磁电式电磁式电动式仪表的定义原理

合集下载

电动式仪表原理

电动式仪表原理

电动式仪表原理
电动式仪表原理是指利用电磁感应原理将电能转化为机械能,从而实现测量物理量的一种方法。

电动式仪表包括电流表、电压表、电阻表等,其工作原理都基
于这一原理。

电动式仪表的主要部件包括电磁铁、指针、弹簧、线圈等。

当电流通过线圈时,会产生磁场,磁场会将指针移动,从而显示电流、电压等物理量的大小。

电动式
仪表的精度、灵敏度和稳定性都与其主要部件的质量和制造工艺密切相关。

不同类型的电动式仪表有不同的工作原理。

电流表的工作原理基于安培定律,通过将待测电流与标准电流进行比较,实现对电流大小的测量。

电压表的工作原理基于欧姆定律,通过将待测电压与标准电压进行比较,实现对电压大小的测量。

电阻表的工作原理基于基尔霍夫定律,通过将待测电阻与标准电阻进行比较,实现对电阻大小的测量。

电动式仪表在电力系统、工业自动化、仪器仪表等领域得到广泛应用。

随着科技的不断进步,电动式仪表的精度和稳定性也在不断提高,为各行各业的测量和控制工作提供了更为可靠的技术支持。

(完整版)电磁式仪表与磁电式仪表区别

(完整版)电磁式仪表与磁电式仪表区别

电磁式仪表与磁电式仪表有何不同?添加时间:2015-08-12 来源:艾特贸易网| 阅读量:1170答:电磁式仪表与磁电式仪表是两种不同类型的仪表。

它们有很多不同之处,突出表现在性能、结构和表盘上。

(1)从表盘上就可区分开这两种仪表。

除了图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁系仪表的刻度则由密变疏。

(2)从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此只能用其直接测量直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量,但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。

(3)结构和工作原理的不同是两种仪表的根本区别。

虽然它们都分为固定和可动两大部分,但其具体组成内容不同。

磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一组线圈,被测电流流经线圈时,利用通电导线在磁场中受力的原理(即电动机原理),实现可动部分的转动。

磁电式仪表的结构如图1.2所示。

图1.2 磁电式仪表的测量结构示意图电磁式仪表的固定部分是被测电流流经的线圈,有电流通过即可形成较强的磁场;可动部分的核心是一片可被及时磁化的软磁性材料(如铁片、坡莫合金等),利用被磁化的动铁片与通电线圈(或被磁化的静铁片)磁极之间的作用力,实现可动部分的偏转。

由于电磁式仪表构造简单、成本低廉,在电工测量中获得了广泛的应用,尤其是开关板式交流电流表、电压表,基本上都采用这种仪表。

图1.3 电磁式仪表的测量机构示意图电磁式仪表的结构如图1.3所示,根据测量机构的结构形式不同,分为扁线圈吸引型和圆线圈排斥型两种。

电动式仪表原理

电动式仪表原理

电动式仪表原理
电动式仪表是一种常见的电气测量仪器,它利用电磁感应原理来测量电流、电压、功率等电气参数。

电动式仪表的工作原理是基于法拉第电磁感应定律和安培环路定理。

电动式仪表的基本结构由磁场系统、电流系统和指示系统三部分组成。

其中,磁场系统由磁铁和磁场线圈组成,电流系统由电流线圈和电流指针组成,指示系统由指针和刻度盘组成。

当电流通过电流线圈时,它会产生一个磁场,这个磁场会与磁铁产生相互作用,使得磁场线圈受到一个力矩,从而使得指针转动。

根据安培环路定理,电流线圈所受的力矩与电流成正比,因此可以通过测量指针的偏转角度来确定电流的大小。

同样地,当电压作用于电压线圈时,它也会产生一个磁场,这个磁场会与磁铁产生相互作用,使得磁场线圈受到一个力矩,从而使得指针转动。

根据法拉第电磁感应定律,电压线圈所受的力矩与电压成正比,因此可以通过测量指针的偏转角度来确定电压的大小。

在测量功率时,电动式仪表可以通过将电流线圈和电压线圈串联或并联来实现。

当电流和电压同时作用于电动式仪表时,它们会产生一个合成的磁场,这个磁场会与磁铁产生相互作用,使得磁场线圈受到一个力矩,从而使得指针转动。

根据安培环路定理和法拉第电磁感应定律,电动式仪表可以测量电流和电压的乘积,从而确定功
率的大小。

电动式仪表是一种基于电磁感应原理的电气测量仪器,它可以测量电流、电压、功率等电气参数。

通过了解电动式仪表的工作原理,我们可以更好地理解它的测量原理和使用方法,从而更加准确地测量电气参数。

磁电式电磁式电动式仪表的定义原理

磁电式电磁式电动式仪表的定义原理

磁电式、电磁式、电动式仪表的定义、原理1 什么就是磁电式仪表?磁电式仪表广泛地应用于直流电压与电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。

2 磁电式仪表就是由哪几部分构成的?磁电式仪表就是由固定的磁路系统与可动部分组成的。

仪表的磁路系统就是在永久磁铁1的两极,固定着极掌2。

两极掌之间就是圆柱形铁心3。

圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌与铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。

