2011年高考-(全国卷)文科数学答案

合集下载

2011年全国高考文科数学试题(广东卷)及参考答案

2011年全国高考文科数学试题(广东卷)及参考答案

2011年普通高等学校招生全国统一考试(广东B 卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、实施号、座位号填写在答题卡上用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 选择题每小题选出答案后,用2B 铅笔把大题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须卸载答题卡个题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选作题地题号对应的信息点,再作答,漏凃,错涂、多涂。

答案无效。

5. 考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

参考公式:锥体体积公式V=13Sh,其中S 为锥体的底面积,h 为锥体的高。

线性回归方程^^^y b x a =+中系数计算公式^^^121(1)(1),(1)ni ni x x y y b a y b x x ==--==--∑∑样本数据x 1,x 2, (x)21()2(2)()n x x x x x x -+-+-其中,x y 表示样本均值。

N 是正整数,则1221()(ab)n n n n n n a b a b a a b b -----=-+++…… 一、 选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z 满足iz=1,其中i 为虚数单位,则 A.-i B.i C.-1 D.1(2).已知集合A=(,),x y x y 为实数,B=(,),x y x y 为实数,且1x y +=则A ⋂B 的元素个数为 A.4 B.3 C.2 D.1(3)已知向量a=(1,2),b=(1,0),c=(3,4)。

2011年陕西高考数学文科试卷(带答案)

2011年陕西高考数学文科试卷(带答案)

行数 等号左边的项数
1=1
1
2+3+4=9
2
3+4+5+6+7=25 3
4+5+6+7+8+9+10=49 4
则第5行等号的左边有9项,右边是9的平方,所以,
即.
1 3 5 7
14.设,一元二次方程有整数根的充要条件是 .
【测量目标】一元二次方程的求解及充分条件与必要条件的定义. 【考查方式】已知一元二次方程,求其有整数解的充要条件. 【参考答案】或 【试题解析】直接利用求根公式进行计算,然后用完全平方数、整除等 进行判断计算. ,因为是整数,即为整数,所以为整数,且,又因为,取验证可知符合 题意;反之时,可推出一元二次方程有整数根. 15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做 的第一题评分) A.(不等式选做题)若不等式对任意R恒成立,则的取值范围是 . 【测量目标】不等式恒成立问题. 【考查方式】给出不等式,由求出实数的取值范围. 【参考答案】 【试题解析】先确定的取值范围,则只要不大于的最小值即可.当 时,; 当时,; 当时,; 综上可得,所以只要, 即实数的取值范围是. B.(几何证明选做题)如图,,,,且=6,=4,=12,则= . 【测量目标】空间中线面平行、垂直的有关性质与判定定理. 【考查方式】给出几何体中线线关系、角的大小、线段长度,求线段 长. 【参考答案】
和的相关系数为直线的斜率 和的相关系数在0到1之间 当为偶数时,分布在两侧的样本点的个数一定相同 【测量目标】线性回归直线的特点与性质 【考查方式】给出线性回归直线,判断其性质 【参考答案】 【试题解析】根据最小二乘法的有关概念:样本点的中心,相关系数线

