精选版华师七年级上期数学期末考试卷及答案

合集下载

华东师大版七年级数学上册期末测试卷及答案【精编】

华东师大版七年级数学上册期末测试卷及答案【精编】

华东师大版七年级数学上册期末测试卷及答案【精编】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.下列图形具有稳定性的是( )A .B .C .D .5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c++=( ) A .1或-3B .-1或-3C .±1或±3D .无法判断 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)252x y x y -=⎧⎨--=⎩ (2)3()2()7x y x y x y x y -=+⎧⎨-++=⎩2.解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.3.如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE.4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、A5、B6、D7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、83、70.4、50°5、16、54°三、解答题(本大题共6小题,共72分)1、(1)=13xy⎧⎨=-⎩;(2)=21xy⎧⎨=-⎩2、-1≤x<23、略4、(1)60°;(2)50°;(3)18021nα︒--或18021nα︒-+5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。

华师版数学七年级上册 第一学期期末测试卷(word版含答案)

华师版数学七年级上册 第一学期期末测试卷(word版含答案)

第一学期期末测试卷一、选择题(每题3分,共30分) 1.能使式子|-2 018+x |=|-2 018|+|x |成立的x 的值是( )A .任意一个正数B .任意一个负数C .任意一个非正数D .任意一个数2.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,这个数用科学记数法表示为( )A .2.8×104B .28×107C .0.28×109D .2.8×108 3.下列各组单项式中,是同类项的是( )A .2a 与a 2B .5a 2b 与-12ba 2C .-3xy 2与13x 2y D .0.3mn 2与-0.3xy 2 4.下列说法正确的是( )A.-2xy3的系数是-2 B .角的两边画得越长角的度数越大 C .直线AB 和直线BA 是同一条直线 D .多项式x 3+x 2的次数是5 5.用5个完全相同的小正方体搭成如图所示的立体图形,它的左视图为( )6.已知线段AB =10 cm ,P A +PB =20 cm ,下列说法正确的是( )A .点P 不能在直线AB 上 B .点P 只能在直线AB 上C .点P 只能在线段AB 的延长线上D .点P 不能在线段AB 上 7.用一副三角尺不可能拼出的角的度数是( )A .15°B .40°C .135°D .150°8.甲、乙、丙、丁四名学生在判断钟表的分针和时针互相垂直的时刻时,每人说了两个时刻,说法都对的是( )A .甲说“3时整和3时30分”B .乙说“6时15分和6时45分”C .丙说“9时整和12时15分”D .丁说“3时整和9时整”9.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°(第9题)(第10题)10.如图,已知OA⊥OC,OB⊥OD,给出下列结论,其中正确的有()①图中相等的角共有2对;②图中互余的角共有2对;③图中互补的角共有2对;④图中共有4个角.A.1个B.2个C.3个D.4个二、填空题(每题3分,共15分)11.小莉在办板报时,需要画一条直的隔线,由于尺子不够长,于是她和一名同学找来一根线绳,给线绳涂上彩色粉笔末,两人拉紧线绳各按住一头,把绳子从中间拉起再松手便完成了,请写出她们这样做根据的数学事实是________________.12.如图,点C是线段AB上一点,点D是线段BC的中点,AC=3 cm,BC=4 cm,则AD=________cm.(第12题)(第13题)13.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°42′,则∠AOC =________.14.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为________°. 15.已知∠AOB=30°,∠BOC=24°,∠AOD=15°,则锐角∠COD的度数为________.三、解答题(16题8分,22题10分,23题12分,其余每题9分,共75分) 16.计算:(1)-27×(-5)+16÷(-8)-|-4×5|;(2)-16+42-(-1)×⎝ ⎛⎭⎪⎫13-12÷16-54.17.(1)化简:(3x 2-x +2)-2(x 2+x -1);(2)先化简,再求值:4a 2b -(-4a 2b +5ab 2)-2(a 2b -3ab 2),其中a =-2,b =12.18.如图所示是一个正方体的表面展开图,请回答下列问题: (1)与面B ,C 相对的面分别是________;(2)若A =a 3+15a 2b +3,B =-12a 2b +a 3,C =a 3-1,D =-15(a 2b +15),且相对两个面所表示的代数式的和都相等,求E ,F 分别代表的代数式.19.