处在这个磁场中的可动线圈4就是用很细的漆包线绕制在铝框架上的。

框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。

指针6安装在前半轴上。

当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。

线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。

反作用力矩可以由游丝、张丝或悬丝产生。

当采用游丝时,还同时用它来导人与导出电流,如图4-1(b)所示。

因此装设了两个游丝,它们的螺旋方向相反。

仪表的阻尼力矩则由铝框产生。

高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。

磁电式仪表按磁路形式又分为内磁式、外磁式与内外磁式三种,如图4-2所示。

内磁式的结构就是永久磁铁在可动线圈的内部。

外磁式的结构就是永久磁铁在可动线圈的外部。

内外磁式的结构就是在可动线圈的内外都有永久磁铁,磁场较强,可使仪表的结构尺寸更为紧凑。

3 磁电式仪表就是如何工作的?磁电式仪表就是根据载流导体在磁场中受力的原理,即电动机原理而制成的。

磁电式仪表测量机构产生力矩的原理如图4-3所示。

4、什么就是电磁式仪表?电磁式仪表就是测量交流电流与电压最常见的一种仪表。

它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其就是固定安装的测量中得到了广泛的应用。

磁电式电流表的工作原理

磁电式电流表的工作原理
清洁与保养
定期清洁电流表外壳表面,保持干燥,避免 潮湿和尘土侵蚀。
常见故障与排除方法
指针不归零 测量误差大
表壳破损 无显示
可能是由于机械磨损或电路故障导致,需要更换相关部件或进 行维修。
可能是由于量程选择不当、表笔接触不良或电路故障引起,需 要检查量程选择和表笔连接,如故障仍未排除,则需进行维修

刻度与量程
磁电式电流表的刻度与量程是根据其测量机构的特性和设计来确定的。 不同量程的电流表有不同的转换器和指示机构,以适应不同大小的电流 测量。
02 磁电式电流表的结构
测量机构
测量机构是磁电式电流表的核心部分, 它由线圈、铁芯和测量元件组成。
测量元件通常是一个铝框或铜框,上 面绕有测量线圈,当测量元件转动时, 测量线圈中的电流发生变化,从而产 生感应电动势。
刻度误差
刻度误差是由于刻度不准确或刻度盘磨损造成的。减小误差的方法包括定期对刻度盘进行 检查和校准,以及对磨损的刻度盘进行更换。
机械误差
机械误差是由于机械摩擦、传动机构松动等原因造成的。减小误差的方法包括保持机械部 分的清洁和润滑,定期对传动机构进行检查和紧固。
使用注意事项
正确接入电路
在使用磁电式电流表时,应正确接入电路,确保电流表串联在被 测电路中,以避免对电路造成影响。
可能是由于使用不当或意外碰撞导致,需要更换表壳或进行维 修。
可能是由于电源故障或电路故障导致,需要检查电源和电路连 接,如故障仍未排除,则需进行维修。
感谢您的观看
THANKS
磁电式电流表的工作 原理
目录
CONTENTS
• 磁电式电流表简介 • 磁电式电流表的结构 • 磁电式电流表的测量原理 • 磁电式电流表的特性与误差 • 磁电式电流表的应用与维护

磁电式仪表工作原理 铝框 作用

磁电式仪表工作原理 铝框 作用

磁电式仪表工作原理铝框作用磁电式仪表是一种常用的测量电流、电压和功率的电工仪表。

它的工作原理基于磁电效应,通过电流和磁场的相互作用来测量电力参数。

磁电式仪表由铁芯、线圈和移动线圈组成。

其关键原理是利用电流在导体中产生的磁场,与磁场相互作用的力,来驱动移动线圈的运动,进而测量电流、电压和功率等参数。

磁电式仪表的工作原理可以分为磁场效应和电磁感应效应两个部分。

在磁场效应的作用下,电流通过线圈时会产生一个磁场,这个磁场的大小和方向与电流大小和方向有关。

而移动线圈由于电流通过时受到磁场的力作用,而在磁场的力的作用下产生位移。

位移的大小和方向与电流大小和方向有关,因此可以通过测量位移的变化来测量电流的大小。

而在电磁感应效应的作用下,当电压线圈中的导线在磁场中移动时,会产生一个感应电动势。

根据法拉第电磁感应定律,这个感应电动势的大小与导线长度、磁感应强度和移动速度有关。

通过测量感应电动势的大小,可以间接测量电压的大小。

磁电式仪表中的铝框的作用是支持仪表的外壳和组件。

铝材料具有轻量、坚固耐用等特点,能够很好地保护仪表内部的线圈和机械部件。

它能够有效防止外界的机械冲击和震动对仪表的影响,同时也能够保护内部的线圈免受外界环境的侵蚀。

此外,铝框还能够提供稳定的支撑结构,使仪表的各个组件能够精确定位,从而保证仪表的精准度和可靠性。

除了支撑和保护作用,铝框还承担着导热、散热的功能。

由于磁电式仪表工作时会产生一定的热量,如果不能及时散热,就会导致温度升高,进而影响仪表的精度和使用寿命。

铝框具有良好的导热性能,能够有效地将热量传导到周围环境中,从而保持仪表的正常工作温度。

此外,铝框还具有一定的抗腐蚀性能。

在许多工业环境中,可能存在腐蚀性气体或液体,对仪表的材料会造成一定的损害。

铝框具有抗氧化和抗腐蚀的性能,在一定程度上可以延长仪表的使用寿命。

总之,磁电式仪表通过利用磁电效应来测量电流、电压和功率等参数。

铝框作为仪表的支撑和保护结构,发挥着重要的作用。

磁电式、电磁式、电动式仪表的定义、原理【精品文档】

磁电式、电磁式、电动式仪表的定义、原理【精品文档】

磁电式、电磁式、电动式仪表的定义、原理1 什么是磁电式仪表?磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。

