信度为0.95的置信区间和 的置信度为0.95的置信区间。

2σ本题得分六 、(本大题共1小题,20分)设某工厂生产工件的直径服从正态分布,要求它们的均值,现检验了一组由16只25.0,82≤=σu 工件,计算得样本均值、样本方差分别,试在显著水平下,对该49.0,65.72==s x 05.0=α厂生产的工件的均值和方差进行检验,看它们是否符合标准。

此题中,,5.27)15(,25)15(,13.2)15(,76.1)15(2025.0205.0025.05.0====χχt t 本题得分答:一.填空题1、A 、B 是两个随机事件,已知,则 0.6 , 0.3)B (p ,5.0)(,4.0)A (p ===A B P =)B A (p 0.1 ,= 0.4 , 0.6。

=)B -A (p (B A P ⋅=)B A (p 2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。

3、设随机变量X 服从B (2,0.5)的二项分布,则0.75, Y 服从二项分布B(98, 0.5),{}=≥1X p X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 .5、设二维随机向量的分布律如右,则0.1, 0.4。

),(Y X =a =)(X E 的分布律为:2Y X Z += 二、已知随机变量X 的密度函数⎩⎨⎧≤≤=其它, 010 ,)(2x ax x f 求:(1)常数, (2)(3)X 的分布函数F (x )。

a )5.15.0(<<X p 解:(1)由 2’⎰+∞∞-==3,1)(a dx x f 得 (2) = 2’)515.0(⋅<<X p ⎰⎰==5..15.015.02875.03)(dx x dx x f (3) 2’⎪⎩⎪⎨⎧<≤<≤=xx x 0x x F 1 , 110 , 0)(3三、设随机变量(X ,Y )的联合概率密度为:⎩⎨⎧≤≤≤≤=其它, 010,10 ,2),(y x y y x f 求:(1)X ,Y 的边缘密度,(2)讨论X 与Y 的独立性。

X Y0 1-1 10.2 0.30.4 az 1 2概率0.6 0.4资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。

管作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设料试卷、电气设障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装解:(1) X ,Y 的边缘密度分别为:4’⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤==⎰⎰⎰∞+∞-其他,,其他 010 22)()(010 12)(1010y y ydx dx y x f y f x ydy x f Y X (2)由(1)可见, 可知: X ,Y 相互独立 2’)()(),(y f x f y x f Y X ⋅=四、设总体X~N (0,),。

是一个样本,求的矩估计量,并证明它为的无偏估计。

2σn X X ,...,12σ2σ解: X 的二阶矩为: 1‘22)(σ=X E X 的二阶样本矩为 1’∑==nk i X n A 1221 令: , 1’22)(A X E =解得: , 2121i n k X n ∑==σ 的矩估计量 2’2σ2121i n k X n ∑==σ , 它为的无偏估计量. 3’σσ==∑=)1()ˆ(212i n k X n E E 2σ五、 从总体~中抽取容量为16的一个样本,样本均值和样本方差分别是X ) ,(2σu N , 4,752==S X 5.27)15(,26.6)15(,1315.2)15(2597.02502.0597.0===xx t 求u 的置信度为0.95的置信区间和 的置信度为0.95的置信区间。

2σ解: (1)n=16,置信水平,025.02/,95.01==-αα,1315.2)15(597.0=t 由此u 的置信水平为0.95的置信区间为:4,752==S X , 即 5’)1315.216275(⨯±)0658.175(±(2) n=16,置信水平,025.02/,95.01==-αα5.27)15(,26.6)15(2597.02502.0==x x 由此的置信水平为0.95的置信区间为:42=S 2σ5’)585.9,182.2())15(415,)15(415(2025.02597.0=χ⨯χ⨯六 、 设某工厂生产工件的直径服从正态分布,要求它们的均值,现检验了一组25.0,82≤=σu 由16只工件,计算得样本均值、样本方差分别,试在显著水平49.0,65.72==s x 下,对该厂生产的工件的均值和方差进行检验,看它们是否符合标准。

05.0=α此题中,,5.27)15(,25)15(,13.2)15(,76.1)15(2025.0205.0025.05.0====χχt t 解:(1)首先对工件的均值进行检验: H 0: 1分8:,81≠=u H u 取统计量为, 可得拒绝域为: , 2分16/8s X t -=}13.2)15(16/8{025.0=≥-=ts X t 经计算, ,不在拒绝域内,因此接受H0.认为这批工件的均值符合标13.224/7.0865.716/8<=-=-=s x t 准。

2分其次首先对工件的方差进行检验: H 0: 1分221225.0:,5.0>≤σσH取统计量为, 可得拒绝域为: 2分2225.0)116(s -=χ}25)15(5.049.015{205.022=≥⨯=χχ经计算, ,在拒绝域内,因此拒绝H0.认为这批工件的方差不符合标准。

254.295.0)116(222>=-=s χ2分架等多项方式,为解决高中语文电气课件及系统启动方案;对整套启动过程中高中中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷避免不必要高中资料试卷突然停机。

因此。

相关文档
最新文档