2011年山东高考数学文科试卷带详解

2011年山东高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试数学(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.设集合 {}|(3)(2)0M x x x =+-<,{}|13,N x x=剟 则MN = ( )A.[1,2)B.[1,2]C.( 2,3]D.[2,3] 【测量目标】集合间的交集运算. 【考查方式】集合的表达(描述法),化解,求集合的交集. 【参考答案】A【试题解析】因为{}{}|32,|12M x x M N x x =-<<∴=<…,故选A.2.复数2i2iz -=+ (i 为虚数单位)在复平面内对应的点所在象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复数代数的四则运算及复平面.【考查方式】给出复数的除法形式,考查复数的代数四则运算与复数的几何意义. 【参考答案】D【试题解析】因为22i (2i)34i2i 55z ---===+,故复数z 对应点在第四象限,选D. 3.若点(a ,9)在函数3xy =的图象上,则πtan6a 的值为 ( ) A.0 B.33C. 1D. 3 【测量目标】特殊的三角函数值.【考查方式】给出点在函数图象上,求解未知数,通过代入三角函数求解. 【参考答案】D【试题解析】由题意知:93a=,解得a =2,所以π2πtantan 366a ==,故选D. 4.曲线311y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是 ( ) A.-9 B.-3 C.9 D.15【测量目标】导数的几何意义.【考查方式】给出函数式与其上一点,用求导的方式求该点的切线与y 轴的焦点纵坐标. 【参考答案】C【试题解析】因为23y x '=,切点为P (1,12),所以切线的斜率为3,故切线方程为390,x y -+=令0,9x y ==5.已知,,a b c ∈R ,命题“若3,a b c ++=则22233,a b c a b c ++++=…”的否命题是( ) A.若3,a b c ++≠则2223a b c ++< B.若3,a b c ++=则2223a b c ++< C.若3,a b c ++≠则2223a b c ++… D.若3,a b c ++…则3a b c ++< 【测量目标】命题的基本关系.【考查方式】考查命题的基本关系,主要考查否命题. 【参考答案】A【试题解析】命题“若p ,则q ”的否命题是“若,p ⌝则q ⌝”,故选A.6.若函数()sin (0)f x x ωω=>在区间π03⎡⎤⎢⎥⎣⎦,上单调递增,在区间ππ32⎡⎤⎢⎥⎣⎦,上单调递减,则ω= ( ) A.23 B.32C. 2D.3 【测量目标】三角函数,函数的单调性.【考查方式】给出函数在某段区间上的单调性,求未知数ω. 【参考答案】B【试题解析】由题意知,函数在π3x =处取得最大值1,所以π1sin 3ω=,故选B.7.设变量,x y 满足约束条件250200x y x y x +-⎧⎪--⎨⎪⎩………,则目标函数231z x y =++的最大值为 ( )A.11B.10C.9D.8.5【测量目标】二元线性规划求目标函数的最大值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性目标函数的最大值. 【参考答案】B【试题解析】画出平面区域表示的可行域如图所示,当直线231z x y =++平移至点(3,1)A 时, 目标函数231z x y =++取得最大值为10,故选B. 8.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 ( )A.63.6万元B.65.5万元C.67.7万元D.72.0万元 【测量目标】回归方程,函数在生活的应用.【考查方式】给出方程的数据,及ˆb,求出回归方程,代入x 求解. 【参考答案】B【试题解析】由表可计算4235749263954,42424x y ++++++==== ,因为点7(,42)2在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得ˆ9.1a =,故回归方程为ˆ9.49.1yx =+, 令6x =,得ˆ65.5y =,选B. 9.设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是 ( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)【测量目标】抛物线的简单几何性质,圆锥曲线中的范围问题,两点之间的距离公式. 【考查方式】给出抛物线方程与椭圆的位置关系,求出圆方程,根据准线相交,限定0y 范围.【参考答案】C【试题解析】设圆的半径为r ,因为F (0,2)是圆心, 抛物线C 的准线方程为2y =-,由圆与准线相切知4r -,因为点00(,)M x y 为抛物线2:8C x y =上一点,所以有2008x y =,又点00(,)M x y 在圆222(2)x y r +-=,所以22200(2)16x y r +-=>,所以2008(2)16y y +->,即有2004120y y +->,解得02y >或06y <-, 又因为00y …, 所以02y >, 选C.10.函数2sin 2xy x =-的图象大致是 ( )【测量目标】函数图象的判断.【考查方式】给出函数式,给定四张图象,选出正确图象. 【参考答案】C【试题解析】因为12cos 2y x '=-,所以令12cos 02y x '=->,得1cos 4x <,此时原函数是增函数;令12cos 02y x '=-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是第11题图A.3B.2C.1D.0 【测量目标】三视图,命题的概念.【考查方式】给出主视图俯视图,给出三个命题,判断真假. 【参考答案】A【试题解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R ,141211(),2,A A A A μμλμ=∈+=R 则称34,A A 调和分割12,A A ,已知点(,0),C c(,0)D d (,)c d ∈R 调和分割点(0,0),(1,0)A B ,则下面说法正确的是 ( )A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.,C D 可能同时在线段AB 上D.,C D 不可能同时在线段AB 的延长线上 【测量目标】平面向量的线性运算及向量的坐标运算.【考查方式】给出向量满足的数量关系,求向量的位置关系. 【参考答案】D【试题解析】由13121412(),()A A A A A A A A λλμμ=∈=∈R R 知:四点1234,,,A A A A 在同一条直线上(步骤1)因为,C D 调和分割点,A B ,所以,,,A B C D 四点在同一直线上,且112c d+=, 故选D.(步骤2)第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 . 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题按比例求解. 【参考答案】16【试题解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为8401620⨯=. 14.执行右图所示的程序框图,输入12,=3,5m n ==,则输出的y 的值是 .【测量目标】循环结构的程序框图.【考查方式】考查循环结构的流程图,注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环y 的值. 【参考答案】68【试题解析】由输入12,3,5m n ===,计算得出278y =,第一次得新的173y =;第二次得新的68105y =<,输出y .15.已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .【测量目标】双曲线的简单几何性质、椭圆的简单几何性质. 【考查方式】给出椭圆方程,及双曲线的离心率与椭圆的离心率的数量关系,求双曲线方程.【参考答案】22143x y -= 【试题解析】由题意知双曲线的焦点为(7,0),(7,0),-即7c =,(步骤1)又因为双曲线的离心率为27,4c a =所以2,a =故23b =,(步骤2) 双曲线的方程为22143x y -=(步骤3) 16.已知函数()log (0,1)a f x x x b a a =+->≠且当234a b <<<<时,函数()f x 的零点*0(,1),,x n n n ∈+∈N 则n = .【测量目标】函数的零点,对数函数的图象与性质.【考查方式】给出函数式,限定函数式里的未知数,求零点位于的区间. 【参考答案】5【试题解析】方程log (0,1)=0a x x b a a +->≠且的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n ∈+∈N (步骤1) 结合图象,因为当(24)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;(步骤2) 当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,(步骤3)故所求的5n =.(步骤4)三、解答题:本大题共6小题,共74分.17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=.(I)求sin sin CA的值;(II)若1cos ,4B ABC =△的周长为5,求b 的长. 【测量目标】余弦定理正弦定理,利用正余弦定理解决有关长度问题.【考查方式】给出三角形三边与三角满足的关系式,求解两角正弦值的比值;给出三角形的周长,求边长.【试题解析】(1)由正弦定理得2sin ,2sin ,2sin ,a R A b R B c R C ===所以cos 2cos 22sin sin ,cos sin A C c a C AB b B---==(步骤1)即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-, 即有sin()2sin()A B B C +=+,即sin sin 2sin ,2sin CC A A==所以.(步骤2) (2)由(1)知sin 2sin C A =,所以有2ca=,即2c a =,(步骤3) 又因为ABC △的周长为5,所以53,b a =-(步骤4) 由余弦定理得:222222212cos ,(53)(2)44b c a ac B a a a a =+--=+-⨯,解得1a =,所以2b =.(步骤5) 18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【测量目标】随机事件与概率,古典概型.【考查方式】给出每个学校的人员具体情况,求从中选出一定人员的概率.【试题解析】(1) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;(步骤1)选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女1, 乙女1)、(甲女1, 乙女2),共4种,所以选出的2名教师性别相同的概率为49.(步骤2) (2)从报名的6名教师中任选2名,所有可能的结果为(甲男1,乙男)、(甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男) 、(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共15种;(步骤3)选出的2名教师来自同一学校的所有可能的结果为(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、(乙男, 乙女2)、(乙女1, 乙女2),共6种,所以选出的2名教师来自同一学校的概率为62155=.(步骤4) 19.(本小题满分12分)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,2AB AD =,11,60AD A B BAD =∠=.(Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:1CC 平面1A BD .【测量目标】线面平行的判断,平行与垂直关系的综合问题.【考查方式】利用余弦定理求直线数量关系,线面垂直推出线线垂直;线线平行推出线面平行 【试题解析】(Ⅰ)证明:因为2AB AD =,所以设AD a =,则2AB a =(步骤1) 又因为60BAD ∠=,所以在ABD △中,由余弦定理得:2222(2)22cos 603BD a a a a a =+-⨯⨯=,所以3BD a =(步骤2)所以222AD BD AB +=,故BD AD ⊥,(步骤3) 又因为1D D ⊥平面ABCD ,所以1D D BD ⊥,(步骤4) 又因为1ADD D D =, 所以11BD ADD A ⊥平面,故1AA BD ⊥.(步骤5)(2)连结,AC 设AC BD O =, 连结1A O ,由底面ABCD 是平行四边形得:O 是AC 的中点(步骤6)由四棱台1111ABCD A B C D -知:平面ABCD 平面1111A B C D ,因为这两个平面同时都和平面11ACA C 相交,交线分别为11,AC A C ,故11ACA C (步骤7)又因为2,AB a BC a ==, 120ABC ∠=,所以可由余弦定理计算得7AC a =(步骤8)又因为11113,2A B a B C a ==, 111120A B C ∠=,所以可由余弦定理计算得1172A C a =(步骤9)所以11A C OC 且11A C OC =,故四边形11OCC A 是平行四边形,所以11CC A O (步骤10)又1CC Ü平面11,A BD AO ⊂平面1A BD . 1CC ∴平面1A BD (步骤11)20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前2n 项和2n S . 【测量目标】等比数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【考查方式】将数值放在图象中,求解通项公式;给出n n b a 与的关系,求和. 【试题解析】(Ⅰ)由题意知1232,6,18a a a ===,(步骤1)因为{}n a 是等比数列,所以公比为3,所以数列{}n a 的通项公式123n n a -=.(步骤2) (Ⅱ)因为11(1)ln 23(1)ln 23,n n n n n b a a --=+-=+-所以21n n S b b b =+++=1212122(13)()(ln ln ln )ln()13n n n n a a a a a a a a a -+++-+++=--=-(1)121231ln(21333)31ln(23)n n nnn nn--=--⨯⨯⨯⨯=--(步骤3)2(21)2222231ln(23)912ln 2(2)ln 3.n n nnn n S n n n -∴=--=----(步骤4)21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .【测量目标】球的表面积公式,圆柱的体积公式,导数在实际问题中的应用【考查方式】给出图象,将所给关系表达为函数表达式,根据函数式,求出最小值【试题解析】(Ⅰ)因为容器的体积为80π3立方米,所以324π80ππ33r r l +=,解得280433rl r =-,所以圆柱的侧面积为22804160π8π2π2π()3333r r rl r r r =-=-,两端两个半球的表面积之和为24πr ,所以22160π8π4πy r cr r =-+,定义域为(0,)2l. (Ⅱ)因为3228(2)20160π16π8πc r y r cr r r π⎡⎤--⎣⎦'=-+=,所以令0y '>得:3202r c >-; 令3320200,0,22y r r c c '<<<∴=--米时, 该容器的建造费用最小. 22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于,A B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD OE =,(i )求证:直线l 过定点; (ii )试问点,B G 能否关于x 轴对称?若能,求出此时ABG △的外接圆方程;若不能,请说明理由.【测量目标】直线与椭圆的位置关系,韦达定理,圆的简单几何性质, 【考查方式】给出椭圆方程及图象,求俩数据和的最小值;给出向量的数量关系,求直线过定点和外接圆问题.【试题解析】(Ⅰ)由题意:设直线:(0)l y kx n n =+≠, 由2213y kx n x y =+⎧⎪⎨+=⎪⎩消y 得:222(13)6330,k x knx n +++-=(步骤1) 1122(,),(,)A x y B x y AB 设,的中点00(,)E x y ,则由韦达定理得: 122613kn x x k -+=+, 即00022233,131313kn kn n x y kx n k n k k k--==+=⨯+=+++ , 所以中点E 的坐标为223(,)1313kn n E k k-++(步骤2) 因为,,O E D 三点在同一直线上,所以,OE OD k k =即1,33m k -=- 解得222211,2m m k k k k =∴+=+…(步骤3) 当且仅当1k =时取等号,即22m k +的最小值为2.(步骤4)(Ⅱ)(i )证明:由题意知:0n >,因为直线OD 的方程为,3m y x =- 所以由22313m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得交点G 的纵坐标为223G m y m =+(步骤5) 又因为2,13E D n y y m k==+ ,且2OG OD OE =,所以222313m n m m k =++(步骤6) 又由(Ⅰ)知: 1m k=,所以解得k n =, 所以直线l 的方程为:,l y kx k =+即有:(1)l y k x =+,(步骤7)令1,x =-得0y =与实数k 无关,所以直线l 过定点(-1,0).(步骤8)(ii )假设点,B G 关于x 轴对称,则有ABG △的外接圆的圆心在x 轴上,又在线段AB 的中垂线上,(步骤9)由(i )知点223(,),33m G m m -++所以点223(,)33m B m m --++,(步骤10)又因为直线l 过定点(-1,0),所以直线l 的斜率为223,313mm k m -+=-++,(步骤11) 又因为1m k=所以解得21m =或6(步骤12) 又因为230,m ->所以26m =舍去,21m =(步骤13)此时311,1,(,)44k m E ==-,AB 的中垂线为2210x y ++=,圆心坐标为131(,0),(,)222G --,圆半径为52,圆的方程为2215().24x y -+=(步骤14) 综上所述, 点,B G 关于x 轴对称,此时ABG △的外接圆的方程为2215().24x y -+=(步骤15)。