2 磁电式仪表是由哪几部分构成的?磁电式仪表是由固定的磁路系统和可动部分组成的。

仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。

两极掌之间是圆柱形铁心3。

圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。

处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。

框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。

指针6安装在前半轴上。

当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。

线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。

反作用力矩可以由游丝、张丝或悬丝产生。

当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。

因此装设了两个游丝,它们的螺旋方向相反。

仪表的阻尼力矩则由铝框产生。

高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。

磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。

内磁式的结构是永久磁铁在可动线圈的内部。

外磁式的结构是永久磁铁在可动线圈的外部。

内外磁式的结构是在可动线圈的内外都有永久磁铁,磁场较强,可使仪表的结构尺寸更为紧凑。

3 磁电式仪表是如何工作的?磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。

磁电式仪表测量机构产生力矩的原理如图4-3所示。

4.什么是电磁式仪表?电磁式仪表是测量交流电流与电压最常见的一种仪表。

它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。

电工基础知识

电工基础知识

二 常用电工仪表和测试的认识及应用1. 电工仪表的基本原理磁电式仪表用符号 ‘∩’表示.其工作原理为:可动线圈通电时,线圈和永久磁铁的磁场磁场相互作用的结果产生电磁力,从而形成转动力矩,使指针偏转.电磁式仪表用符号 ‘ ‘表示,分为吸引型和排斥型两种.吸引型电磁式仪表工作原理:线圈通电后,铁片被磁化,无论在那种情况下都能使时钟顺时方向转动.排斥型电磁式仪表工作原理:线圈通电后,动定铁片被磁化, 动定铁片的同极相对,互相排斥,使动铁片转动.电动式仪表用符号 ‘ ‘表示. 其工作原理为:固定线圈产生磁场,可动线圈有电流通过时受到安培力作用,使指针顺时针转动.2. 常用的测量仪表电工测量项目:电流、电压、电阻、电功率、电能、频率、功率因素等.电流表和电压表 电流测量电流测量的条件:电流表须与被测电路串联;电流流量不超过量程.a 图电流表直接接入式负载 适用:交直流小电流测量b 图 直流电流表与分流器接入 适用:扩大仪表量程RfL 的确定:1. 测出R 表;2.定出量程范围例:假定A 表的量程为A 1(1A,1m)解:因U 表=RfL,则A 1 x R 表 = (A 2 – A 1) x RfL 1 x 0.1 = (10 – 1) x RfL 即RfL =91.0= 901m c 图 交流电流表通过电流互感器接入 适用:交流大电流测量互感器的选用:1) 选用穿互感器的匝数必须满足母线电流,小于允许电流; 2) 购买配套仪表:例如选用1匝150/5,则选用150/5仪表电压测量电压测量条件:电压表必须与被测电流并联,电压值不得超出量程.电压测量方法:a 图 直接接入法适用:交直流低压测量b 图 通过附加电阻加入适用:扩大仪表量程,一般不超过2000V c 图 通过电流互感器接入功率表的选用:功率表大都采用电动式.因为要反映电压、电流要素,要使实际电压小于电压线圈耐压,实际电流小于电流线圈额定电流. 接线守则:符号 ‘*’,端接电源.电流端钮与电路串联,电压端钮与电路并联. 接线图:I 负载单相功率及三相功率测量接线: a 图 A 的功率B CC 用电总功率 b 图 U Z C注: 直流电P=UI,交流电P=UICos ø 电能有单相与三相两种电能测量。

最新磁电式、电磁式、电动式仪表的定义、原理精选

最新磁电式、电磁式、电动式仪表的定义、原理精选

磁电式、电磁式、电动式仪表的定义、原理1 什么是磁电式仪表?磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。

2 磁电式仪表是由哪几部分构成的?磁电式仪表是由固定的磁路系统和可动部分组成的。

仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。

两极掌之间是圆柱形铁心3。

圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。

处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。

框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。

指针6安装在前半轴上。

当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。

线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。

反作用力矩可以由游丝、张丝或悬丝产生。

当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。

因此装设了两个游丝,它们的螺旋方向相反。

仪表的阻尼力矩则由铝框产生。

高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。

磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。

内磁式的结构是永久磁铁在可动线圈的内部。

外磁式的结构是永久磁铁在可动线圈的外部。

内外磁式的结构是在可动线圈的内外都有永久磁铁,磁场较强,可使仪表的结构尺寸更为紧凑。

3 磁电式仪表是如何工作的?磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。

磁电式仪表测量机构产生力矩的原理如图4-3所示。

4.什么是电磁式仪表?电磁式仪表是测量交流电流与电压最常见的一种仪表。

它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。

电压和电流的测量(电磁系,磁电系,电动系仪表)

电压和电流的测量(电磁系,磁电系,电动系仪表)

四、互感器的连接
电压互感器在供电系统中的连接
电流互感器在供电系统中的连接
五、钳式电流表
钳式电流表是电流互感器和电流表的 组合,可以在不断开交流电路,并在设备 仍运行的条件下,测量交流电流。
外型
返回本章首页Βιβλιοθήκη 内部结构示意第七节
万用电表
一、万用电表的结构
万用表是利用多刀多投转换开关,改变电 路连接方式,测量不同量程的电压、电流电 阻,或电平,三极管放大倍数等是电气维修 中常用的工具。
(200m V ) 200 μ A
IN+ R
数字电压表
I x
Ii
Ui
900 Ω 90 Ω
IN-
(200m V ) 2m A (200m V ) 20m A (200m V ) 200m A (200m V ) 2A

0. 9Ω 0. 1Ω
(4)电阻转换电路(以20k挡为例)
V UREF+ I· RX I· RREF
改变电流量程
4.多量程电磁系 电压表举例
第五节
电动系仪表
一、电动系仪表的结构
二、电动系仪表的工作原理
两组线圈所构成的系统,通电后的磁场能量为
dW dM 12 可动线圈所受的驱动力矩为 M I1I 2 d d 1 dM 12 M=Ma I 1 I 2 cos Ψ D d
作为电流或电压表使用时,如果两线圈通以同一 电流,或被测电流的一部分,且互感变化率为常数,
M cp 1 1 ( 2 T
即指针偏转角与交流有效值平方成正比,所以电 磁系仪表可用于测量交流,并可与直流共用同一标尺。