如图,点B、C把线段MN分成三部分,MB∶BC∶CN=2∶3∶4,P是MN 的中点,且MN=18 cm,求PC的长.20.如图,已知直线AB,CD相交于O,OE⊥AB,OF平分∠COB,∠AOC=32°,求∠EOF的度数.21.如图,AD∥BE,∠1=∠2,∠A=105°,求∠E的度数.22.(1)如图,已知∠AOB=80°,∠BOC=40°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)若(1)中∠AOB=α(α<90°),其他条件不变,求∠MON的度数;(3)若(1)中∠BOC=β(β<90°),其他条件不变,求∠MON的度数;(4)从(1)(2)(3)的结果中能看出什么规律?23.将一副三角尺按如图方式叠放在一起,两直角顶点重合,其中∠A=60°,∠D=30°,∠E=∠B=45°.(1)①若∠DCE=45°,则∠ACB的度数为________;②若∠ACB=140°,求∠DCE的度数.(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE度数所有可能的值(不必说明理由);若不存在,请说明理由.答案一、1.C点拨:当x为正数时,|-2 018+x|<|-2 018|+|x|;当x为负数时,|-2 018+x|=|-2 018|+|x|,当x为0时,|-2 018+x|=|-2 018|+|x|.2.D3.B4.C5.C6.D7.B8.D9.A点拨:如图,∵AP∥BC,∴∠2=∠1=50°.∴∠3=∠4-∠2=80°-50°=30°,即此时的航行方向为北偏东30°.10.C点拨:图中相等的角有∠AOC=∠BOD,∠DOC=∠AOB,共2对,故①正确;图中互余的角有∠DOC和∠BOC,∠AOB和∠BOC,共2对,故②正确;图中互补的角有∠AOC和∠BOD,∠AOD和∠BOC,共2对,故③正确;图中的角有∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠AOB,共6个,故④错误.二、11.两点确定一条直线12.513.41°48′14.70点拨:设这个角的度数是x,则它的补角为180°-x,余角为90°-x.由题意,得(180°-x)-2(90°-x)=70°,解得x=70°.15.69°、39°、21°、9°点拨:如图①,∠COD=∠AOB+∠BOC+∠AOD=69°;如图②,∠COD=∠AOB-∠AOD+∠BOC=39°;如图③,∠COD=∠AOB-∠BOC+∠AOD=21°;如图④,∠COD=∠AOD-(∠AOB-∠BOC)=9°.三、16.解:(1)-27×(-5)+16÷(-8)-|-4×5|=135+(-2)-20 =113.(2) -16+42-(-1)×⎝ ⎛⎭⎪⎫13-12÷16-54=-16+16-1×16×6-54=-1-54=-94.17.解:(1)原式=3x 2-x +2-2x 2-2x +2=x 2-3x +4.(2)原式=4a 2b +4a 2b -5ab 2-2a 2b +6ab 2=6a 2b +ab 2, 当a =-2,b =12时,原式=6×4×12-2×14=232. 18.解:(1)F ,E(2)由题意得,A +D =B +F =C +E ,代入可得a 3+15a 2b +3+⎣⎢⎡⎦⎥⎤-15(a 2b +15)=-12a 2b +a 3+F ,a 3+15a 2b +3+⎣⎢⎡⎦⎥⎤-15(a 2b +15)=a 3-1+E , 则F =12a 2b ,E =1.19.解:设MB =2x cm ,则BC =3x cm ,CN =4x cm ,因为P 是MN 的中点,所以MP =12MN =9 cm , 即12×(2x +3x +4x )=9. 解得x =2,∴PC =MC -MP =2x +3x -92x =12x =1 cm.20.解:∵OF平分∠COB,∠COB=180°-∠AOC=180°-32°=148°,∠EOB+∠BOF=90°+74°=164°.21.解:因为AD∥BE,所以∠A=∠EBC.因∠E=∠EBC,所以∠E=∠A=105°.22.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴∠BOF=12∠COB=74°.∵OE⊥AB,∴∠EOB=90°.∴∠EOF=为∠1=∠2,所以DE∥AC,所以∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB.∵∠AOB=80°,∴∠MON=12×80°=40°.(2)同(1)可得∠MON=12∠AOB,∵∠AOB=α,∴∠MON=1 2α.(3)同(1)可得∠MON=12∠AOB,∵∠AOB=80°,∴∠MON=12×80°=40°.(4)从(1)(2)(3)的结果中能看出:∠MON等于∠AOB的一半,而与∠BOC的大小无关.23.解:(1)①135°②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°-90°=50°.∴∠DCE=90°-50°=40°.(2)∠ACB+∠DCE=180°.理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°.(3)存在.当∠ACE=30°时,AD∥BC;当∠ACE=∠E=45°时,AC∥BE;当∠ACE=120°时,AD∥CE;当∠ACE=135°时,BE∥CD;当∠ACE=165°时,BE∥AD.。

