概率论与数理统计试题及答案2[1]

合集下载

【概率论与数理统计经典计算题题2】期末复习题含答案

【概率论与数理统计经典计算题题2】期末复习题含答案

【概率论与数理统计经典计算题题2】期末复习题含答案work Information Technology Company.2020YEAR概率论与数理统计计算题(含答案)计算题1.一个盒子中装有6只晶体管,其中2只是不合格品。

现作不放回抽样,接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,1只是不合格品;(3)至少有1只是合格品。

1-2,9-2.设甲,乙,丙三个工厂生产同一种产品,三个厂的产量分别占总产量的20%,30%,50%,而每个工厂的成品中的次品率分别为5%,4%,2%,如果从全部成品中抽取一件,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是甲,乙,丙工厂生产的概率。

3.设随机变量X 的分布函数为1(1), 0() 0, 0x x e x F x x -⎧-+>=⎨≤⎩,试求:(1)密度函数()f x ;(2)(1)P X ≥,(2)P X < 。

4.二维随机变量(,)X Y 只能取下列数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且取这些组值的概率分别为1115,,,312612。

求这二维随机变量分布律,并写出关于X和关于Y 的边缘分布律。

5. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,试求下列事件的概率:(1)其中恰好有一位精通英语;(2)其中恰好有两位精通英语;(3)其中有人精通英语。

6.某大型体育运动会有1000名运动员参加,其中有100人服用了违禁药品。

在使用者中,假定有90人的药检呈阳性,而在未使用者中也有5人检查为阳性。

如果一个运动员的药检是阳性,则这名运动员确实使用违禁药品的概率是多少?7.设随机变量X 的密度函数为||(),x f x Ae x R -=∈,试求:(1)常数A ;(2)(01)P X << 。

8. 设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)关于X 的边缘分布律;(2)X+Y 的分布律.9. 已知A B ⊂,()0.36P A =,()0.79P B =,求()P A ,()P A B -,()P B A -。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案  第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

《概率论与数理统计》习题及答案__第一章 2

《概率论与数理统计》习题及答案__第一章 2
《概率论与数理统计》习题及答案
第 一 章
1.写出下列随机试验的样本空间及下列事件中的样本点:
(1)掷一颗骰子,记录出现的点数. ‘出现奇数点’;
(2)将一颗骰子掷两次,记录出现点数. ‘两次点数之和为10ห้องสมุดไป่ตู้, ‘第一次的点数,比第二次的点数大2’;
(3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果, ‘球的最小号码为1’;
12.设事件 与 互不相容, ,求 与

因为 不相容,所以 ,于是
13.若 且 ,求 .

由 得
14.设事件 及 的概率分别为 ,求 及

.
15.设 ,且 仅发生一个的概率为0.5,求 都发生的概率。
解1由题意有
,
所以
.
解2 仅发生一个可表示为 ,故
所以

16.设 ,求 与 .
解 ,
所以
,



所以
(4)将 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况, ‘甲盒中至少有一球’;
(5)记录在一段时间内,通过某桥的汽车流量, ‘通过汽车不足5台’, ‘通过的汽车不少于3台’。
解(1) 其中 ‘出现 点’ ,

(2)
};
;

(3)
(4)
,其中‘ ’表示空盒;

(5) 。
2.设 是随机试验 的三个事件,试用 表示下列事件:
解:半圆域如图
设 ‘原点与该点连线与 轴夹角小于 ’
由几何概率的定义
21.把长为 的棒任意折成三段,求它们可以构成三角形的概率.
解1设 ‘三段可构成三角形’,又三段的长分别为 ,则 ,不等式构成平面域 .

概率论与数理统计习题二及答案

概率论与数理统计习题二及答案
2
此时, PX
2
62
1 2 2
1 62 2
65 2!
1 6 2
15 64

5. 某商店出售某种物品,根据以往的经验,每月销售量 X 服从参数 4 的泊松分布,
问在月初进货时,要进多少才能以 99%的概率充分满足顾客的需要?
解:设至少要进 n 件物品,由题意 n 应满足 PX n 1 0.99, PX n 0.99,
pi
i 1 25
(i 1, 2,3, 4,5) 。
解:要说明题中给出的数列,是否是随机变量的分布律,只要验证 pi 是否满足下列二
个条件:其一条件为 pi 0,i 1,2,,其二条件为 pi 1。
i
依据上面的说明可得(1)中的数列为随机变量的分布律;(2)中的数列不是随机变量
的分布律,因为
PX
10
10
1 5
x
e 5 dx
e2