T
0
i 2dt)
dL 1 dL I2 d 2 d

(完整版)常用电工工具和电工仪表的使用

(完整版)常用电工工具和电工仪表的使用

常用电工工具和电工仪表的使用1、电工仪表一、电工仪表类型常用直读式电工仪表:磁电式、电磁式和电动式。

(整流、电子、感应等)。

组成:①.产生转动转矩部分;②.产生阻转矩部分;③.阻尼器。

原理:转动转矩与测量电量(电流)成正比(电流的电磁作用);阻转矩与指针偏转角度成正比(弹簧弹性);阻尼器只有在指针转动过程才起作用,其作用是使指针迅速稳定,避免振荡,缩短测量时间。

1)磁电式仪表磁电式仪表没工作(没有电)时也有磁场。

螺旋弹簧作用:①.引入电流;②.产生阻转矩。

阻尼器:铝框(原理与异步机鼠笼转子相似)。

特点:刻度均匀、灵敏度和准确度高、阻尼器消耗能量少,受外界磁场干扰小;但只能测量直流、价格较高、易过载。

2)电磁式仪表;原理:固定(定子)与可动(转子)铁片被线圈流过电流磁化,产生推斥力。

螺旋弹簧:只产生阻转矩(不承受电流)。

阻尼器:空气阻尼器。

特点:可测交、直流,通过电流大,构造简单,价格低;但刻度不均,易受外界磁场影响,精度低。

3)电动式仪表。

原理:固定线圈产生磁场,可动线圈流过电流受到电动力作用。

螺旋弹簧作用:①.引入电流;②.产生阻转矩。

(空气阻尼器)。

特点:可测直、交流(测功率、功功率因数),无铁心准确度高;但受外磁场影响大,过载能力小。

二、电流和电压的测量1)电流的测量接线:串联在电路中。

扩程:磁电式采用并联低阻值的分流器(∵是直流、且允许通过电流小);电磁式则采用电流互感器(∵是交流,表头和分流器中流过的电流并不能严格与它们的电阻值成比例关系——有电感因素,因此并联分流器测量不准确)。