华师大版七年级上册数学期末考试试卷及答案

华师大版七年级上册数学期末考试试卷及答案

华师大版七年级上册数学期末考试试题一、单选题1.2022-的绝对值的倒数是()A .2022-B .2022C .12022D .12022-2.数据4430万,用科学记数法表示这一数据是()A .4.43×107B .0.443×108C .44.3×106D .4.43×1083.若代数式743x a b +与代数式42y a b -是同类项,则y x 的值是()A .9B .-9C .4D .-44.如图是由8个相同的小正方体搭成的一个几何体,则从左面看到的图形是()A .B .C .D .5.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是()A .ab >0B .a+b >0C .|a|﹣|b|<0D .|a|﹣|b|>06.小明同学制作了一个正方体模型,其表面标有“全国文明城市”六个字,它的表面展开图如图所示,原正方体“文”字所在面的对面的字是()A .全B .国C .城D .市7.已知线段AB ,C 是直线AB 上的一点,8AB =,4BC =,点M 是线段AC 的中点,则线段AM 的长为()A .2B .4C .2或6D .4或68.按如图所示的程序计算,若开始输入的值为x =3,则最后输出的结果是()A .156B .231C .6D .219.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°10.如图,将一副三角尺的直角顶点重合放置于点A 处,下列结论:①∠BAE >∠DAC ;②∠BAD =∠EAC ;③AD ⊥BC ;④∠BAE+∠DAC=180°;⑤∠E+∠D =∠B+∠C .其中结论正确的个数是()A .2个B .3个C .4个D .5个11.如图是小强用火柴棒搭的1条,2条,3条“金鱼”,…则搭n 条“金鱼”需要火柴棒的根数是()A .71n +B .62n +C .53n +D .44n +12.如图,直线AB//CD ,直线AB ,EG 交于点F ,直线CD ,PM 交于点N ,∠FGH =90°,∠CNP =30°,∠EFA =α,∠GHM =β,∠HMN =γ,则下列结论正确的是()A .β=α+γB .α+β+γ=120°C .α+β﹣γ=60°D .β+γ﹣α=60°二、填空题13.单项式234a bπ-的系数是_____,次数是__________.14.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.15.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为_____.16.已知a 为不等于1的有理数,我们把11a-称为的差倒数;例如:2的差倒数是111121==---,-1的差倒数是()11111112==--+.已知13a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推……则2a =________,2021a =________17.已知|a|=3,|b|=6,a>b ,则a−b=___________.18.如图,在数轴上点B 表示的数是5,那么点A 表示的数是__________.19.计算:()()42-⨯-=______.20.若单项式1313m a b +与32n a b -的和仍是单项式,则3m n +的值为___________.三、解答题21.计算:(1)()()221522212346⎛⎫----⨯- ⎪⎝⎭(2)()()220221110.5333⎡⎤---⨯⨯--⎣⎦22.已知A =2x 3-3x 2+9,B =5x 3-9x 2-7x -1.(1)求B -3A ;(2)当x =-5时,求B -3A 的值.23.如图,已知点C 在线段AB 上,点M ,N 分别在线段AC 与线段BC 上,且12AM MC =,2BN NC =.(1)若9AC =,6BC =,求线段MN 的长;(2)若3MC CN =,6MN =,求线段AB 的长.24.如图,已知∠ABC=180°-∠A ,BD ⊥CD 于D ,EF ⊥CD 于F .(1)求证:AD ∥BC ;(2)若∠1=36°,求∠2的度数.25.已知代数式A =﹣6x 2y +4xy 2﹣5,B =﹣3x 2y +2xy 2﹣3(1)求A ﹣B 的值,其中|x ﹣1|+(y +2)2=0(2)请问A ﹣2B 的值与x ,y 的取值是否有关系,试说明理由.26.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道220=-,它在数轴上的意义是表示数2的点与原点(即表示0的点)之间的距离,52-也可理解为5与2两数在数轴上所对应的两点之间的距离;52+可以看做5(2)--,表示5与﹣2两数在数轴上所对应的两点之间的距离.(1)数轴上表示3和-1的两点之间的距离的式子是.(2)①若43x -=,则x =.②若使x 所表示的点到表示4和-1的点的距离之和为5,所有符合条件的整数为.(3)进一步探究:16x x ++-的最小值为.(4)能力提升:当149x x x ++-+-的值最小时,x 的值为.27.已知直线AB ∥CD ,P 为平面内一点,连接PA 、PD .