2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)

2011年高考数学文科试卷(全国1卷)(内含答案)(新课标卷卷)

2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【答案】D【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法. 【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b += (A(B(C(D【答案】B 【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足,若2,1AB AC BD ===,则CD =(A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=, ∴12ON OM ==故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考新课标卷文科数学试题(解析版)

2011年高考新课标卷文科数学试题(解析版)

2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。

2011年北京高考数学真题附答案解析(文科)

2011年北京高考数学真题附答案解析(文科)

2011年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合P={x︱x2≤1},那么A.(-∞, -1] B.[1, +∞)C.[-1,1]D.(-∞,-1] ∪[1,+∞)2.复数 A.i B.-i C. D.3.如果那么A.iB.-iC.D.3.如果那么A.y< x<1B.x< y<1C.1< x <yD.1<y<X4.若p是真命题,q是假命题,则A.p∧q是真命题B.p∨q是假命题C.﹁p是真命题D.﹁q是真命题5.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+16C.48D.16+326.执行如图所示的程序框图,若输入A的值为2,则输入的P值为A.2B.3C.4D.57.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品A.60件B.80件C.100件D.120件8.已知点A(0,2),B(2,0).若点C在函数y = x的图像上,则使得ΔABC的面积为2的点C 的个数为A.4B.3C.2D.1二、填空题共6小题,每小题5分,共30分.9.在中.若b=5,,sinA=,则a=___________________.10.已知双曲线( >0)的一条渐近线的方程为,则= .11.已知向量a=( ,1),b=(0,-1),c=(k,).若a-2b与c共线,则k=________________.12.在等比数列{an}中,a1= ,a4=4,则公比q=______________;a1+a2+…+an= _________________.13.已知函数若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是_______14.设A(0,0),B(4,0),C(t+4,3),D(t,3)(t R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)= N(t)的所有可能取值为三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数.(Ⅰ)求的最小正周期:(Ⅱ)求在区间上的最大值和最小值.16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差其中为的平均数)17.(本小题共14分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.18.(本小题共13分)已知函数.(Ⅰ)求的单调区间;(Ⅱ)求在区间[0,1]上的最小值.19.(本小题共14分)已知椭圆的离心率为,右焦点为(,0),斜率为I 的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程;(II)求的面积.20.(本小题共13分)若数列满足,则称为数列,记.(Ⅰ)写出一个E数列A5满足;则称为数列,记(Ⅰ)写出一个E数列A5满足;(Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;(Ⅲ)在的E数列中,求使得=0成立得n的最小值.参考答案一、选择题(共8小题,每小题5分,共40分)(1)D (2)A (3)D (4)D(5)B (6)C (7)B (8)A二、填空题(共6小题,每小题5分,共30分)(9) (10)2(11)1 (12)2 (13)(0,1) (14)6 6,7,8,三、解答题(共6小题,共80分)(15)(共13分)解:(Ⅰ)因为所以的最小正周期为(Ⅱ)因为于是,当时,取得最大值2;当取得最小值—1.(16)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A2,B2),(A3,B3),(A1,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为(17)(共14分)证明:(Ⅰ)因为D,E分别为AP,AC的中点,所以DE//PC。

2011年高考湖南省数学试卷-文科(含详细答案)

2011年高考湖南省数学试卷-文科(含详细答案)
(I)求第n年初M的价值 的表达式;
(II)设 若 大于80万元,则M继续使用,否则须在第n年初对M更新,证明:须在第9年初对M更新.
解析:(I)当 时,数列 是首项为120,公差为 的等差数列.
当 时,数列 是以 为首项,公比为 为等比数列,又 ,所以
因此,第 年初,M的价值 的表达式为
(II)设 表示数列 的前 项和,由等差及等比数列的求和公式得
三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)
在 中,角 所对的边分别为 且满足
(I)求角 的大小;
(II)求 的最大值,并求取得最大值时角 的大小.
解析:(I)由正弦定理得
因为 所以
(II)由(I)知 于是
取最大值2.
综上所述, 的最大值为2,此时
5.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:


总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110

附表:
0.050
0.010
0.001
3.841
6.635
10.828
参照附表,得到的正确结论是()
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
参考公式(1)柱体体积公式 ,其中 为底面面积, 为高.
(2)球的体积公式 ,其中 为球的半径.
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集 则 ()

2011年高考福建省数学试卷-文科(含详细答案)

2011年高考福建省数学试卷-文科(含详细答案)

2011年普通高等学校招生全国统一考试(福建卷)数学(文科)本试卷第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至3页,第II 卷4至6页。

满分150分。

注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号、姓名是否一致。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

3.考试结束,考生必须将试题卷和答题卡一并交回。

参考公式:样本数据12,,,n x x x …的标准差 s =. 其中x 为样本平均数.柱体体积公式V Sh =其中S 为底面面积,h 为高锥体公式13V Sh =,其中S 为底面面积,h 为高 球的表面积、体积公式24S πR =,343V πR =,其中R 为球的半径.第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个项是符合题目要求的。

1.若集合{}1,0,1M =-,{}0,1,2N =,则M N ∩等于( ).A .{}0,1B .{}1,0,1-C .{}0,1,2D .{}1,0,1,2- 【解】{}0,1M N =∩.故选A . 2.i 是虚数单位31i +等于( ).A .iB .i -C .1i +D .1i - 【解】31i 1i +=-.故选D .3.若a ∈R ,则“1a =”是“1a =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件【解】当1a =时,有1a =.所以“1a =”是“1a =”的充分条件,反之,当1a =时,1a =±,所以“1a =”不是“1a =”的必要条件.故选A . 4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