2)电压的测量接线:与被测电路并联。

伏特计的电阻值要求很大(越大、对被测电路影响越小)。

由于表头电阻值通常不大。

因此必须串联高阻值的倍压器限制电流。

扩程:不论是磁电式还是电磁式都可通过串联高阻值的倍压器进行扩程。

测量交流电的电磁式仪表利用电压互感器扩程也应串联倍压器限流。

三、功率的测量1)单相交流和直流功率的测量接线应注意极性,若有一个极性接反,指针受力变反,不能读出功率的数值。

磁电式、电磁式、电动式仪表的定义、原理

磁电式、电磁式、电动式仪表的定义、原理

磁电式、电磁式、电动式仪容的定义、本理之阳早格格创做1 什么是磁电式仪容?磁电式仪容广大天应用于曲流电压战电流的丈量,如与百般变更器协共,正在接流及下频丈量中也得到较广大的应用,果此正在电气丈量指示仪容中占有极为要害的职位.2 磁电式仪容是由哪几部分形成的?磁电式仪容是由牢固的磁路系统战可动部分组成的.仪容的磁路系统是正在永暂磁铁1的二极,牢固着极掌2.二极掌之间是圆柱形铁心 3.圆柱形铁心牢固正在仪容的收架上,用去减小磁阻,并正在极掌战铁心之间的气隙中产死沿圆柱形表面匀称辐射的磁场,其磁感触强度到处相等,目标与圆柱形表面笔曲.处正在那个磁场中的可动线圈4是用很细的漆包线绕制正在铝框架上的.框架的二端分别牢固着半轴,半轴上的另一端通过轴尖收启于轴启中.指针6拆置正在前半轴上.当可动线圈4通进电流时,正在磁场的效率下便爆收转能源矩,使指针随着线圈所有转化.线圈中通过的电流越大,爆收的转能源矩也越大,果此指针转化的角度也大.反效率力矩不妨由游丝、弛丝或者悬丝爆收.当采与游丝时,还共时用它去导人战导出电流,如图4-1(b)所示.果此拆设了二个游丝,它们的螺旋目标差异.仪容的阻僧力矩则由铝框爆收.下敏捷度仪容为减少可动部分的沉量,常常采与无框架动圈,并正在动线圈中加短门路圈,以爆收阻僧效率.磁电式仪容按磁路形式又分为内磁式、中磁式战内中磁式三种,如图4-2所示.内磁式的结构是永暂磁铁正在可动线圈的里面.中磁式的结构是永暂磁铁正在可动线圈的中部.内中磁式的结构是正在可动线圈的内中皆有永暂磁铁,磁场较强,可使仪容的结构尺寸更为紧稀.3 磁电式仪容是怎么样处事的?磁电式仪容是根据载流导体正在磁场中受力的本理,即电效果本理而制成的.磁电式仪容丈量机构爆收力矩的本理如图4-3所示.4.什么是电磁式仪容?电磁式仪容是丈量接流电流与电压最罕睹的一种仪容.它具备结构简朴、过载本领强、制价矮廉以及可接曲流二用等一系列便宜,果此电磁式仪容正在电力工程,更加是牢固拆置的丈量中得到了广大的应用.5.电磁式仪容与磁电式仪容有何分歧?电磁式仪容与磁电式仪容是二种分歧典型的仪容.它们有很多分歧之处,超过的表示正在本能、结媾战表盘上.从表盘上便可区别启那二种仪容.除它们的图形标记分歧中,磁电式电流表战电压表的刻度基础上是匀称的,而电磁式仪容的刻度则由稀变疏.从本能上瞅,磁电式仪容反映的是通过它的电流的仄衡值,果此它的间接被丈量只可是曲流电流或者电压;而电磁式仪容反映的是通过它的电流的灵验值,果此,没有加所有变更,电磁式仪容便可用于曲流、接流,以至非正弦电流、电压的丈量.但是其丈量敏捷度战粗度皆没有及磁电式仪容下,而功耗却大于磁电式仪容.结媾战处事本理的分歧是二种仪容的基础辨别.虽然它们皆分为牢固战可动二大部分,但是其简曲组成真量分歧.磁电式仪容的牢固部分是永暂磁铁,用去爆收匀称、恒定的磁场;可动部分的核心是一线圈,被测电流流经线圈时,利用通电导线正在磁场中受力的本理(即电效果本理),真止可动部分的转化.电磁式仪容的牢固部分是被测电流流经的线圈,有电流利过即可产死较强的磁场;可动部分的核心是一片可被即时磁化的硬磁性资料(如铁片,坡莫合金等),利用被磁化酌动铁片与通电线圈(或者被磁化的静铁片)磁极之间的效率力,真止可动部分的偏偏转.由于电磁式仪容构制简朴、成本矮廉,正在电工丈量中赢得了广大的应用,更加是启闭板式接流电流、电压表,基础上皆采与那种仪容.电磁式仪容根据丈量机构的结构形式分歧,分有扁线圈吸引型战圆线圈排斥型二种.6. 什么是吸引型电磁式仪容?电磁式仪容的丈量机构主要有吸引式战排斥式二种典型,扁线圈吸引型电磁式仪容的结构如图5-1(a)所示.吸引型电磁式仪容是由牢固线圈l战偏偏心拆正在转轴上的可动铁片2形成的一个电磁系统.转轴上还拆有指针3、阻僧片4及游丝5.游丝的效率战正在磁电式丈量机构中分歧,它只爆收反效率力矩.7.什么是电动式仪容?电磁式仪容的丈量准确度普遍没有下,其主要本果是由于电磁式仪容铁磁资料的磁滞战涡流效力等制成的.用于接流粗稀丈量大多采与电动式仪容,基础上与消了磁滞战涡流的效率.磁电式仪容的磁场是由永暂磁铁修坐的,当利用通有电流的牢固线圈去代替永暂磁铁时,便形成了"电动式仪容".牢固线圈没有但是不妨通过曲流,而且还可通过接流,果此,电动式仪容的主要便宜是能接曲流二用,并能达到0.1~0.05级的准确度.使电动式仪容的准确度得到了普及.电动式仪容没有单能透彻天丈量电流、电压战功率,而且还不妨丈量功率果数、相位及频次等.它可使用的频次范畴较宽,可用正在45~2500Hz的接流电路中.所以,电动式仪容用途广大,正在粗稀指示仪容巾占有要害职位.当前,电动式仪容正往着普及敏捷度、扩洪量程战频次范畴,以及落矮功耗、缩小形状、减小品量、落矮成本战普及使用寿命的目标死长.暂时,海内出门现了弛丝收启、陶瓷收架、陶瓷转轴、小偏偏转角以及光标指示的电动式仪容,其准确度为1%,功率耗费小于lW,接流使用的额定频次可达15-5000Hz,扩展频次范畴则达10000Hz,那样便更夸大了电动式仪容的应用范畴.隐而易睹,电动式仪容正在百般指示仪容中,脆持着明隐的劣势.8. 电动式仪容的结构是何如的?是怎么样处事的?电动式仪容的丈量机构主要由修坐磁场的牢固线圈1战正在此磁场中偏偏转的可动线圈2组成,其结构如图6-1所示.牢固线圈1分为仄止排列,互相对于称的二部分,中间留有清闲,以便脱过转轴.那种结构的特性是能赢得匀称的处事磁场,并可借帮改变二个牢固线圈之间的串、并联闭系而得到分歧的电流量程.可动线圈与转轴固接正在所有,转轴上拆有指针3战气氛阻僧器的阻僧片4.游丝5用去爆收反效率力矩,并起带领电流的效率.可动线圈比牢固线圈小些、沉些,罕睹的线圈形状有圆形、椭圆形及矩形等.由于线圈处事磁场很强,常常惟有磁电式仪容磁场的1%~5%,故易受中磁场效率.为此电动式仪容的丈量机构应置于磁屏蔽罩内,以缩小对于丈量机构的搞扰.电动式仪容的处事本理如图6-2所示.可动线圈置于牢固线圈之内,拆正在转轴上,当牢固线圈通过电流J,战可动线圈通过电流I2时,牢固线圈爆收磁场,可动线圈战该磁场相互效率爆收转能源矩,戴动指针偏偏转指示出被丈量值的大小.反效率力矩也由游丝爆收,阻僧力矩由阻僧片正在气氛阻僧盒内的疏通爆收.电动式仪容电动式仪容有二个线圈:牢固线圈战可动线圈(爆收转化转矩的拆置).爆收阻转矩的拆置为联正在转轴上的螺旋弹簧.可动线圈与指针及气氛阻僧器的活塞皆牢固正在转轴上,其电流利过螺旋弹簧引进.。

磁电式、电磁式、电动式仪表的定义、原理.

磁电式、电磁式、电动式仪表的定义、原理.

