第二章应变电阻传感器解析

合集下载

第2章 电阻应变式传感器

第2章  电阻应变式传感器


( 2 2 )
传感器原理与应用——第二章
电阻相对变化量为:
dR dL d dA R L A
若电阻丝是圆形的, 则A=πr ² 微分 ,对r
( 3 2 )
l
2r
2(r-dr)
F
l+ dl
得dA=2πr dr,则:
dA 2rdr dr 2 2 A r r
图2-1 金属丝的应变效应
• 应变式电阻传感器是目前测量力、力矩、 压力、加速度、重量 等参数应用最广泛的传感器。
传感器原理与应用——第二章
2.1 电阻应变片的基本原理 应变式传感器的核心元件是电阻应变片,它可将试件 上的应力变化转换成电阻变化。 2.1.1 应变效应 当导体或半导体在受到外界力的作用而不能产生位移
时,则会产生机械变形(它的几何形状和尺寸将
指 示 应 变 卸载
Δε
εi
加载 机械应变εR 图2-6 应变片的机械滞后
传感器原理与应用——第二章
产生原因:应变片在承受机械应变后的残余变形,使
敏感栅电阻发生少量不可逆变化;在制造或粘贴应变
片时,敏感栅受到的不适当的变形或粘结剂固化不充
分等。
机械滞后值还与应变片所承受的应变量有关,加载 时的机械应变愈大,卸载时的滞后也愈大。所以,通常 在实验之前应将试件预先加、卸载若干次,以减少因机 械滞后所产生的实验误差。
很宽的范围内均为线性关系。
传感器原理与应用——第二章
即:
R
R
K 或
K
R
R
( 14 2 )
K为金属应变片的灵敏系数。
测量结果表明,应变片的灵敏系数K恒小于线材的
灵敏系数KS。原因主要是胶层传递变形失真及横向效

传感器原理第二章 电阻应变传感器

传感器原理第二章 电阻应变传感器

第二章电阻应变传感器第一节电阻应变片一、金属电阻应变片二、半导体电阻应变片第二节电阻应变传感器测量电路一、单臂桥二、半桥三、全桥四、应变测量电桥性能的提高第三节电阻应变传感器的应用一、应变式力传感器二、应变式压力传感器三、应变式加速度传感器第二章电阻应变传感器电阻应变传感器是一种利用电阻应变片将应变转换为电阻变化的传感器。

任何非电量只要能转化为应变量就可以利用电阻应变传感器测量,因而在非电量电测技术中应用十分广泛。

常用来测量力、压力、位移、应变、扭矩、加速度等。

电阻应变式传感器应用历史悠久,目前仍然是一种主要的测试手段。

其主要特点是:①结构简单,使用方便,性能稳定、可靠;②灵敏度高,频率响应特性好,适合于静态、动态测量;③环境适应性好,应用领域广泛。

第一节电阻应变片电阻应变传感器由弹性元件、电阻应变片和测量电路组成。

弹性元件用来感受被测量的变化;电阻应变片粘贴在弹性元件上,将弹性元件的表面应变转换为应变片电阻值的变化;然后通过测量电路将应变片电阻值的变化转换为便于输出测量的电量,从而实现非电量的测量。

电阻应变片是应变测量的关键元件,为适应各种领域测量的需要,可供选择的电阻应变片的种类很多,但按其敏感栅材料及制作方法可分类如表2-1所示。

弹性敏感元件在外力作用下,物体将产生尺寸和形状的变化,当去掉外力后,物体随即恢复其原来的尺寸和形状,此种变形称为弹性变形。

利用弹性变形进行测量和变换的元件即弹性敏感元件。

弹性敏感元件在传感器技术中有着重要的作用,是设计、分析、应用传感器的基础性工作。

弹性元件材料:铬钢、锰弹簧钢、合金结构钢、不锈钢等敏感元件材料:金属、非金属金属:铜-黄铜、康铜、钛青铜、铍青铜;铁-铁镍合金铂、铂合金镍铬合金非金属:石英、陶瓷、半导体硅等结构:常用的弹性元件结构有梁、柱、筒、膜片、膜盒、弹簧管和波纹管等。

图2-1 丝式电阻应变片基本结构1—基片;2—敏感栅;3—覆盖层;4—引线2.金属丝电阻应变片结构金属丝电阻应变片的基本结构如图2-1所示。

第2章 应变式传感器(电阻式传感器)

第2章   应变式传感器(电阻式传感器)