2011年浙江高考数学文科试卷带详解

2011年浙江高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试(浙江卷)数 学 (文科)一、选择题:每小题5分,共50分.在每小题给的四个选项中,只有一项是符合题目要求的.1.若{1},={1}P x x Q x x =<>,则 ( )A.P Q ⊆B.Q P ⊆C.P Q ⊆R ðD.Q P ⊆R ð【测量目标】集合间的基本关系.【考查方式】集合的表示(描述法),求集合的包含关系.【参考答案】D 【试题解析】{1}P x x =< ∴{}|1P x x =R ≥ð,又∵={1}Q x x >,∴Q P ⊆R ð,故选D2.若复数1i z =+,i 为虚数单位,则(1)z z += ( )A.13i +B.33i +C.3i -D.3【测量目标】复数代数形式的四则运算.【考查方式】给出复数乘法形式,考查复数的四则运算.【参考答案】A【试题解析】∵1i z =+,∴(1)(2i)(1i)13i z z +=++=+g3.若实数,x y 满足不等式组2502700,0x y x y x y +-⎧⎪+-⎨⎪⎩≥≥≥≥ ,则34x y +的最小值是 ( )A.13B.15C.20D.28【测量目标】线性规划求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最小值.【参考答案】A【试题解析】可行域如图所示联立⎩⎨⎧=-+=-+072052y x y x ,解之得⎩⎨⎧==13y x ,∴当y x z 43+=过点(3,1)时,有最小值13. 4.若直线l 不平行于平面α,且l α∉,则 ( )A.α内存在直线与异面B. α内不存在与l 平行的直线C.α内存在唯一的直线与l 平行D. α内的直线与l 都相交【测量目标】直线与平面的位置关系.【考查方式】本题主要考查线线,线面平行关系的转化,考查空间想象能力能力以及推理论证能力.【参考答案】B【试题解析】在α内存在直线与l 相交,所以A 不正确;若α存在直线与l 平行,又∵α⊄l , 则有l αP ,与题设相矛盾,∴B 正确C 不正确;在α内不过l 与α交点的直线与l 异面,D 不正确.5.在ABC △中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=()A.- 12B. 12C. -1D. 1 【测量目标】正弦定理.【考查方式】根据正弦定理把边关系转化为正弦关系,再根据22sin cos 1B B +=转化求出结果.【参考答案】D【试题解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .6.若,a b 为实数,则“01ab <<”是“1b a<”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【测量目标】充分必要条件.。

2011年高考安徽省数学试卷-文科(含详细答案)

2011年高考安徽省数学试卷-文科(含详细答案)

(C) 4
(C) 3

(C) ( ,b+1)
a
(B) 2, 2 (C ) 1, 2
(7)若数列an的通项公式是 an (1)n (3n 2) ,则 a a L a
(A) 15
(B) 12
(8)一个空间几何体得三视图如图所示,则该几何体的表面积为
第(8)题图
2011 年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第 1 至第 2 页,第Ⅱ 卷第 3 页至第 4 页。全卷满分 150 分,考试时间 120 分钟。 考生注意事项:
(1) 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答 题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题 卡背面规定的地方填写姓名和座位号后两位。
(2) 答第Ⅰ卷时,每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号 涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
(3) 答第Ⅱ卷时,必须使用 0.5 毫米的黑色墨水签字笔在答题卡上书写,要求字体 工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用 0.5 毫 米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出书写的答案 无效,在试题卷、草稿纸上答题无效。
(A) 48
(B)32+8
(C )
(C) 48+8
(9) 从正六边形的 6 个顶点中随机选择 4 个顶点,则以它们作为顶点的四边形是矩形的概率
等于
(A)
ቤተ መጻሕፍቲ ባይዱ (B)
(C)
(10) 函数 f (x) axn g( x) 在区间〔0,1〕上的图像如图所示,则 n 可能是

2011年高考试题——数学文(江西卷)解析版

2011年高考试题——数学文(江西卷)解析版

绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ 3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式其中S 为底面积,h 为高第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U 3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞ C.1(,0)(0,)2-⋃+∞ D.1(,2)2-答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log 21x x x x4.曲线xy e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e答案:A 解析: 1,0,0'===e x e y x5.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24答案:B 解析:20,100,1111111110=∴+==∴=a d a a a S S6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( )A.01B.43C.07D.49答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====f f f f f x f x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( ) A.e o m m x== B.e o m m x =<C.e o m m x <<D.o e m m x <<8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm ) 175 175176177177则y 对x 的线性回归方程为A.y = x-1B.y = x+1C.y = 88+12x D.y = 176 C 线性回归方程bx a y +=,()()()∑∑==---=ni i ni iix x y y x x b 121,x b y a -=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( ) 答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】交集及其运算.【专题】计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.2.(5分)(2011•新课标)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【考点】复数代数形式的混合运算.【专题】计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选C【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】常规题型.【分析】首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=﹣x2+1、y=2﹣|x|=的单调性易于选出正确答案.【解答】解:因为y=x3是奇函数,y=|x|+1、y=﹣x2+1、y=2﹣|x|均为偶函数,所以选项A错误;又因为y=﹣x2+1、y=2﹣|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以选项C、D错误,只有选项B正确.故选:B.【点评】本题考查基本函数的奇偶性及单调性.4.(5分)(2011•新课标)椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)(2011•新课标)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【考点】程序框图.【专题】图表型.【分析】通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.【解答】解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B【点评】本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.6.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;直线的图象特征与倾斜角、斜率的关系.【专题】计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)(2011•新课标)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【考点】直线与圆锥曲线的关系.【专题】数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6∴S△ABP=(DP•AB)=×6×12=36故选C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)(2011•新课标)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(﹣,0)B.(0,)C.(,)D.(,)【考点】函数零点的判定定理.【专题】计算题.【分析】分别计算出f(0)、f(1)、f()、f()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【解答】解:∵f(0)=e0﹣3=﹣2<0 f(1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A选项又∵∴根所在的区间x0∈(0,),排除D选项最后计算出,,得出选项C符合;故选C.【点评】e=2.71828…是一个无理数,本题计算中要用到等的值,对计算有一定的要求.11.(5分)(2011•新课标)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】正弦函数的对称性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)(2011•新课标)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】对数函数的图像与性质;函数的周期性.【专题】压轴题;数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=1.【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【考点】简单线性规划.【专题】计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)(2011•新课标)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】正弦定理的应用;余弦定理.【专题】解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)(2011•新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题;压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】等比数列的前n项和.【专题】综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】随机抽样和样本估计总体的实际应用;众数、中位数、平均数;离散型随机变量的期望与方差.【专题】计算题;综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)(2011•新课标)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】圆周角定理;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】简单曲线的极坐标方程;轨迹方程.【专题】计算题;压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】绝对值不等式的解法.【专题】计算题;压轴题;分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。

2011年高考文科数学函数与导数高考题

2011年高考文科数学函数与导数高考题

2011年高考数学(文科)函数与导数(2011年高考浙江卷文科11)设函数k 4()1f x x=- ,若()2f a =,则实数a =____ 【答案】1- 【解析】:421211a a a=⇒-=⇒=-- (2011年高考江苏卷2)函数)12(log )(5+=x x f 的单调增区间是__________ 【答案】1(,)2-+∞【解析】考察函数性质,容易题。

因为210x +>,所以定义域为1(,)2-+∞,由复合函数的单调性知:函数)12(log )(5+=x x f 的单调增区间是1(,)2-+∞.(2011年高考山东卷文科10)函数2sin 2xy x =-的图象大致是【答案】C【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C正确.(2011年高考广东卷文科10)设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f ∙;对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =∙.则下列等式恒成立的是( )A .()()()()()())(x h g h f x h g f ∙∙=∙B .()()()()()())(x h g h f x h g f ∙=∙C .()()()()()())(x h g h f x h g f =D .()()()()()())(x h g h f x h g f ∙∙∙=∙∙(2011年高考江西卷文科4)曲线xy e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e【答案】A【解析】1,0,0'===e x e y x.(2011年高考全国卷文科2)函数2(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥(2011年高考湖北卷文科3)若定义在R 上的偶函数()f x 和奇函数()g x 满足()()+=x f x g x e ,则()g x =A.--x x e eB.1()2-+x x e eC.1()2--x x e eD.1()2--x x e e(2011年高考安徽卷文科10)函数()()n f x ax x 2=⋅1-在区间〔0,1〕上的图像如图所示,则n 的值可能是(A )1 (B) 2 (C) 3 (D) 4 【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1n =时()()()f x ax x a x x x 232=⋅1-=-2+,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯⋅1-=3332,知a 存在.故选A. 【解题指导】:排除法解决存在性问题和不确定性问题很有效。