(1)如图1,已知∠A =50°,∠D =150°,求∠APD 的度数;(2)如图2,判断∠PAB 、∠CDP 、∠APD 之间的数量关系为.(3)如图3,在(2)的条件下,AP ⊥PD ,DN 平分∠PDC ,若∠PAN+12∠PAB =∠APD ,求∠AND 的度数.参考答案1.C【分析】先写出2022-的绝对值,再写出其绝对值的倒数即可.【详解】2022-的绝对值等于2022,2022的倒数是1 2022,∴2022-的绝对值的倒数是1 2022,故选:C.【点睛】本题考查了绝对值的性质及倒数的定义,即乘积为1的两个数互为倒数,熟练掌握知识点是解题的关键.2.A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4430万=4.43×107,故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程x+7=4,2y =4,求出x,y的值,再代入代数式计算即可.【详解】解:∵代数式3ax+7b4与代数式﹣a4b2y是同类项,∴x+7=4,2y=4,∴x=﹣3,y=2;∴xy=(﹣3)2=9.故选:A.【点睛】本题考查了同类项的定义.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.4.A【分析】从左面观察几何体即可.【详解】解:从左面观察几何体,可得左视图为L形,由4个小正方形组成,故选:A.【点睛】本题考查了从不同方向看几何体,解题的关键在于明确从左面观察几何体.5.D【分析】由数轴得到a,b的符号,根据有理数的加减可依次判断各个选项.【详解】解:由数轴可知a<0<b,且|a|>|b|,∴ab<0,故A不符合题意;a+b<0,故B不符合题意;|a|﹣|b|>0,故C不符合题意,D符合题意;故选:D.【点睛】本题主要考查数轴的概念和有理数的加减运算,关键是要牢记有理数加减法的法则.6.D【分析】根据正方形的展开图特点作答即可.【详解】由正方形的展开图特点可得:“文”字所在面的对面的字是“市”,故选:D.【点睛】本题考查了正方形的展开图,牢记相对的面之间隔着一个面是解题的关键.7.C【分析】分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.【详解】解:①当点C在线段AB上时,由线段的和差,得AC=AB−BC=8−4=4(cm),由线段中点的性质,得AM=12AC=12×4=2(cm);②当点C在线段BC的延长线上,由线段的和差,得AC=AB+BC=8+4=12(cm),由线段中点的性质,得AM=12AC=12×12=6(cm);故选:C.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的定义,掌握分类讨论的思想方法是解题的关键.8.B【分析】根据程序可知,输入x 计算()12x x x +=,若小于100则将所得x 值代入计算,至到所得x 值大于100即可输出.【详解】解:当x=3时,()162x x x +==,∵6<100,∴当x=6时,()12x x x +==21<100,∴当x=21时,()12x x x +==231,则最后输出的结果为231,故选:B .【点睛】此题考查了程序计算,有理数混合运算,正确理解程序图计算是解题的关键.9.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.10.C【分析】利用直角三角板的知识和角的和差关系计算.【详解】解:因为是直角三角板,所以∠BAC=∠DAE=90°,∠B=∠C=45°,∠D=30°,∠E=60°,∴∠E+∠D=∠B+∠C=90°,故选项⑤正确;∵∠BAE=90°+∠EAC ,∠DAC=90°-∠EAC ,∴∠BAE>∠DAC ,故选项①正确;∵∠BAD=90°-∠DAC ,∠EAC =90°-∠DAC ,∴∠BAD=∠EAC ,故选项②正确;∵∠BAE=90°+∠EAC ,∠DAC=90°-∠EAC ,∴∠BAE+∠DAC=180°,故选项④正确;没有理由说明AD ⊥BC ,故选项③不正确;综上,正确的个数有4个,故选:C .【点睛】本题考查了三角板中角度计算,三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题.11.B【分析】观察给出的3个例图,注意火柴棒根数的变化是第二个的火柴棒比第一个的多6根,第三个的火柴棒比第二个的多6根,据此推理即可求解.【详解】解:由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20;…;第n个金鱼需用火柴棒的根数为:2+n×6=2+6n故选:B.【点睛】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.12.C【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.【详解】解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EFA=∠KFG=α,∠KGF=180°-∠FGH=90°,∠SMH=180°-∠HMN=180°-γ,∴∠SKH=∠KFG+∠KGF=α+90°,∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°-α-90°-180°+γ-30°,∴α+β-γ=60°,故选:C.