工艺复杂, 将逐渐被横向效应小、 其他方面性能更优越的箔式应变计所
代替。

(a)
(b)
(c)
图 2.2金属丝式应变计常见形势
第2章 应变式传感器
箔式应变计(实验中用的)的线栅是通过光刻、腐蚀等工艺制成很薄 的金属薄栅(厚度一般在0.003~0.01mm)。与丝式应变计相比有如下优 点:
(1) 工艺上能保证线栅的尺寸正确、 线条均匀, 大批量生产时, 阻值离 散程度小。 (2) 可根据需要制成任意形状的箔式应变计和微型小基长(如基长为 0.1 mm)的应变计。 (3) 敏感栅截面积为矩形, 表面积大, 散热好, 在相同截面情况下能通过 较大电流。 (4) 厚度薄, 因此具有较好的可挠性, 它的扁平状箔栅有利于形变的传 递。 (5) 蠕变小, 疲劳寿命高
式中, 应力 l T E (金属或者半导体的弹性模量) E l 其中, ε=Δl/l为轴向应变。 则有
第2章 应变式传感器
k0
R / R

1 2 E
对金属来说, πE很小, 可忽略不计, μ=0.25~0.5, 故k
因此, 将同样长的金属线材做成敏感栅后, 对同样应 变, 应变计敏感栅的电阻变化较小, 灵敏度有所降低。 这 种现象称为应变计的横向效应。
第2章 应变式传感器
下面计算横向效应引起的误差。
图为 应变片敏感栅半圆弧部分的形状。沿轴向应 变为εX ,沿横向应变为εY 。
X
θ
dl

丝绕式应变片敏感栅半圆弧形部分
第2章 应变式传感器
k0为单根导电丝的灵敏系数, 表示当发生应变时, 其电阻变 化率与其应变的比值。 k0的大小由两个因素引起, 一项是由 于导电丝的几何尺寸的改变所引起, 由(1+2μ)项表示, 另 一项是导电丝受力后, 材料的电阻率ρ发生变化而引起, 由

第2章 电阻应变计式传感器

第2章 电阻应变计式传感器

• 相对误差为:
2 p t l l 1 lf e sin 1 t 6
• 上式表明,当频率增加时,误差增大,因此应使:
l l max
6 e
f max
6 e l
第2章 电阻应变计式传感器 疲劳寿命
d E
式中:π——半导体材料的压阻系数;
(2-5)
σ——半导体材料的所受应变力;
E——半导体材料的弹性模量;
10
2.1电阻应变计的基本原理结构和应用
2.半导体材料的压阻效应 则:
dR (1 2 E ) R
(2-6)
由于π E>>(1+2μ ),因此半导体丝材的灵敏
21
第2章 电阻应变计式传感器
第二节 电阻应变计的主要特性
应变计多为一次性使用,应变计的特性是 按规定的条件,从大批量生产中按比例抽 样实测而得。
静态特性
灵敏系数K R • 一般K<K0
R K x
, x 应变计的轴向应变
第2章 电阻应变计式传感器 横向效应及横向效应系数H • 由于传感器是多线的,线与线之间连接部分不 在测量方向上,引起横向效应 • 计算公式:R R Kx x K y y Kx (1 aH ) x H——双向灵敏系数比 • 标定情况下: R R Kx (1 0 H ) x 可见,横向效应使传感器的灵敏度系数下降, 必须使H减小 • 丝绕式应变计的长度要长、横栅要小。 • 对横向效应分析结果的应用结果之一是箔式应 变计
t
31
2.3电阻应变计的温度效应及其补偿
1、温度自补偿法
(2)双丝自补偿应变计 敏感栅由电阻温度系数 一正一负的两种合金丝串接 而成。当工作温度变化时, 若Ra栅产生正的热输出ε a 与Rb栅产生负的热输出ε b 相等或相近,就可达到 自补偿的目的,即:

第2章 电阻应变式传感器

第2章 电阻应变式传感器
2
F
3.2.2 位移传感器
R4 R3 U0 R1 E R2 R1 R2 F
图2.11 应变片式线位移传感器
U
3.2.4 压力传感器
0
= k U ε = kU
3l 4 Eb h
2
F
3.2.3 加速度传感器
作业: 作业:
1. 什么叫电阻式传感器?什么是电阻应变效应? 什么叫电阻式传感器?什么是电阻应变效应? 2. 电阻应变式传感器的工作原理? 电阻应变式传感器的工作原理? 3. 作出桥式测量电路图,并推导直流电桥平衡条件, 作出桥式测量电路图,并推导直流电桥平衡条件, 以及不对称电桥的输出电压变化. 以及不对称电桥的输出电压变化.
3.2 应用
3.2.1 应变式测力与荷重传感器
kU F U 0 = 2 (1 + ) AE
图2.8 受力圆柱上应变片的粘贴
图2.9 受力薄臂环上应变片的粘贴
U
0
= k U ε = kU
1 .092 R bδ E
2
F
图2.10 受力等强度梁应变片的粘贴
U
0
= k U ε = kU
6l E b0 h
1
Z3 = Z 2Z 4
z1 z3 = z 2 z 4
φ1 + φ3 = φ2 + φ4