2011年高考全国卷文科数学解析版

2011年高考全国卷文科数学解析版

2011年高考(全国卷)文科数学解析版第Ⅰ卷一、选择题(1)设集合{}1,2,3,4U =,{}1,2,3M =,{}2,3,4N =。

则()=U C M N(A ){}1,2 (B ){}2,3 (C ){}2,4 (D ){}1,4 [答案](D )[解析]依题意知答集中的元素不在集合M N 中,2M N ∈ ,∴排出(A )、(B )、(C ),故选(D )。

(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2()4x y x =≥0 (C )()24y x x R =∈ (D )24()y x x =≥0[答案](B )[解析]依题意知原函数的值域不会是负数,即反函数的定义域是x ≥0,∴排出(A )、(C ),又点()1,2在原函数上,∴点()2,1必在反函数上,再排出(D ),故选(B )(3)设向量a 、b 满足1a b == ,12a b ⋅=- ,则2a b +=(A(B(C(D[答案](B )[解析]运用公式得:()22222222()(2)2244a b a ba b a b a b a b +=+=++⋅=++⋅1423=+-=2a b ∴+=,故选(B )(4)若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为(A )17 (B )14 (C )5 (D )3[答案](C )[解析](如图)显然当目标函数23z x y =+过直线1x =与32x y -=-的交点(1,1) 时取得最小值5,故选(C )(5)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >[答案](A )[解析] 1a b b a b >+>⇒> ,而反之不成立,故选(A )(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5[答案](D )[解析] 21211242422241112115k k k k k k S S a a a a k k +++++-=⇒+=⇒+=⇒=⇒+=⇒=故选(D )(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 [答案](C )[解析]因为,()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合 所以,函数()cos (0)f x x ωω=>的周期的整数倍是3π即,2()63k k Z k ππωω⋅=∈⇒=,又0ω>,1k ∴=时,ω取得最小值6。