(2)设 Y 表示某顾客五次去银行未等到服务的次数,则 Y 服从 n 5, p e2 的二项
分布,所求概率为
PY 1 PY 0 PY 1
5 0
e
2
0 1 e2
5
5 1
e
2
1 e2
4
1 4e2 1 e2 4
12. 设随机变量 X 服从 N (0,1) ,借助于标准正态分布的分布函数表计算:(1)P(X 2.2) ;
P(0 X 1) ;( 3) X 的 分 布 函 数 。
解 :( 1) 系 数
A必须满足
Ae
x
dx
1, 由 于
e
x
为偶函数,所以
Ae
x
dx
20

概率论与数理统计习题及答案第二章

概率论与数理统计习题及答案第二章

习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者!2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c=. 所求概率为 P {X <1| X0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}.解 注意p{x=k}=kk n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213qp =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=,4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 从1,2,3,4,5中随机取3个,以X 表示3个数中的最大值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表示取出的3个数以3为最大值,P{X =3}=2235C C =101;{X =4}表示取出的3个数以4为最大值,P{X =4}=1033523=C C ;{X =5}表示取出的3个数以5为最大值,P{X =5}=533524=C C .X 的分布律是1. 设X 、求分布函数F (x ), 并计算概率P {X <0}, P {X <2}, P {-2≤X <1}.解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ /于是11()arctan ,.2F x x x π=+-∞<<+∞ (2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P { <X <}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {<X <}=F -F {}-P {X =}=,P {0<X ≤2}=F (2)-F (0)=1.…5. 假设随机变量X 的绝对值不大于1;11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任一子区间上取值的条件概率与该区间的长度成正比. (1) 求X 的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =; 当1x =-时,1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1. 所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此{1P X -<≤|11}12x X x -<<=+. |于是, 对于11x -<<, 有{1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=⨯=对于x ≥1, 有() 1.F x = 从而0,1,57(),11,161,1.x x F x x x <-+=-<<⎧⎪⎪⎨⎪⎪⎩≥ (2) X 取负值的概率7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 》(1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩ 如果c =( ), 则()f x 是某一随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32. 解 由概率密度函数的性质()d 1f x x +∞-∞=⎰可得02d 1cx x =⎰, 于是1=c , 故本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1. 解 因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从而{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A)cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) 22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩ 、解 由概率密度函数的性质()1f x dx +∞-∞=⎰可知本题应选(D).(4) 设随机变量2~(,4)X N μ, 2~(,5)Y N μ, 1{X P P =≤4μ-}, {2P P Y =≥5μ+}, 则( ).(A) 对任意的实数12,P P μ=. (B) 对任意的实数12,P P μ<. (C) 只对实数μ的个别值, 有12P P =. (D) 对任意的实数12,P P μ>. 解 由正态分布函数的性质可知对任意的实数μ, 有12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为分布函数, 则对任意实数a , 有( ).>(A)()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-.解 由分布函数的几何意义及概率密度的性质知答案为(B). (6) 设随机变量X服从正态分布211(,)N μσ,Y服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2.解 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A)2u α . (B) 21α-u. (C)1-2u α. (D) α-1u .解 答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P kX k <<=成立,应当怎样选择数k *解 因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩ 由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它, 要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =⎰,因此a =4. 设连续型随机变量X 的分布函数为.20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=,可得2,01,()0,其它.x x f x <<⎧=⎨⎩ (2)22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩≤≤ 其它, 求P {X ≤12}与P {14X <≤2}.解{P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 【6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是2A =;(2) 由公式()()d x F x f x x -∞=⎰可得当x ≤0时,()0F x =;当0x <≤1时, 201()d 2xF x x x x ==⎰;当1x <≤2时, 2101()d (2)d 212x x F x x x x x x =+-=--⎰⎰;,当x >2时,()1F x =.所以220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率.解 根据概率密度与分布函数的关系式{P a X <≤}()()()d bab F b F a f x x =-=⎰,可得2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为—223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 随机变量X 的概率密度为105,()50,,x f x <=⎧⎪⎨⎪⎩≤其它,若方程有实根, 则21632X -≥0, 于是2X ≥2. 故方程有实根的概率为 P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-.9. 设随机变量)2,3(~2N X .