(R1 + jX1)(R3 + jX3 ) = (R2 + jX2 )(R4 + jX4 )
2.2 电桥的调平衡
在应变片工作之前必须进行电桥的平衡调节. 在应变片工作之前必须进行电桥的平衡调节.对于直流 电桥可采用串联或并联电位器法, 电桥可采用串联或并联电位器法,对于交流电桥一般采用阻 容调平衡法. 容调平衡法.

第二章、应变式传感器1

第二章、应变式传感器1
原因
(1)应变片的敏感栅具有一定温度系数; (2)应变片材料与测试材料的线膨胀系数不同。
3.4 电阻应变片的测量电路
单臂应变电桥
工作臂 双臂应变电桥 全臂应变电桥


电源
直流电桥:

交流电桥:

电源端对称
桥臂关系 半等臂电桥 输出端对称
全等臂电桥
3.4.1 直流电桥
平衡条件 R1R4=R2R3
n=R2/R1=R4/R3
常用金属薄膜应变片
金属应变片的基本结构
转换元件 F
敏感元件
二、半导体应变片结构 体型、薄膜型和扩散型
1、体型半导体应变片 半导体材料硅或锗晶体按一定方向切割成片状小
条,经腐蚀压焊粘贴在基片上制成。
体型半导体应变片的结构
2、薄膜型半导体应变片
通过薄膜制备技术,在带有绝缘层的试件上沉积 半导体材料薄膜而制成。
对电阻丝材料应有如下要求:
① 灵敏系数大,且在相当大的应变范围内保持常数; ②ρ值大; ③ 电阻温度系数小,以免环境温度变化改变其阻值; ④ 与铜线的焊接性能好,与其它金属的接触电势小; ⑤ 机械强度高, 具有优良的机械加工性能。
表3-1 常用金属电阻丝材料的性能
康铜是目前应用最广泛的应变丝材料,这是由于 它有很多优点:灵敏系数稳定性好,不但在弹性变形 范围内能保持为常数, 进入塑性变形范围内也基本上 能保持为常数;康铜的电阻温度系数较小且稳定,当 采用合适的热处理工艺时,可使电阻温度系数在 ±50×10-6/℃的范围内;康铜的加工性能好,易于焊 接, 因而国内外多以康铜作为应变丝材料。
Κ κ 卡帕 Kappa 介质常数 Λ λ 兰姆达 Lambda 波长(小写);体积 Μ μ 缪 Mu 磁导系数;微 ;放大因数(小写) Ν ν 纽 Nu 磁阻系数 Ξ ξ 克西 Xi Ο ο 奥米克戎 Omicron Π π 派 Pi 圆周率=圆周÷直径=3.1416 Ρ ρ 柔 Rho 电阻系数(小写) Σ σ 西格玛 总和(大写),表面密度;跨导(小写) Τ τ 陶 Tau 时间常数 Υ υ 宇普西隆 Upsilon 位移 Φ φ 斐(佛爱) Phi 磁通; 角 Χ x 西 Chi Ψ ψ 普西 Psi 角速;介质电通量(静电力线);角 Ω ω 欧米伽 Omega 欧姆(大写);角速(小写);

第二章 应变式传感器

第二章  应变式传感器

电位器式电阻传感器
核心器件:线绕电位器、电阻应变片等。 主要应用:力学参数的测量(位移、压力、荷
重、加速度等)。
电位器式电阻传感器
一、线绕式电位器传感器 1.线绕式电位器的结构和工作原理
⑴ 空载特性
U0
Ui
Rx R
Ui
x L
条件: RL
U0
SV x