2011年湖北高考真题数学文科试卷及答案解析

2011年湖北高考真题数学文科试卷及答案解析

2011年普通高等学校招生全国统一考试(湖北卷)数学试题(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5U A B ===则()UA B = ( )A .{}6,8B .{}5,7C .{}4,6,7D .{}1,3,5,6,8【测量目标】集合的补集和并集.【考查方式】用列举法表示集合的全集和两个子集,求两个子集并集的补集. 【参考答案】A 【试题解析】先求出AB ={1,2,3,4,5,7},再求()UA B ={}6,82.若向量()()1,2,1,1==-a b ,则2+a b 与-a b 的夹角等于 ( )A .π4-B .π6C .π4D .3π4【测量目标】平面向量的夹角.【考查方式】给定两个向量,求两向量相加和向量相减的夹角. 【参考答案】C【试题解析】分别求出2+a b 与-a b 的坐标,再求出,()23,3+=a b ,()0,3-=a b 求2+=a b =3-=a b 得cos 2-a +b,a b =()()22+-+-a b a b a b a b=2,所以2+a b 和-a b 得夹角为π4,故选C. 3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()e xf xg x +=,则()g x = ( ) A .e e xx-- B .()1e e 2x x -+ C .()1e e 2x x -- D .()1e e 2x x -- 【测量目标】函数的奇偶性的综合应用.【考查方式】一个奇函数和一个偶函数,给出奇函数和偶函数和的表达式求解奇函数的表达式.【参考答案】D 【试题解析】()f x 为定义域在R 上的偶函数,∴()()f x f x -=又()g x 为定义在R上的奇函数()()g x g x ∴-=-由()()e xf xg x +=()()f x g x ∴-+-=e x-()()1e e 2x x g x -∴=- 4.将两个顶点在抛物线()220y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则 ( ) A .n =0B .n =1C .n =2D .3n【测量目标】抛物线的简单几何性质. 【考查方式】三角形的两点在抛物线上,一点在焦点上求三角形是正三角形的个数. 第4题图 【参考答案】C【试题解析】根据抛物线的对称性,正三角形的两个顶点一定关于x 轴对称,且过焦点的两条直线倾斜角分别为30和150,这时过焦点的直线与抛物线最多只有两个交点,所以正三角形的个数记为n ,n =2,所以选C .5.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[)10,12内的频数为( )A .18B .36C .54D .72 【测量目标】频率分布直方图.【考查方式】给出样本频率直方图,计算某区间内的频数.【参考答案】B 【试题解析】因为组距为2,所以[)10,12的频率为0.18,所以频数为200×0.18=36 第5题图 6.已知函数()3sin cos ,f x x x x =-∈R ,若()1f x ,则x 的取值范围为 ( )A .π|2π+2π+π,k 3x k xk ⎧⎫∈⎨⎬⎩⎭ZB .π|π2ππ,3x k xk k ⎧⎫++∈⎨⎬⎩⎭ZC .π5π|2π2π,66x k xk k ⎧⎫++∈⎨⎬⎩⎭Z D .π5π|ππ,66x k xk k ⎧⎫++∈⎨⎬⎩⎭Z 【测量目标】三角函数的定义域、值域.【考查方式】给定三角函数的表达式和函数的值域求函数的定义域. 【参考答案】A3cos 1x x-得π1sin 62x ⎛⎫- ⎪⎝⎭,则π5π2π2π66k x k ++,解得π2π2ππ,3k x k k ++∈Z ,所以选A .7.设球的体积为1V ,它的内接正方体的体积为2V ,下列说法中最合适的是 ( ) A .1V 比2V 大约多一半 B .1V 比2V 大约多两倍半C .1V 比2V 大约多一倍D .1V 比2V 大约多一倍半【测量目标】球的体积公式和正方体的体积公式【考查方式】有圆和圆的内接正方体,求圆与正方体的体积比. 【参考答案】D【试题解析】设球的半径为r ,所以球的体积为1V =34π3r ,球的内接正方体的对角线就是球的直径,所以正方体的棱长为3正方体的体积为323V = ⎪⎝⎭,123πV V =≈2.6 8.直线2100x y +-=与不等式组0024320x y x y x y ⎧⎪⎪⎨--⎪⎪+⎩表示的平面区域的公共点有 ( )A .0个B .1个C .2个D .无数个【测量目标】线性规划 【考查方式】给出目标函数和可行域方程组求目标函数与可行域的公共点.【参考答案】B【试题解析】如图直线2x +y -10=0与不等式组表示的平面区域只有一个公共点9.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 ( )A .1升B .6766升 C .4744升 D .3733升 【测量目标】等差数列通项公式【考查方式】给出前四项和5,6,7三项的和求第5项. 【参考答案】B【试题解析】由题意 143432a d ⨯+=, 11986596422a d a d ⨯⨯⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭解得11322a =,d =766,所以易求a 5=6766.10.若实数a ,b 满足0,0a b,且0ab =,则称a 与b 互补,记(),,a b a b ϕ=-那么(),0a b ϕ=是a 与b 互补的 ( )A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件 【测量目标】命题的充分,必要条件.【考查方式】给出一新的命题和一条件,判断命题和条件的关系. 【参考答案】C【试题解析】若(),a b a b ϕ=-(a +b )两边平方解得ab =0,故a ,b 至少有一为0,不妨令a =0则可得|b |-b =0,故b0,即a 与b 互补,而当a 与b 互补时,易得ab =0a b -=0,即(),a b ϕ=0,故(),a b ϕ=0是a 与b 互补的充要条件.二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,模棱两可均不得分.11.某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市__________家. 【测量目标】分层抽样【考查方式】分层抽样中从某一层中应该抽取的样本数. 【参考答案】20【试题解析】大型超市200家、中型超市400家、小型超市1400家. 共有超市200+400+1400=2000按分层抽样方法抽取一个容量为100样本,每个个体被抽到的概率是1002000=120,中型超市要抽取400×120=20家12.18x ⎛ ⎝的展开式中含15x 的项的系数为__________.(结果用数值表示) 【测量目标】二项式定理.【考查方式】给定二项式,求展开式中某项的系数. 【参考答案】17【试题解析】二项展开式的通项为1r T +=3182181C 3rrr x -⎛⎫- ⎪⎝⎭,令18-32r =15得r =2,所以展开式中含x 15的项的系数为22181C 173⎛⎫-= ⎪⎝⎭.13.在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为__________.(结果用最简分数表示) 【测量目标】事件发生的概率【考查方式】产品中有次品,求随机抽样抽到次品的概率. 【参考答案】28145【试题解析】227230C 281C 145p =-=. 14.过点(—1,—2)的直线l 被圆222210x y x y +--+=截得的弦长为2,则直线l 的斜率为__________.【测量目标】直线和圆的位置关系【考查方式】过定点的直线与圆相交且弦长确定求直线的斜率. 【参考答案】1或177【试题解析】设直线斜率是k ,直线方程为()21y k x +=+,由题意得圆心到直线的距离为d==2,得k =1或17715.里氏震级M 的计算公式为:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅,0A 是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为 级;9级地震的最大振幅是5级地震最大振幅的 倍. 【测量目标】对数运算,函数模型.【考查方式】由实际生活引出对数函数,并提出实际问题. 【参考答案】6,10000【试题解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.01,则M =lg A -lg A 0=lg1000-lg0.001=3-(-3)=6. 设9级地震的最大振幅是x ,5级地震最大振幅是y ,9=lg x +3,5=lg y +3,解得x =106,y =102,所以62101000010x y ==.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知11,2,cos 4a b C === (I ) 求△ABC 的周长; (II )求()cos A C -的值.【测量目标】余弦定理,两角差的余弦,同角三角函数的基本关系.【考查方式】给出三角形两边和一角的余弦值,求三角形周长和两角差的余弦值.【试题解析】(Ⅰ)22212cos 14444c a b ab C =+-=+-⨯= 2.c ∴=(步骤1)ABC ∴△的周长为122 5.a b c ++=++=(步骤2)(Ⅱ)1cos ,sin 4C C =∴===sin 4sin 28a C A c ∴===(步骤3),a c A C <∴<,故A 为锐角,7cos .8A ∴===(步骤4)7111cos()cos cos sin sin .848416A C A C A C ∴-=+=⨯+=(步骤5)17.(本小题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{}n b 中的345b b b 、、.(I ) 求数列{}n b 的通项公式;(II ) 数列{}n b 的前n 项和为n S ,求证:数列54n S ⎧⎫+⎨⎬⎩⎭是等比数列. 【测量目标】等差数列等比数列的通项公式和等比数列的前n 项和公式【考查方式】由等差数列的等差中项得等比数列中的三项,求等比数列的通项和关于前n 项和的证明.【试题解析】(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+ 依题意,得15, 5.a d a a d a -+++==解得(步骤1) 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的第3项为5,公比为2.(步骤2)由22311152,52,.4b b b b ===即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --==(步骤3)(Ⅱ)数列{}n b 的前n 项和25(12)5452124n n n S --==--,即25524n n S -+=(步骤4)所以1112555524, 2.542524n n n nS S S -+-++===+ 因此55{}42n S +是以为首项,公比为2的等比数列.(步骤5)18.(本小题满分12分)如图,已知正三棱柱111ABC A B C -的底面边长2,侧棱长为32,点E 在侧棱1AA 上,点F 在侧棱1BB 上,且22AE =,2BF =.(I ) 求证:1CF C E ⊥; (II ) 求二面角1E CF C --的大小.【测量目标】两条直线的位置关系和二面角.【考查方式】正三棱柱中给出底边和侧棱长侧棱上点的位置,证明线线垂直和求二面角大小. 【试题解析】(Ⅰ)由已知可得221132,2(22)23CC CE C F ===+=222221(),2(2)6EF AB AE BF EF C E =+-==+=(步骤1)于是有2222221111,EF C E C F CE C E CC +=+=所以11,C E EF C E CE ⊥⊥又1,.EF CE E C E CEF =⊥所以平面由1,.CF CEF CF C E ⊂⊥平面故(步骤2)(Ⅱ)在△CEF 中,由(Ⅰ)可得6,23EF CF CE ===于是有EF 2+CF 2=CE 2,所以.CF EF ⊥(步骤3) 又由(Ⅰ)知CF ⊥C 1E ,且1EFC E E =,所以CF ⊥平面C 1EF ,又1C F ⊂平面C 1EF ,故CF ⊥C 1F .于是1EFC ∠即为二面角E —CF —C 1的平面角.(步骤4)由(Ⅰ)知△1C EF 是等腰直角三角形,所以145BFC ∠=︒,即所求二面角E —CF —C 1的大小为45︒.(步骤5) 19.(本小题满分12分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆 /千米)的函数,当桥上的车流密度达到200辆 /千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆 /千米时,车流速度为60千米/小时,研究表明:当20200x 时,车流速度v 是车流密度x 的一次函数.(I )当0200x 时,求函数v (x )的表达式;(II )当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()f x x v x =可以达到最大,并求出最大值.(精确到1辆/小时).【测量目标】分段函数模型.【考查方式】从实际问题中提出问题,求函数表达式,在特定的定义域内求解函数的最大值.【试题解析】(Ⅰ)当020,()60x v x =时;当20200,()x v x ax b =+时设再由已知得1,2000,32060,200.3a a b a b b ⎧=-⎪+=⎧⎪⎨⎨+=⎩⎪=⎪⎩解得(步骤1)故函数()v x 的表达式为60,020,()1(200),202003x v x x x ⎧⎪=⎨-⎪⎩(步骤2)(Ⅱ)依题意并由(Ⅰ)可得60,020,()1(200),202003x x f x x x x <⎧⎪=⎨-⎪⎩(步骤3)当020,()x f x 时为增函数,故当20x =时,其最大值为60×20=1200;(步骤4)当20200x时,211(200)10000()(200)[]3323x x f x x x +-=-=当且仅当200x x =-,即100x =时,等号成立.(步骤5)所以,当100,()x f x =时在区间[20,200]上取得最大值10000.3(步骤6) 综上,当100x =时,()f x 在区间[0,200]上取得最大值1000033333≈.即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.(步骤7)20.(本小题满分13分)设函数()()3222,32f x x ax bx a g x x x =+++=-+,其中x ∈R ,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l . (I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x mx +=有三个互不相同的实根0、12x x 、,其中12x x <,且对任意的[]12,x x x ∈,()()()1f x g x m x +<-恒成立,求实数m 的取值范围. 【测量目标】导数的几何意义,利用导数解决不等式问题.【考查方式】给出两函数的表达式,某点切线相同求该店切线方程.构造新的函数求解不等式.【试题解析】(Ⅰ)2()34,()2 3.f x x ax b g x x ''=++=-由于曲线()()y f x y g x ==与在点(2,0)处有相同的切线,故有(2)(2)0,(2)(2) 1.f g f g ''====(步骤1)由此得8820,2,1281, 5.a b a a a b b +++==-⎧⎧⎨⎨++==⎩⎩解得所以2,5a b =-=,切线l 的方程为20x y --=(步骤2)(Ⅱ)由(Ⅰ)得32()452f x x x x =-+-,所以32()()32.f x g x x x x +=-+ 依题意,方程2(32)0x x x m -+-=有三个互不相同的实数120,,x x , 故12,x x 是方程2320x x m -+-=的两相异的实根.(步骤3) 所以194(2)0,.4m m ∆=-->>-即又对任意的12[,],()()(1)x x x f x g x m x ∈+<-成立,(步骤4) 特别地,取1x x =时,111()()f x g x mx m +-<-成立,得0.m < 由根与系数的关系,可得12121230,20,0.x x x x m x x +=>=-><<故 对任意的1221[,],0,0,0x x x x x x x x ∈-->有(步骤5) 则12111()()()()0,()()0f x g x mx x x x x x f x g x mx +-=--+-=又所以函数12()()[,]f x g x mx x x x +-∈在的最大值为0.(步骤6)于是当0m <时,对任意的12[,],()()(1)x x x f x g x m x ∈+<-恒成立,综上,m 的取值范围是1(,0).4-(步骤7)21.(本小题满分14分)平面内与两定点()1,0A a -、()()2,00A a a >连线的斜率之积等于非零常数m 的点的轨迹,如上12,A A 两点所成的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值的关系;(Ⅱ)当1m =-时,对应的曲线为1C ;对给定的),0()0,1(+∞-∈ m ,对应的曲线为2C ,设12,F F 是2C 的两个焦点.试问:在1C 上,是否存在点N ,使得△12F NF 的面积2S m a =.若存在,求12tan F NF 的值;若不存在,请说明理由.【测量目标】圆锥曲线的轨迹问题.【考查方式】由圆锥曲线的定义命题,讨论a 范围不同时圆锥曲线的形状,当圆锥曲线为圆和焦点为12((F F -的曲线下的综合证明. 【试题解析】(I )设动点为M ,其坐标为(,)x y ,当x a ≠±时,由条件可得12222,MA MA y y y k k m x a x a x a =⋅==-+- 即222()mx y ma x a -=≠±,(步骤1)又12(,0),(,0)A a A a -的坐标满足222,mx y ma -= 故依题意,曲线C 的方程为222.mx y ma -=(步骤2)当1,m <-时曲线C 的方程为22221,x y C a ma+=-是焦点在y 轴上的椭圆;(步骤3) 当1m =-时,曲线C 的方程为222x y a +=,C 是圆心在原点的圆;(步骤4)当10m -<<时,曲线C 的方程为22221x y a ma +=-,C 是焦点在x 轴上的椭圆;(步骤5)当0m >时,曲线C 的方程为22221,x y a ma -=C 是焦点在x 轴上的双曲线.(步骤6)(II )由(I )知,当m =-1时,C 1的方程为222;x y a +=当(1,0)(0,)m ∈-+∞时,C 2的两个焦点分别为12((F F -对于给定的(1,0)(0,)m ∈-+∞,(步骤7) C 1上存在点000(,)(0)N x y y ≠使得2||S m a =的充要条件是22200020,0,12|||.2x y a y y m a ⎧+=≠⎪⎨⋅=⎪⎩ 由①得00||,y a <由②得0||y =当150,0,2a m -<<即或1502m +<时,存在点N ,使S =|m|a 2;(步骤8) 1,2a m >即-1<<或12m +>时, 不存在满足条件的点N ,(步骤9)当115,00,22m ⎡⎫⎛+∈⎪ ⎢⎪ ⎣⎭⎝⎦时,由100200(1),(1,)NF a m x y NF a x y =-+--=+-, 可得22221200(1),NF NF x m a y ma =-++=-(步骤10)令112212||,||,NF r NF r F NF θ==∠=,则由22121212cos ,cos ma NF NF r r ma r r θθ==-=-可得, 从而22121sin 1sin tan 22cos 2ma S r r ma θθθθ==-=-, 于是由2||S m a =,可得2212||tan ||,tan .2m ma m a mθθ-==-即(步骤11) 综上可得:① ②当1,02m ⎡⎫∈⎪⎢⎪⎣⎭时,在C 1上,存在点N ,使得212||,tan 2;S m a F NF ==且当10,2m ⎛∈ ⎝⎦时,在C 1上,存在点N ,使得212||,tan 2;S m a F NF ==-且当115(1,(,)22m +-+∞时,在C 1上,不存在满足条件的点N .(步骤12)。