磁电式、电磁式、电动式仪表的定义、原理1 什么是磁电式仪表?磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。

2 磁电式仪表是由哪几部分构成的?磁电式仪表是由固定的磁路系统和可动部分组成的。

仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。

两极掌之间是圆柱形铁心3。

圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。

处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。

框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。

指针6安装在前半轴上。

当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。

线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。

反作用力矩可以由游丝、张丝或悬丝产生。

当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。

因此装设了两个游丝,它们的螺旋方向相反。

仪表的阻尼力矩则由铝框产生。

高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。

磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。

内磁式的结构是永久磁铁在可动线圈的内部。

外磁式的结构是永久磁铁在可动线圈的外部。

内外磁式的结构是在可动线圈的内外都有永久磁铁,磁场较强,可使仪表的结构尺寸更为紧凑。

3 磁电式仪表是如何工作的?磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。

磁电式仪表测量机构产生力矩的原理如图4-3所示。

4.什么是电磁式仪表?电磁式仪表是测量交流电流与电压最常见的一种仪表。

它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。

《安培力与磁电式仪表》 知识清单

《安培力与磁电式仪表》 知识清单

《安培力与磁电式仪表》知识清单一、安培力的基本概念安培力是指通电导线在磁场中受到的作用力。

当电流通过导线时,如果导线处于磁场中,就会受到安培力的作用。

安培力的大小与电流大小、导线长度、磁感应强度以及电流与磁场的夹角有关。

其数学表达式为:$F = BIL\sin\theta$,其中$F$表示安培力,$B$表示磁感应强度,$I$表示电流强度,$L$表示导线在磁场中的有效长度,$\theta$表示电流方向与磁场方向的夹角。

当电流方向与磁场方向垂直时($\theta =90°$),安培力最大,$F = BIL$;当电流方向与磁场方向平行时($\theta = 0°$或$180°$),安培力为零。

二、安培力的方向安培力的方向可以用左手定则来判断。

左手定则的内容是:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。

需要注意的是,安培力的方向总是垂直于电流和磁场所决定的平面。

三、安培力的应用1、电动机电动机是利用安培力的原理工作的。

在电动机中,通电线圈在磁场中受到安培力的作用而发生转动。

通过不断改变电流的方向,使线圈能够持续转动。

2、磁悬浮列车磁悬浮列车的运行也离不开安培力。

通过控制磁场和电流,使列车受到向上的安培力,从而实现悬浮。

四、磁电式仪表的原理磁电式仪表是一种测量电流和电压的仪器,其工作原理基于安培力。

在磁电式仪表中,有一个永久磁铁产生恒定的磁场。

当有电流通过可动线圈时,线圈在安培力的作用下发生偏转。

通过与线圈相连的指针,可以指示出电流或电压的大小。

五、磁电式仪表的结构磁电式仪表通常由永久磁铁、可动线圈、指针、游丝和刻度盘等组成。

永久磁铁提供恒定的磁场,可动线圈通过电流时在磁场中受到安培力而偏转。

游丝提供恢复力矩,使指针在测量结束后能够回到零位。

刻度盘则用于显示测量的数值。

电动式仪表原理

电动式仪表原理

电动式仪表原理
电动式仪表是一种使用电磁力来测量电流、电压、功率等物理量的仪表。

其基本原理是利用感应电流产生的磁场与磁场力的作用。

电动式仪表通常由一个固定磁极和一个移动线圈构成。

当通过线圈中的电流变化时,会在线圈周围产生一个磁场,该磁场与固定磁极的磁场相互作用,从而产生一个力矩,使得线圈产生旋转运动。

通过对线圈旋转的测量,可以确定电流、电压等物理量的大小。

电动式仪表有许多种类,其中最常见的是电动式电流表和电动式电压表。

电动式电流表用于测量电路中的电流,通常接在电路中的串联位置上。

电动式电压表用于测量电路中的电压,通常接在电路中的并联位置上。

此外,还有电动式功率表等。

电动式仪表的精度和灵敏度取决于磁场的强弱和线圈的匝数。

为了提高精度和灵敏度,通常会采用多级线圈或多级磁场的结构,或者采用磁屏蔽技术来减少外部磁场的干扰。

总之,电动式仪表具有结构简单、可靠性高、精度高等优点,被广泛应用于电子、电力、通信等领域。

- 1 -。

电工仪表与测量

电工仪表与测量

电工仪表与测量一、电工仪表的种类:1、按工作原理,电工仪表分磁电式、电磁式、电动式、感应式。

2、按精度等级分0.1、0.2、0.5、1.0、1.5、2.5、4.0等七级。

3、按测量方法分直读式仪表(如电流表、万用表、兆欧表等)、比较式仪表(如电桥、接地电阻测量仪)二、电工仪表常见符号:三、工作原理:1、磁电式仪表:(1)构成:固定的永久磁铁、可转动的线圈,+附件(转轴、游丝、指针、机械调零机构)。

(2)原理:当线圈中通过直流电流时,通电线圈在磁场中要受到力的作用,带动指针、转轴转动,当电磁作用力和游丝的反作用力平衡时,指针停在某一确定位置,刻度盘上给出一相应的读数。

机械调零机构用于校正零位误差。

(3)特点:优点:1、磁电式仪表灵敏度高、精确度高。

2、刻度盘分度均匀。

3、功率消耗小。

缺点:1、过载能力小。

2、只能测量直流,要测量交流,必须加整流器才能使用。

2、电磁式仪表:(1)构成:固定的线圈、可转动的软磁铁片,+附件(转轴、游丝、指针、机械调零机构)。

(2)原理:当线圈中通过电流时,线圈产生的磁场使铁芯磁化对铁片产生吸引力,使固定在同一转轴上的指针随之发生偏转。

当转动的作用力与游丝的反作用力达到平衡时,指针停在某一位置不动,指示出被测量的大小。

显然,当流过线圈的电流方向改变而大小不变时,线圈产生的磁场极性及可动软磁片被磁化的极性也同时改变,但它们之间的作用力仍是吸引力,转动力矩的大小和方向不变,保证了指针偏转角不会改变。