SV
Ui L
等截面线绕式电位器
4只应变片
一端固定,一端自由,厚度为h, 长度L0 ,自由端力F 的作用点到应 变片的距离为L ,该点的协强:
6FL bh2
应 变 :
E
6FL Ebh2
R1 R4
R2
R3
L
L0
F
h
b
6FL A bh : 截 面 积
EhA
此位置上下两侧分别粘有4只应变片,R1、R4同侧;R3 、R2同侧,
这两侧的应变方向刚好相反,且大小相等,可构成全差动电桥。
F h
L0
二、应变式加速度传感器 ⒈ 基本原理:F = ma 。
扩散应变电桥
壳体
硅梁
对于梁式传感器当集中质量块的质量
为m 时: F m a EhA R
h
6KS L R
b
L
集中质量块
a EhA R
6KS Lm R
实际应用中a 不是恒量(也不能是恒量),所以
x2
需要分析其动态响应 (二阶传感器)。设传感器的
1
E
n
R1
R1 1 n
1
n
R1 R1
1
n
R1
金属应变片ΔR 较小,在要求不高时非线性误差可以忽略,半导体则必须补偿。

传感器原理及应用-第2章

传感器原理及应用-第2章

电桥电路
力、加速度、荷重等
应变
电阻变化
电压、电流
图2-1 电阻应变式传感器典型结构与测量原理
电阻应变片:利用金属丝的电阻应变效应或半导 体的压阻效应制成的一种传感元件。
电阻应变片的分类: 金属应变片和半导体应变片。
一、电阻应变片
(一)工作原理——应变效应
导体或半导体材料在外力的作用下产生机械变形时, 其电阻值相应发生变化的现象称为应变效应。
第二章 应变式传感器
主要内容:
一、电阻应变式传感器 二、压阻式传感器
本章重点:
电阻应变式传感器的构成原理及特性 电桥测量电路的结构形式及特点 压阻式传感器的工作原理
基本要求:
掌握电阻应变式传感器的构成原理及特性, 掌握电桥测量电路的结构形式及和差特性,掌握 压阻式传感器的工作原理及设计特点。
in2x
图2-10 应变片对应变波的动态响应
应变片对正弦应变波的响应是在其栅长 l 范围内所
感受应变量的平均值 m,低于真实应变波 t ,从而
产生误差。
t 瞬时应变片中点的应变(真实应变波) 值为:
t
0
s
in2
xt
t 瞬时应变片的平均应变(实际响应波) 值为:
m
也可写成增量形式
RRKs
l l
Ks
式中,Ks——金属丝的应变灵敏系数。物理意义是单位应变 所引起的电阻相对变化量。
金属丝的灵敏系数取决于两部分:
①金属丝几何尺寸的变化, 0 .3 (1 2 ) 1 .6
②电阻率随应变而引起的变化
Hale Waihona Puke 金属丝几何尺寸 金属本身的特性C
如康铜,C≈1, Ks ≈2.0。其他金属, Ks一般在1.8~4.8范围内。

第二章 电阻式传感器

第二章 电阻式传感器

4 1
3
4
5
2
3
图1薄膜型半导体应变片 1–锗膜 2--绝缘层
3–金属箔基底 4--引线
2
1
图2扩散型半导体应变片 1--N型硅 2--P型硅扩散层 3--二氧化硅绝缘层 4–铝电极 5--引线
型号的编排规则
电阻应变计型号的编排规则如下:类别、基底材料种类、标准电阻---敏感栅 长度、敏感栅结构形式、极限工作温度、自补偿代号(温度和蠕变补偿)及接 线方式。如B F 350 -- 3 AA 80 (23) N6 – X的含义是:
而引起的(称“压阻效应”)。 εx
对金属材料,以前者为主,则KS≈ 1+2μ;对半 导体, KS值主要由电阻率相对变化所决定。实验 表明,在金属丝拉伸比例极限内,电阻相对变化与
轴向应变成正比。其它金属或合金,KS在1.8~4.8
范围内。
dR R
KS
x
(2) 半导体应变片的工作原理
的片状小条,经腐蚀压焊粘贴在基片上而成的应变片,其 结构如图所示。
2)薄膜型半导体应变片 这种应变片是利用真空沉积技术将半导体材料沉积在带有
绝缘层的试件上而制成,其结构示意图见图1。 3)扩散型半导体应变片 将P型杂质扩散到N型硅单晶基底上,形成一层极薄的P型
导电层,再通过超声波和热压焊法接上引出线就形成了扩散型 半导体应变片。图2为扩散型半导体应变片示意图。这是一种 应用很广的半导体应变片。
半导体应变片是利用半导体
材料的压阻效应而制成的一种纯
1
电阻性元件。
2 3
对一块半导体材料的某一轴 12 3
向施加一定的载荷而产生应力时,
它的电阻率会发生变化,这种物 理现象称为半导体的压阻效应。