2011年高考新课标全国卷_文科数学(含答案)

2011年高考新课标全国卷_文科数学(含答案)

2011年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={1,3,5},P=M N ,则P 的子集共有A .2个B .4个C .6个D .8个2.复数512ii=-A .2i -B .12i -C . 2i -+D .12i -+3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=4.椭圆221168x y +=的离心率为A .13 B .12C .33D .225.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B . 720C .1440D .50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A .13 B . 12C .23D .347.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A . 45-B .35-C .35D .458.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧 视图可以为9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为 A .18 B .24C . 36D . 4810.在下列区间中,函数()43xf x e x =+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A .10个B .9个C .8个D .1个二、填空题:本大题共4小题,每小题5分. 13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量ka-b 垂直,则k=_____________.14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________. 三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥D-PBC 的高. 19.(本小题满分12分) 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表 指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 8 20 42228B 配方的频数分布表指标值分组 [90,94)[94,98)[98,102)[102,106)[106,110]频数 412423210(I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润. 20.(本小题满分12分) 在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.24.(本小题满分10分)选修4-5:不等式选讲 设函数()||3f x x a x =-+,其中0a >. (I )当a=1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x|1}x ≤-,求a 的值.2011年普通高等学校招生全国统一考试文科数学试卷参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A (7)B (8)D (9)C (10)C (11)D (12)A 二、填空题(13)1 (14)-6 (15)4315 (16)31三、解答题 (17)解:(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++= )21(n +++-=2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n (18)解:(Ⅰ)因为60,2DAB AB AD ∠=︒=,由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E 。

2011-2019高考文科数学全国卷真题分类汇编(含答案)专题:第2章 集合与常用逻辑用语

2011-2019高考文科数学全国卷真题分类汇编(含答案)专题:第2章 集合与常用逻辑用语

第2章 集合与常用逻辑用语1.(2011全国1文1)已知集合,,,则的子集共有( ).A.个B.个C.个D.个2.(2012全国文1)已知集合,,则( ).A. B. C. D. 3.(2013全国I 文1)已知集合,则( ). A. B. C. D. 4.(2013全国II 文1)已知集合,,则( ). A. B. C. D.5(2014新课标Ⅰ文1)已知集合,,则( )A. B. C. D.6.(2014新课标Ⅱ文1)已知集合,,则( )A. B. C. D.7. (2015全国I 文1)已知集合,则集合中元素的个数为( ).A. 5B. 4C. 3D. 28. (2015全国II 文1)已知集合,,则( ).A. B. C. D.9. (2016全国I 文1)设集合,,则(B )A.{1,3}B.{3,5}C.{5,7}D.{1,7} 10.(2016全国II 文1)已知集合,则(D ) (A ) (B ) (C ) (D )11.(2017全国I 文1)已知集合A ={}|2x x <,B ={}|320x x ->,则 ( A ){}0,1,2,3,4M ={}1,3,5N =P MN =P 2468{}220A x x x =<--{}11B x x =<<-A B ⊂≠B A ⊂≠A B =A B =∅{}{}21234A B x x n n A ===∈,,,,,A B ={}14,{}23,{}916,{}12,{}|31M x x =-<<{}3,2,1,0,1N =---MN ={}2,1,0,1--{}3,2,1,0---{}2,1,0--{}3,2,1---{|13}M x x =-<<{|21}N x x =-<<MN =(2,1)-(1,1)-(1,3))3,2(-{}2,0,2A =-{}2|20B x x x =--=A B =∅{}2{}0{}2-{32,},{6,8,10,12,14}A x x n n B ==+∈=N A B {|12}A x x =-<<{}03B x x =<<=B A ()13,-()10,-()02,()23,{1,3,5,7}A ={|25}B x x =≤≤A B ={123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R12(2017全国II 文1设集合{}{}123234A B ==,,, ,,, 则=A B (A ) A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,13.【2018全国一文1】已知集合{}02A =,,{}21012B =--,,,,,则A B =(A ) A .{}02, B .{}12, C .{}0 D .{}21012--,,,, 14.【2018全国二文2】已知集合,,则(C )A .B .C .D .15.【2018全国三1】已知集合,,则(C )A .B .C .D .16.(2014新课标Ⅱ文3)函数在处导数存在,若;是的极值点,则( )A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不充分也不必要17.(2013全国I 文5)已知命题;命题,则下列命题中为真命题的是( ).A. B. C. D.18.(2014新课标Ⅰ文14)甲.乙.丙三位同学被问到是否去过,,三个城市时, 甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.19.【2019年高考全国Ⅰ卷文数】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则=A C B UA .{}1,6B .{}1,7C .{}6,7D .{}1,6,720.【2019年高考全国Ⅱ卷文数】已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B ={}1,3,5,7A ={}2,3,4,5B =A B ={}3{}5{}3,5{}1,2,3,4,5,7{|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}()f x 0x x =0:()0p f x '=0:q x x =()f x p q p q q p q q :2<3x x p x ∀∈R ,32:1q x x x ∃∈=-R ,p q ∧p q ⌝∧p q ∧⌝p q ⌝∧⌝A B C B CA .(-1,+∞)B .(-∞,2)C .(-1,2)D .∅ 21.【2019年高考全国Ⅲ卷文数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 22.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面第2章 答案BBACB BDABD AAACCCBA C C AB。