所以,可用来组成交、直流两用仪表。

(3)特点:优点:1、可测直流,又可测交流。

2、可直接测量较大电流,过载能力强。

3、结构简单、制造成本低。

缺点:1、刻度不均匀。

2、易受外磁场影响,结构上应有抗干扰设计。

3、电动式仪表:(1)构成:固定的线圈、可转动线圈,+附件(转轴、游丝、指针、机械调零机构)。

(2)原理:当两个线圈中都通以电流时,通电线圈相当一个电磁铁,一个磁场要受到另一个磁场的作用,可转动线圈受力并带动指针随之偏转。

磁电式、电磁式区别

磁电式、电磁式区别

磁电式、电磁式区别
电工测量仪表中的磁电式,电磁式主要有结构、原理、和适用三个方面的区别。

一、结构不同。

磁电式:具有一块永久磁铁一个可动线圈,可动线圈置于永久磁铁的气隙磁场中。

电磁式:没有永久磁铁,有一个固定线圈、一片固定铁片和一片可动铁片。

二、原理不同。

磁电式;可动线圈通过被测电流,在永久磁铁的气隙磁场中受力并产生扭转力矩驱动指针,指针的偏转角与电流成正比。

电磁式;固定线圈通过被测电流,该电流同时磁化固定铁片和可动铁片,两铁片的极性呈互相排斥产生转动力矩驱动指针,指针的偏转角与电流的平方成正比。

三、适用不同。

磁电式;磁电式具有较强的稳定磁场,因此灵敏度高。

适用测量电流小、变化大的电流。

电磁式;电磁式磁场强弱受被测电流的影响,因此灵敏度不高。

适用测量电流大、变化不大的
电流。

气隙:
气隙是电机定转子之间的空隙。

定子不转,转子需要转动,所以气隙是必须的,根据电机不同,气隙大小也不同。

一般来讲,异步电机气隙小,同步电机气隙大。

气隙磁场:
主磁通是经过转子的定子磁力线,能够在旋转的电枢绕组中感应出电动势,并产生电磁转矩;
漏磁通也是定子发出的闭合磁力线,但不经过转子,因此这部分
磁力线不做功,不产生电动势和电磁转矩。

常用电工仪表的使用

常用电工仪表的使用

根据指针稳定时驱动力矩等于反作用力矩,可求得指针偏转角

1 dM 12 I 1I 2 cosΨ D d
作为电流或电压表使用时,如果两线圈通以同一电流,或 被测电流的一部分,且互感变化率为常数,则指针偏转角与 被测电流平方或被测电压平方成正比,或与交流电流或电压 有效值平方成正比。 如作为功率表使用,指针偏转角正比于被测功率。
C UN IN
m
求得功率表的分格常数C后,便可求出被测功率 P=C· α
1
V
150
300 600
I I
2
3
4
5
1——电压接线端子 4——指针零位调整器
2——电流接线端子
3——标度盘
5——转换功率正负的旋钮

功率表前面板示意图

D26型仪表
例:若选用一只功率表,它的电压量程为300V、电 流量程为5A,标度尺满刻度格数为150格,用它 测量某负载消耗的功率时,指针偏转80格。求负 载消耗的功率。 解: 先求功率表的分格常数
对被测电路的影响小。所以磁电系仪表是一种应用广泛具有高灵敏度、高准
确度、低表耗功率的仪表。
2.具有均匀等分的刻度
磁电系仪表的指针偏转角与可动线圈的电流成正比,标尺的刻度均匀等分,
易于标尺的制作。
3,只能用于直流电路
若在交流范围使用,必须配整流器。
磁电系仪表 1)工作原理:永久磁铁的磁场与通有直流电流的可 动线圈相互作用而产生转动力矩,使可动线圈发生偏 转。 2) 磁电系仪表的优点:具有较高的灵敏度和准确度, 刻度均匀便于读数。测量直流电压、电流的直读式仪 表几乎都是这种类型。它即可做成配电盘式表和便携 式表,又可做成0.1级和0.2级的标准表。 3)磁电系仪表的缺点:表头本身只能用来测量直流 量(当采用整流装置后也可用来测量交流量), 过 载能力差,结构较复杂。 4)注意事项:测量直流时注意正负接头,不得接反。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁电式电磁式电动式仪
表的定义原理
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
磁电式、电磁式、电动式仪表的定义、原理
1 什么是磁电式仪表
磁电式仪表广泛地应用于直流电压和电流的测量,如与各种变换器配合,在交流及高频测量中也得到较广泛的应用,因此在电气测量指示仪表中占有极为重要的地位。