传感器与检测技术第2章-1_应变式传感器

传感器与检测技术第2章-1_应变式传感器

E 4
R1 R
R2 R
R3 R
R4 R
EK 4
1
2
3
4
当仅桥臂AB单臂工作时,理想输出电压为
Ug E R E K
4R 4
44
电桥分类
B R1=R
A
Ug
R2=R C
R3=R’ R4=R’
E
D
第一对称电桥
2、第一对称电桥
若电桥桥臂两两相等,即R1 =R2=R , R3=R4=R′ , 则 称
16
2.1数 (二)横向效应 (三)动态特性
17
应变片的电阻值 R
• 应变片在未经安装也不受外力情况下, 于室温下测得的电阻值
• 电阻系列:60、120、200、350、500、1000 Ω
电阻值大
可以加大应变片承受电压, 输出信号大, 敏感栅尺寸也增大
18
25
设环境引起的构件温度变化为Δt(℃)时,
粘贴在试件表面的应变片敏感栅材料的电阻温度系
数为αt ,则应变片产生的电阻相对变化为
R R
1
t t
26
由于敏感栅材料和被测构件材料两者线膨胀系数不同,当
Δt 存在时,引起应变片的附加应变,其值为
2t g s t
βg—试件材料线膨胀系数;βs—敏感栅材料线膨胀系数。
金属箔式应变片
13
金属薄膜应变片
• 采用真空蒸发或真空沉积等方法在薄的绝缘基片上 形成厚度在0.1μm以下的金属电阻材料薄膜敏感栅, 再加上保护层,易实现工业化批量生产
• 优点:应变灵敏系数大,允许电流密度大,工作范 围广,易实现工业化生产
• 问题:难控制电阻与温度和时间的变化关系
15

第二章电阻式传感器

第二章电阻式传感器

R1 R4 =R2 R3 或
R1 /R2 =R3 /R4
(2-22)
2.电压灵敏度
若R1由应变片替代,当电桥开路时,不平衡电桥
输出的电压为:
R3 R1 R4 R2 R3 RR4 R1 R1 U0 E( ) E R1 R1 R2 R3 R4 ( R1 R1 R2 )( R3 R4 ) R`1 R4 R1 R3 R1 R4 E E R1 R2 R4 ( R1 R1 R2 )( R3 R4 ) (1 )(1 ) R1 R1 R3
1 Uo 2 n ei Uo 1 100% 100% 2n
3.非线性线绕电位器结构
(1) 用曲线骨架绕制的非线性变阻器; (2) 三角函数变阻器;
D L

Uo
D L sin 2 UO L 1 1 Ui D 2 2
x
dx
b
Ui
Ui U O sin 2
碳膜电位器:是目前使用最多的一种电位器。其电 阻体是用碳黑、石墨、石英粉、有机粘合剂等配制的混合
物,涂在马蹄形胶木板或玻璃纤维板上制成的。
优点:分辨率高、阻值范围宽;缺点:滑动噪声大、耐 热耐湿性不好。
金属膜电位器:其电阻体是用金属合金膜、 金属氧化膜、金属复合膜、氧化钽膜材料通过真空 技术沉积在陶瓷基体上制成的,如铂铜、铂锗、铂铑 金等。 优点:温度系数小、分辨率高、滑动噪声较合 成碳膜电位器小;缺点:阻值范围小、耐磨性不好
出电压阶梯的最大值与最大输出电压之比的百分数。 具有理想阶梯特性线绕电位
Uo 1 Re n 100% 100% Uo n
计,其理想的电压分辨率为
电位器的电刷行程来说,又 有行程分辨率,其表达式为

第二章电阻应变式传感器

第二章电阻应变式传感器
R
线性,灵敏度*4
9 05:14
2018/10/6
恒流源电桥补偿法: 全等臂电桥,恒流源,单臂工作:
' U 0 I
R3R1 RR1 I R1 R2 R3 R4 R1 4 R R1 U 0 I
非线性
近似线性:
R3R1 IR R1 R1 R2 R3 R4 4 R
7
相对桥臂相加 相邻桥臂相减
U R1 05:14 4 R 1
2018/10/6
单臂工作:R1-应变片,R2-补偿片,R3、R4固定电阻
U 0
(2) 交流电桥: 原理:相同 ; 输入输出:直流 平衡条件: Z1Z3 Z2 Z4
Z ze j
交流, 电阻
阻抗
z1z3 z2 z4
平衡 输出 C1R4 C2 R3
H K y / Kx
横向效应系数
2018/10/6 5 05:14
机械滞后: 粘接 --- 过热/过载 残余变形 蠕变和零漂: 粘接 内应力
不重合
预载/重复加载
滑移
固化,增大弹性膜量
应变极限:非线性误差达到10%的应变值,过载能力
(2) 动态特性: 力传导:机械应变
基底
胶层
敏感栅
滞后
正弦响应:幅值降低
非线性误差:
' U0 U0 IRR1 /(4 R) IRR1 /(4 R R1 ) R1 / R1 eL ' U0 IRR1 /(4 R R1 ) 4 R1 / R1
(4) 电桥的温度效应及其补偿: 温度效应:标准状态(t=20C,p=760mmHg,f=10mmHg),(理想) 实际温度:偏差 --- 特性改变 --- 输出改变