2011山东高考数学试卷及答案详解(文科)WORD版

2011山东高考数学试卷及答案详解(文科)WORD版

2011年普通高等学校招生全国统一考试(山东卷)文 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。

2、第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高。

圆柱的侧面积公式:S cl =,其中c 是圆柱的地面周长,l 是圆柱的母线长。

球的体积公式:343V R π=,其中R 是球的半径。

球的表面积公式:,其中R 是球的半径。

用最小二乘法求线性回归方程系数公式:=1221ˆˆ,.ni ii nii X Y nx yay bx Xnx ==-=--∑∑ 如果事件A 、B 互斥,那么()()+()P A B P A P B +=.第Ⅰ卷(共60分)一、选择题:本大题共12小题。

每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{}{}2|60,|13,M x x x N x x =+-<=≤≤则M N =(A) [1,2) (B) [1,2] (C) (2,3] (D) [2,3] 2、复数2()2iz i i-=+为虚数单位在复平面内对应的点所在象限为 (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限3、若点a (,9)在函数3xy =的图象上,则tan6a π的值为(A) 0(B)3(C) 1(D) 4、曲线311y x =+在点(1,12)P 处的切线与y 轴交点的纵坐标是(A) -9 (B) -3 (C) 9 (D) 155、已知,,a b c R ∈,命题“2223,3a b c a b c ++=++≥若则”的否命题是(A) 2223,3a b c a b c ++≠++<若则 (B) 2223,3a b c a b c ++=++<若则 (C) 2223,3a b c a b c ++≠++≥若则 (D) 2223,3a b c a b c ++≥++=若则 6、若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A) 3 (B) 2 (C)32 (D) 237、设变量,x y 满足约束条件250200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数231z x y =++的最大值为(A) 11 (B) 10 (C) 9 (D) 8.5 8、某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y bx a =+ 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 (A) 63.6万元 (B) 65.5万元 (C) 67.7万元 (D) 72.0万元9、设00(,)M x y 为抛物线2:8C x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是(A) ()0,2 (B) []0,2 (C) ()2,+∞ (D) [)2,+∞10、函数2sin 2xy x =-的图象大致是(A) (B)(C) (D)11、右图是长和宽分别相等的两个矩形,给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图; ②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年高考-(全国卷)文科数学答案2011年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={1,3,5},P=M N I,则P的子集共有A.2个B.4个 C.6个D .8个2.复数512ii=- A .2i -B .12i -C .2i-+D .12i -+3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x = B .||1y x =+C .21y x =-+D .||2x y -=4.椭圆221168x y +=的离心率为A .13B .12C .33D .225.执行右面的程序框图,如果输入的N 是6,那么输出的p 是 A .120 B . 720 C . 1440 D . 5040 6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13B . 12C.23D.347.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线2y x=上,则cos2θ=A.45-B.35-C.35 D.458.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为9.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,||12AB=,P为C的准线上一点,则ABP∆的面积为A.18 B.24 C.36 D. 4810.在下列区间中,函数()43xf x e x=+-的零点所在的区间为A .1(,0)4-B .1(0,)4C .11(,)42D .13(,)2411.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有 A .10个B .9个C .8个D .1个第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a+b 与向量ka-b 垂直,则k=_____________. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________. 15.ABC∆中,120,7,5B AC AB =︒==,则ABC∆的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.三、解答题:解答应写文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等比数列{}na 中,113a =,公比13q =. (I )nS 为{}na 的前n 项和,证明:12nna S-=(II )设31323log log log nnba a a =+++L ,求数列{}nb 的通项公式.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥D-PBC 的高.19.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A 配方的频数分布表指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110] 频数 8 20 42228B 配方的频数分布表指标值分组 [90,94) [94,98) [98,102) [102,106) [106,110] 频数412423210 (I )分别估计用A 配方,B 配方生产的产品的优质品率;(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y xx =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (I )求a ,b 的值;(II )证明:当x>0,且1x ≠时,ln ()1xf x x >-.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲 如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(I )证明:C ,B ,D ,E 四点共圆;(II )若90A ∠=︒,且4,6,m n ==求C ,B ,D ,E 所在圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM=u u u r u u u u r ,点P 的轨迹为曲线2C .(I )求2C 的方程;(II )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求|AB|.24.(本小题满分10分)选修4-5:不等式选讲 设函数()||3f x x a x =-+,其中0a >.(I )当a=1时,求不等式()32f x x ≥+的解集.(II)若不等式()0x≤-,求a的f x≤的解集为{x|1}值.参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A(7)B (8)D (9)C (10)C (11)D (12)A 二、填空题(13)1 (14)-6 (15)4315 (16)31三、解答题 (17)解:(Ⅰ)因为.31)31(311n n na=⨯=-,2311311)311(31nn n S -=--=所以,21nna S--(Ⅱ)nna a a b32313log log log +++=Λ)21(n +++-=Λ2)1(+-=n n所以}{nb 的通项公式为.2)1(+-=n n b n(18)解:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得BD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E 。

已知PD ⊥底面ABCD ,则PD ⊥BC 。

由(Ⅰ)知BD ⊥AD ,又BC//AD ,所以BC ⊥BD 。

故BC ⊥平面PBD ,BC ⊥DE 。

则DE ⊥平面PBC 。

由题设知,PD=1,则BD=3,PB=2, 根据BE ·PB=PD·BD,得DE=23,即棱锥D —PBC 的高为.23(19)解(Ⅰ)由试验结果知,用A 配方生产的产品中优质的频率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3。

由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42(Ⅱ)由条件知用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96,所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B 配方生产的产品平均一件的利润为68.2)442254)2(4(1001=⨯+⨯+-⨯⨯(元)(20)解: (Ⅰ)曲线162+-=x xy 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t=1.则圆C 的半径为.3)1(322=-+t所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x消去y ,得到方程 .012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x--±-=从而2120,422121+-=-=+a a x x a x x ①由于OA⊥OB,可得,02121=+y y x x又,,2211a x y a x y+=+=所以.0)(222121=+++a x x a x x ②由①,②得1-=a ,满足,0>∆故.1-=a(21)解: (Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。

相关文档
最新文档