、(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ;(2) 确定c 使得{}{};P X c P X c >=≤(3) 设d 满足{}0.9P X d >≥, 问d 至多为多少 解 (1) 由P {a <x ≤b }=P {33333}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到P {2<X ≤5}=(1)(0.5)0.5328ΦΦ--=, P {-4<X ≤10}=(3.5)(3.5)0.9996ΦΦ--=,{||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤= . (2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3){}0.9≥P X d > 即13()0.92d Φ--≥, 也就是 3()0.9(1.282)2d ΦΦ--=≥,因分布函数是一个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +⨯-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=.!所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ).(A) 11()33F y -. (B) (31)F y +.(C)3()1F y +. (D)1133()F y -. 解 由随机变量函数的分布可得, 本题应选(A).(2) 设()~01,X N ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N .解 由正态分布函数的性质可知本题应选(C). !2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++这里1,μσ==, 所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求解 (1)(2)4. ()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P Xy =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -⎧<-<⎪⎨⎪⎩…即121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2YX =的概率密度.解 由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =⎧-<<⎪⎨⎪⎩因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X(X X F F =-.于是随机变量2YX =的概率密度函数为()Y fy (X X f f =+0 4.y =<<即()04,0,.其它f y y =<<⎩总习题二/1. 一批产品中有20%的次品, 现进行有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.解 以X 表示抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) 至多有3件次品的概率是k k k k C-=∑5358.02.0.2. 一办公楼装有5个同类型的供水设备. 调查表明, 在任一时刻t 每个设备被使用的概率为. 问在同一时刻(1) 恰有两个设备被使用的概率是多少 (2) 至少有1个设备被使用的概率是多少 (3) 至多有3个设备被使用的概率是多少 (4) 至少有3个设备被使用的概率是多少解 以X 表示同一时刻被使用的设备的个数,则X ~B (5,,P {X =k }=k kkC -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ;(2)所求的概率是P {X ≥1}=140951.0)1.01(5=--;(3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=; (4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=<⎧⎪⎨⎪⎩且已知1{1}2P X>=, 求常数k , θ.解 由概率密度的性质可知e d 1xkx θθ-+∞=⎰得到k =1.由已知条件111e d 2xx θθ-+∞=⎰, 得1ln 2θ=.4. 某产品的某一质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥, 问允许σ最大是多少解 由{120P ≤X ≤}200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥,得到40()Φσ≥, 查表得40σ≥, 由此可得允许σ最大值为.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞<x <+∞.试求: (1) 常数A ; (2) P {0<X <1}; (3) X 的分布函数.解 (1) 由于||()d e d 1,x x x A x ϕ+∞+∞--∞-∞==⎰⎰即02e d 1x A x +∞-=⎰故2A = 1, 得到A =12.所以 φ(x ) =12e -|x |.(2) P {0<X <1} =111111e e d (e )0.316.0222xxx ----=-=≈⎰(3) 因为||1()e d ,2xx F x x --∞=⎰ 得到 当x <0时, 11()e d e ,22x x xF x x -∞==⎰当x ≥0时, 00111()e d e d 1e ,222x x x xF x x x ---∞=+=-⎰⎰所以X的分布函数为1,0,2()11,0.2xxxF xx-⎧<⎪⎪=⎨⎪-⎪⎩ee≥:。

概率论与数理统计练习题附答案详解

概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。

2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。

3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =;(C )(|)()P A B P B =; (D )(|)()P A B P A =。

4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。

5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。

6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P AB P A P B =+; (B )()()()P A B P A P B ≠+;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。

7、对于任意两个事件A 与B ,()P A B -等于( )(A )()()P A P B - (B )()()()P A P B P AB -+; (C )()()P A P AB -; (D )()()()P A P B P AB +-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计B
一.单项选择题(每小题3分,共15分)
1.设事件A 和B 的概率为12(),()23
P A P B == 则()P AB 可能为() (A) 0; (B) 1; (C) 0.6; (D) 1/6
2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12; (B) 225; (C) 425
; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A) 518; (B) 13; (C) 12
; (D)以上都不对 4.某一随机变量的分布函数为()3x x
a be F x e +=+,(a=0,b=1)则F (0)的值为( ) (A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对
5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )
(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对
二.填空题(每小题3分,共15分)
1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = . 2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.
3.随机变量ξ的期望为()
5E ξ=,标准差为()2σξ=,则2()E ξ=_______. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。