应变片及应用-第2章

应变片及应用-第2章

EXIT
《传感器原理及应用》
§2.3 电阻应变片的主要特性
二、电阻应变片的灵敏系数
应变片敏感材料—金属或半导体 的电阻相对变化与应变之间具有线性 关系,用灵敏度系数KS表示:
KS

dR R
/x

(1 2)
d
/x
但材料做成应变片后的电阻—应 变特性与敏感材料本身的不同。
实验表明,应变片的电阻相对变
金属箔式应变片
EXIT
《传感器原理及应用》
§2.2 电阻应变片的种类
一、金属应变片 3、金属薄膜应变片
金属薄膜应变片是采 用真空蒸镀或溅射式阴极扩 散等方法,在薄的基底材料 上制成一层金属电阻材料薄 膜以形成应变片。
特点: 这种应变片有较高的 灵敏度系数,允许电流密度 大,工作温度范围较广。
常用金属薄膜应变片
EXIT
《传感器原理及应用》
§2.2 电阻应变片的种类
金属应变片的基本结构
EXIT
《传感器原理及应用》
§2.2 电阻应变片的种类
二、半导体应变片
半导体应变片的类型:体型、薄膜型和扩散型等。
1、体型半导体应变片
半导体材料硅或锗晶体按一定方向切割成片状小条,经腐蚀压 焊粘贴在基片上制成。
体型半导体应变片的结构
dR R

KS x
,K S

dR R
/ x
金属的电阻相对变化与应
变成正比关系。
l
2r 2(r-dr)
F
l+ dl
金属丝的应变效应
根据应力σ和应变ε的关系: 应力σ=εE,σ∝ε, 应变ε∝dR,σ∝dR。
通过弹性元件,可将应力转 换为应变,这是应变式传感器测 量应力的基本原理。

2-2应变片电阻传感器2

2-2应变片电阻传感器2

2.3.3 机械滞后、零漂和蠕变 机械滞后、
应变片安装在试件上以后,在一定温度下, 应变片安装在试件上以后,在一定温度下,应变片的指 示应变 ε i 与试件机械应变 ε R 应该是一个确定关系,但试验 应该是一个确定关系, 表明,在加载和卸载过程中,对同一机械应变量, 表明,在加载和卸载过程中,对同一机械应变量,两过程的 特性曲线并不重合, 特性曲线并不重合,卸载时的指示应变高于加载时的指示应 如下图: 变,如下图:
K=
dρ / ρ
ε
K衡小于 ,原因是胶层传递变形失真及横向效应。 衡小于ks,原因是胶层传递变形失真及横向效应。 衡小于
2.3.2 横向效应 在半圆弧收到纵向应变, 与直线段电阻变化不同,最 为显著的是 处 π θ =。
2
L
除纵向的拉应变外,根据泊松关 − ε x 到 − µε x,因此造成电阻减小。
第 2章 应变式电阻传感器
电阻应变传感器是将被测试件上的应变 电阻应变传感器是将被测试件上的应变 变化转换成电阻变化的装置。 变化转换成电阻变化的装置。 由两部分组成:电阻应变片(核心元件)和测量 电路。
电阻应变片传感器具有精度高、结构简单、 电阻应变片传感器具有精度高、结构简单、性能 稳定可靠、测量范围广等优点,主要用于检测力、 稳定可靠、测量范围广等优点,主要用于检测力、扭 位移、加速度等参数, 矩、位移、加速度等参数,在日常生活以及工业中随 处可见。 处可见。 例如:汽车油箱油标,工业裂纹探测应变计, 例如:汽车油箱油标,工业裂纹探测应变计,电子称 。
引出线 覆盖层 电阻丝
0.02~0.04mm
b
基片
l
工作基长:l =25~150mm;工作基宽: b=3~30mm S = b× l 为应变片的使用面积。阻值为 100 或120 。