2 磁电式仪表是由哪几部分构成的
磁电式仪表是由固定的磁路系统和可动部分组成的。

仪表的磁路系统是在永久磁铁1的两极,固定着极掌2。

两极掌之间是圆柱形铁心3。

圆柱形铁心固定在仪表的支架上,用来减小磁阻,并在极掌和铁心之间的气隙中形成沿圆柱形表面均匀辐射的磁场,其磁感应强度处处相等,方向与圆柱形表面垂直。

处在这个磁场中的可动线圈4是用很细的漆包线绕制在铝框架上的。

框架的两端分别固定着半轴,半轴上的另一端通过轴尖支承于轴承中。

指针6安装在前半轴上。

当可动线圈4通入电流时,在磁场的作用下便产生转动力矩,使指针随着线圈一起转动。

线圈中通过的电流越大,产生的转动力矩也越大,因此指针转动的角度也大。

反作用力矩可以由游丝、张丝或悬丝产生。

当采用游丝时,还同时用它来导人和导出电流,如图4-1(b)所示。

因此装设了两个游丝,它们的螺旋方向相反。

仪表的阻尼力矩则由铝框产生。

高灵敏度仪表为减轻可动部分的重量,通常采用无框架动圈,并在动线圈中加短路线圈,以产生阻尼作用。

磁电式仪表按磁路形式又分为内磁式、外磁式和内外磁式三种,如图4-2所示。

内磁式的结构是永久磁铁在可动线圈的内部。

外磁式的结构是永久磁铁在可动线圈的外部。

内外磁式的结构是在可动线圈的内外都有永久磁铁,磁场较强,可使仪表的结构尺寸更为紧凑。

3 磁电式仪表是如何工作的
磁电式仪表是根据载流导体在磁场中受力的原理,即电动机原理而制成的。

磁电式仪表测量机构产生力矩的原理如图4-3所示。

4.什么是电磁式仪表
电磁式仪表是测量交流电流与电压最常见的一种仪表。

它具有结构简单、过载能力强、造价低廉以及可交直流两用等一系列优点,因此电磁式仪表在电力工程,尤其是固定安装的测量中得到了广泛的应用。

5.电磁式仪表与磁电式仪表有何不同
电磁式仪表与磁电式仪表是两种不同类型的仪表。

它们有很多不同之处,突出的表现在性能、结构和表盘上。

从表盘上就可区分开这两种仪表。

除它们的图形符号不同外,磁电式电流表和电压表的刻度基本上是均匀的,而电磁式仪表的刻度则由密变疏。

从性能上看,磁电式仪表反映的是通过它的电流的平均值,因此它的直接被测量只能是直流电流或电压;而电磁式仪表反映的是通过它的电流的有效值,因此,不加任何转换,电磁式仪表就可用于直流、交流,以至非正弦电流、电压的测量。

但其测量灵敏度和精度都不及磁电式仪表高,而功耗却大于磁电式仪表。

结构和工作原理的不同是两种仪表的根本区别。

虽然它们都分为固定和可动两大部分,但其具体组成内容不同。

磁电式仪表的固定部分是永久磁铁,用来产生均匀、恒定的磁场;可动部分的核心是一线圈,被测电流流经线圈时,
利用通电导线在磁场中受力的原理(即电动机原理),实现可动部分的转动。

电磁式仪表的固定部分是被测电流流经的线圈,有电流通过即可形成较强的磁场;可动部分的核心是一片可被及时磁化的软磁性材料(如铁片,坡莫合金等),利用被磁化酌动铁片与通电线圈(或被磁化的静铁片)磁极之间的作用力,实现可动部分的偏转。

由于电磁式仪表构造简单、成本低廉,在电工测量中获得了广泛的应用,尤其是开关板式交流电流、电压表,基本上都采用这种仪表。

电磁式仪表根据测量机构的结构形式不同,分有扁线圈吸引型和圆线圈排斥型两种。

6. 什么是吸引型电磁式仪表
电磁式仪表的测量机构主要有吸引式和排斥式两种类型,扁线圈吸引型电磁式仪表的结构如图5-1(a)所示。

吸引型电磁式仪表是由固定线圈l和偏心装在转轴上的可动铁片2构成的一个电磁系统。

转轴上还装有指针3、阻尼片4及游丝5。

游丝的作用和在磁电式测量机构中不同,它只产生反作用力矩。

7.什么是电动式仪表
电磁式仪表的测量准确度一般不高,其主要原因是由于电磁式仪表铁磁材料的磁滞和涡流效应等造成的。

用于交流精密测量大多采用电动式仪表,基本上消除了磁滞和涡流的影响。

磁电式仪表的磁场是由永久磁铁建立的,当利用通有电流的固定线圈来代替永久磁铁时,便构成了"电动式仪表"。

固定线圈不仅可以通过直流,而且还可通过交流,因此,电动式仪表的主要优点是能交直流两用,并能达到~级的准确度。

使电动式仪表的准确度得到了提高。

电动式仪表不但能精确地测量电流、电压和功率,而且还可以测量功率因数、相位及频率等。

它可使用的频率范围较宽,可用在45~2500Hz的交流电路中。

所以,电动式仪表用途广泛,在精密指示仪表巾占有重要地位。

现在,电动式仪表正朝着提高灵敏度、扩大量程和频率范围,以及降低功耗、缩小外形、减小质量、降低成本和提高使用寿命的方向发展。

目前,国内外出现了张丝支承、陶瓷支架、陶瓷转轴、小偏转角以及光标指示的电动式仪表,其准确度为1%,功率损耗小于lW,交流使用的额定频率可达15-
5000Hz,扩展频率范围则达10000Hz,这样就更扩大了电动式仪表的应用范围。

显而易见,电动式仪表在各类指示仪表中,保持着明显的优势。

8. 电动式仪表的结构是怎样的是如何工作的
电动式仪表的测量机构主要由建立磁场的固定线圈1和在此磁场中偏转的可动线圈2组成,其结构如图6-1所示。

固定线圈1分为平行排列,互相对称的两部分,中间留有空隙,以便穿过转轴。

这种结构的特点是能获得均匀的工作磁场,并可借助改变两个固定
线圈之间的串、并联关系而得到不同的电流量程。

可动线圈与转轴固接在一起,转轴上装有指针3和空气阻尼器的阻尼片4。

游丝5用来产生反作用力矩,并起引导电流的作用。

可动线圈比固定线圈小些、轻些,常见的线圈形状有圆形、椭圆形及矩形等。

由于线圈工作磁场很弱,通常只有磁电式仪表磁场的1%~5%,故易受外磁场影响。

为此电动式仪表的测量机构应置于磁屏蔽罩内,以减少对测量机构的干扰。

电动式仪表的工作原理如图6-2所示。

可动线圈置于固定线圈之内,装在转轴上,当固定线圈通过电流J,和可动线圈通过电流I2时,固定线圈产生磁场,可动线圈和该磁场相互作用产生转动力矩,带
动指针偏转指示出被测量值的大小。

反作用力矩也由游丝产生,阻尼力矩由阻尼片在空气阻尼盒内的运动产生。

电动式仪表
电动式仪表有两个线圈:固定线圈和可动线圈(产生转动转矩的装置)。

产生阻转矩的装置为联在转轴上的螺旋弹簧。

可动线圈与指针及空气阻尼器的活塞都固定在转轴上,其电流通过螺旋弹簧引入。

相关文档
最新文档