设两人的射击是相互独立的,则目标被射中的概率为_________.
5.设连续型随机变量ξ的概率分布密度为2()22
a f x x x =++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率
(1) 4个球全在一个盒子里;
(2) 恰有一个盒子有2个球.
四.(本题10分) 设随机变量ξ的分布密度为
, 03()10, x<0x>3
A x f x x ⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.
五.(本题10分) 设二维随机变量(ξ,η)的联合分布是
(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;
六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?
七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.
八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?
(注:(1.28)0.90Φ=,(1.65)0.95Φ=)
九.(本题6分)设事件A 、B 、C 相互独立,试证明A
B 与
C 相互独立. 某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.
十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):
1820,1834,1831,1816,1824
假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)
概率论与数理统计B 答案
一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C )
二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4
三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分
(1)A={4个球全在一个盒子里}共有5种等可能结果,故
P (A )=5/625=1/125------------------------------------------------------5分
(2) 5个盒子中选一个放两个球,再选两个各放一球有
302415=C C 种方法----------------------------------------------------7分
4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法
因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故
125
72625360)(==
B P --------------------------------------------------10分 四.解:(1)
⎰⎰
∞∞-==+=3
04ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰
==+=<10
212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3
300()()[ln(1)]1Ax E xf x dx dx A x x x ξ∞-∞=
==-++⎰⎰ 13(3ln 4)1ln 4ln 4
=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为
⎪⎪⎭
⎫ ⎝⎛29.032.039.02 1 0--------------------------------2分
η的边缘分布为
⎪⎪⎭
⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分
因)1()0(05.0)1,0(==≠===ηξηξ
P P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为
因此, 16
.310.01011.0811.0509.0417.0203.0139.00)(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=⋅ηξE
-------10分
另解:若ξ与η相互独立,则应有
P(ξ=0,η=1)=P(ξ=0)P(η=1); P(ξ=0,η=2)=P(ξ=0)P(η=2);
P(ξ=1,η=1)=P(ξ=1)P(η=1); P(ξ=1,η=2)=P(ξ=1)P(η=2);
因此,
)
1()0()2,1()2,0()1,1()1,0(============ξξηξηξηξηξP P P P P P 但 10
.012.003.005.0≠,故ξ与η不相互独立。

六.解:由全概率公式及Bayes 公式
P (该种子能发芽)=0.1×0.9+0.9×0.2=0.27-----------------------------------5分
P (该种子来自发芽率高的一盒)=(0.1×0.9)/0.27=1/3---------------------10分
七.令A k ={在第k 次射击时击中目标},A 0={4次都未击中目标}。

于是P (A 1)=0.3; P (A 2)=0.7×0.3=0.21; P (A 3)=0.72
×0.3=0.147 P (A 4)= 0.73×0.3=0.1029; P (A 0)=0.74=0.2401-----------------------------------6分
在这5种情行下,他的收益ξ分别为90元,80元,70元,60元,-140元。

-------------------------------------------------------------------------------------------8分
因此,
65
.26)140(2401.0601029.070147.08021.0903.0)(=-⨯+⨯+⨯+⨯+⨯=ξE --------------------12分
八.解:设他至少应购买n 个零件,则n ≥2000,设该批零件中合格零件数ξ服从二项分布B(n,p), p=0.95. 因n 很大,故B(n,p)近似与N (np ,npq ) ------------4分
由条件有
(2000)10.95P
ξ≥≈-Φ=-------------------------------------------8分 因(1.65)0.95Φ= 1.65
=-,解得n=2123, 即至少要购买2123个零件. -------------------------------------------------------------12分
九. 证:因A 、B 、C 相互独立,故P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(AB)=P(A)P(B), P(ABC)=P(A) P(B)P(C).
(())()()()()P A B C P AC BC P AC P BC P ABC ==+-------2分
()()()()()()()P A P C P B P C P A P B P C =+----------------------------4分
[()()()()]()()()P A P B P A P B P C P A B P C =+-=
故A B 与C 相互独立. -------------------------------------------------------6分。

相关文档
最新文档