第2章 应变传感器

第2章 应变传感器

RL
U0
-
R3
D
R4
输出电压为:
电压灵敏度为:
U0= E
R1
U0= E
应变式传感器的应用
一 应变式力传感器
柱(筒)式力传感器
作为各种电子秤与材料试验机的测力元件、发动机的推 力测试、水坝坝体承载状况监测
应变片粘贴要求: 应变片粘贴在弹性体外壁应力分布均匀的中间部分, 对称粘贴多片。 应变片接线要求: 采用电桥连接方式,横向粘贴的应变片起温度补偿的作用。
E——试件材料的弹性模量。
由此可知, 应力值σ正比于应变ε, 而试件应变ε正比于电阻
值的变化, 所以应力σ正比于电阻值的变化, 这就是利用应变片 测量应变的基本原理。

应变片特性
金属电阻应变片 电阻应变片的种类 半导体电阻应变片 金属应变片组成 敏感栅、 基片、 覆盖层和引线等部分 敏感栅是应变片的核心部分, 它粘贴在绝缘的基片上, 其
测量流动介质的动态和静态 压力,如动力管道设备的进 出口气体或液体的压力、 发动机内部的压力、枪管及 炮管内部的压力、内燃机管 道的压力
R1R4切向粘贴, R2R3在边缘处径向 粘贴构成全桥电路

应变式容器内液体重量传感器
微压传感器
电阻应变片
传压杆
感压膜 h
可以测量容器内储存 的溶液重量及液位。
当容器中溶液增多时,感压膜感受的压力就增大,将其 上两个传感器Rt的电桥接成正向串接的双电桥电路。 输出电压为:
4力敏荷重传感器
5支点;6减速电机;7环行皮带;8料仓。
通过放大器将测得的毫伏信号放大,再送入调 节器,与物料流量给定值进行比较后,通过控制装 置去自动调节给料机的给料量。当实测流量低时, 调节器使给料机增加给料量,直至实际流量与给定 流量相等,调节器就保持不变,反之亦然。依次循 环,达到了物料连续计量与自动调节给料量的目的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调节RP,最终可以
使R1/R2=R4/R3( R1、 R2是R1、R2并联RP后的
等效电阻),电桥趋于
平衡,Uo被预调到零位,
这一过程称为调零。图
中的R5是用于减小调节
范围的限流电阻。
单臂电桥
全桥四臂工 作方式的灵敏 度最高,双臂 半桥次之,单 臂半桥灵敏度 最低。
双臂电桥
R1、 R2为应变 片, R3、R4为固定 电阻 。应变片R1 、 R2 感受到的应变
箔式应变片中的箔栅是金属箔通过光刻、腐蚀等工艺制 成的。箔的材料多为电阻率高、热稳定性好的铜镍合金。箔 式应变片与片基的接触面积大得多,散热条件较好,在长时 间测量时的蠕变较小,一致性较好,适合于大批量生产。还 可以对金属箔式应变片进行适当的热处理,使其线胀系数、 电阻温度系数以及被粘贴的试件的线胀系数三者相互抵消, 从而将温度影响减小到最小的程度,目前广泛用于各种应变 式传感器中。
四、应变效应的应用
小结
一、应变片的工作原理
金属丝受拉时,l变长、r变小,导致R变大 。
R
l A
l
r2
一、应变片的工作原理
设有一长度为l、截面积为A、半径为r、电阻率
为的金属单丝,它的电阻值R可表示为
R
l A
l
r2
当沿金属丝的长度方向作用均匀拉力(或压力)
时,上式中、r、l都将发生变化,从而导致电阻值
R发生变化。例如金属丝受拉时,l将变长、r变小,
均导致R变大;又如,某些半导体受拉时,将变大
,导致R变大。 实验证明,电阻丝及应变片的电阻相对变化量R
KR线—与性电材的阻料,应力即变学片中的的灵轴敏向度应变x的RR关系K在很x 大范围2-内1是
微应变(με)
对于不同的金属材料,K 略微不同,一般为2左
全桥的温度补偿原理
当环境温度升高 时,桥臂上的应变片 温度同时升高,温度 引起的电阻值漂移数 值一致,可以相互抵 消,所以全桥的温漂 较小;半桥也同样能 克服温漂。
四、应变效应的应用
应变效应的应用十分广泛。它可以测量应 变应力、弯矩、扭矩、加速度、位移等物理量。 电阻应变片的应用可分为两大类:第一类是将 应变片粘贴于某些弹性体上,并将其接到测量 转换电路,这样就构成测量各种物理量的专用 应变式传感器。应变式传感器中,敏感元件一 般为各种弹性体,传感元件就是应变片,测量 转换电路一般为桥路;第二类是将应变片贴于 被测试件上,然后将其接到应变仪上就可直接 从应变仪上读取被测试件的应变量。
右。而对半导体材料而言,由于其感受到应变时,
电阻率 会产生很大的变化,所以灵敏度比金属材料
大几十倍。
在材料力学中,x =l/l称为电阻丝的轴向应变,也 称纵向应变,是量纲为1的数。 x通常很小,常用10-6 表示之。例如,当 x为0.000001时,在工程中常表示为
110-6或m/m。在应变测量中,也常将之称为微应变 (με)。
对金属材料而言,当它受力之后所产生的轴向应 变最好不要大于110-3,即1000m/m,否则有可能超 过材料的极限强度而导致断裂。
应变片用于测量力F的计算公式
可表示由为材料力学可R 知 K,Fx=F
/(AE),所以R
2-2
/R又
R AE
如果应变片的灵敏度K 和试件的横截面积A以及
弹性模量E均为已知,则只要设法测出R /R的数值
金属丝式应变片的 内部结构
半导体应变片 外形
应变片主要性能指标举例
上表中,哪几个型号是半导体应变片? 依据是什么?
金属应变三片的、电测阻量变转化换范电围路很—小,—如不果平直 接用欧姆表测衡量其电电桥阻值的变化将十分困难,
且误差很大。
例如,有一金属箔式应变片,标称阻值R0为100,
灵敏度K=2,粘贴在横截面积为9.8mm2的钢质圆柱体上, 钢的弹性模量E=21011N/m2,所受拉力F=0.2t,受拉 后应变片的阻值R 的变化量ΔR仅为0.2 (式2-2),
所以必须使用不平衡Δ电R桥 来R *测K量*F这/(一AE微)小的变化量。 下面分析该桥式测量转换电路是如何将R /R转换为 输出电压Uo的。
三、测量转换电路——不平衡电桥
Uo
Ui 4
( R1 R1
R2 R2
R3 R3
R4 R4
)
误2差-3小 于5%
电桥平衡的条件 : R1/R2=R4/R3
电桥平衡的条件 :R1/R2=R4/R3
1~2以及产生的电
阻增量正负号相间,
可以使输出电压Uo 成倍地增大。
四臂全桥
全桥的四个桥臂都为应变片, 如果设法使试件受力后,应变 片R1 ~ R4产生的电阻增量(或
感受到的应变1~4)正负号相
间,就可以使输出电压Uo成倍 地增大。上述三种工作方式中, 全桥四臂工作方式的灵敏度最 高,双臂半桥次之,单臂半桥 灵敏度最低。采用全桥(或双 臂半桥)还能实现温度自补偿。
,即可获知试件受力F的大小,例如可用于电子秤
的称重。
二、应变片的种类与结构
应变片可分为金属应变片及半导体应变片两大类。前者 可分成金属丝式、箔式、薄膜式三种。目前箔式应变片应用 较多。金属丝式应变片使用最早,有纸基、胶基之分。由于 金属丝式应变片蠕变较大,金属丝易脱胶,有逐渐被箔式所 取代的趋势。但其价格便宜,多用于应变、应力的大批量、 一次性试验。
箔式应变片的外形
半导体应变片是用半导体材料作敏感栅而 制成的。当它受力时,电阻率随应力的变 化而变化。它的主要优点是灵敏度高(灵 敏度比丝式、箔式大几十倍),主要缺点是 灵敏度的一致性差、温漂大、电阻与应变 间非线性严重。在使用时,需采用温度补 偿及非线性补偿措施。
半导体应变片及金属 丝式应变片的结构
导体或半导体材料在外界力的作用 下,会产生机械变形,其电阻值也将随 着发生变化,这种现象称为应变效应。
电阻应变式传感器主要由电阻应变 片及测量转换电路等组成。
用途 电子秤
远距离 显示
磅秤
一、应变片的工作原理 二、应变片的种类与结构 三、测量转换电路——不平衡电桥
第二章 电阻传感器
本章学习电阻式传感器的原 理及应用,包括:电位器、电阻 应变片、测温热电阻、气敏电阻 及湿敏电阻等。
第二章 电阻传感器
第一节 电阻应变式传感器(重点) 第二节 测温热电阻传感器(了解) 第三节 气敏电阻传感器(了解) 第四节 湿敏电阻传感器(了解)
小结与习题
第一节 电阻应变式传感器
相关文档
最新文档