【点睛】本题考查了平行线的性质、三角形的外角与内角的关系及多边形的内角和定理等知识点.利用平行线、延长线把分散的角集中在四边形中是解决本题的关键.13.34π-3【分析】单项式的系数是指数字因数,次数是指各字母的指数之和,据此回答即可.【详解】解:单项式234a bπ-的系数是34π-,次数是2+1=3.故答案为:34π-;3.【点睛】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.14.16【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【详解】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=16°,∵DF∥BC,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.15. 2.5-或4.5【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:|x+2|+|x-4|=7,当x<-2时,化简得:-x-2-x+4=7,解得:x=-2.5;当-2≤x<4时,化简得:x+2-x+4=7,无解;当x≥4时,化简得:x+2+x-4=7,解得:x=4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.16.1414【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2021除以3,根据余数的情况确定出与2021a 相同的数即可得解.【详解】∵13a =-,∴()211111134a a ===---,3211411314a a ===--,431113411133a a ====----,…∴数列以3-、14、43三个数以此不断循环,∵202136732 ÷=,∴2021214a a ==,故答案为:14;14.【点睛】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.17.3或9##9或3【分析】先根据|a|=3,|b|=6,且a >b 判断出a 、b 的值,然后把a 、b 的值相加即可,要注意分类讨论.【详解】解:∵|a|=3,|b|=6,且a >b ,∴a=±3,b=-6,当a=-3,b=-6时,a-b=-3-(-6)=3;当a=3,b=-6时,a-b=3-(-6)=9.故答案为:3或9.【点睛】本题考查了有理数的减法,绝对值的知识,解题时正确判断出a 、b 的值是关键,此题难度不大,只要记住分类讨论就不会漏解.18.2【分析】根据图像判断出数轴正方向,数线段即可.【详解】解:由图可知,A 与B 距离为3,且A 越往左数值越小,∴点A 表示的数是5-3=2.故答案为:2.【点睛】本题考查的是数轴,数轴的三要素为原点,单位长度,正方向,根据三要素作答即可.19.8【分析】根据有理数的乘法计算法则求解即可.【详解】解:()()428-⨯-=,故答案为:8.【点睛】本题主要考查了有理数的乘法计算,熟知相关计算法则是解题的关键.20.9【分析】由题意得到两单项式为同类项,利用同类项定义确定出m 与n 的值,代入代数式求解.【详解】解: 单项式1313m a b +与32n a b -的和仍是单项式,∴单项式1313m a b +与32n a b -为同类项,即2m =,3n =,代入方程33239m n +=⨯+=故答案为:9.【点睛】本题考查了单项式的定义、同类项、代数式求值,解题的关键是掌握单项式的概念.21.(1)-49(2)0【分析】(1)根据乘方及乘法分配律去括号,再按从左到右计算即可;(2)先算乘方,再算括号,再算乘法,最后算加减.(1)原式29174121212346=+⨯+⨯+⨯,482734=+--,49=-;(2)原式()111623=--⨯⨯-,11=-+,0=.【点睛】本题考查了有理数的混合运算,涉及乘方,乘法分配律,熟练掌握运算法则及运算步骤是解题的关键.22.(1)-x 3-7x -28(2)132【分析】(1)将A 、B 所代表的整式代入,然后去括号,合并同类项即可;(2)将x 的值代入(1)求得的最简整式,计算即可.【详解】(1)B -3A=5x 3-9x 2-7x -1-3(2x 3-3x 2+9)=5x 3-9x 2-7x -1-6x 3+9x 2-27=-x 3-7x -28.(2)当x=-5时,原式=-(-5)3-7×(-5)-28=132.【点睛】本题考查了整式的加减及化简求值的知识,解答本题的关键是掌握去括号及合并同类项的法则,另外在代入运算时要细心,难度一般.23.(1)8;(2)454【分析】(1)将AM=12MC ,BN=2NC .转化为MC=23AC ,NC=13BC ,然后根据MN=MC+NC 进行计算即可;(2)先根据3MC CN =,6MN =求出MC 和CN 的值,再根据12AM MC =,2BN NC =求出AM 和BN 的值,进而可求出线段AB 的长.【详解】解:(1)∵AM=12MC ,BN=2NC ,AC=9,BC=6,∴MC=23AC=6,NC=13BC=2,∴MN=MC+NC=6+2=8,答:MN 的长为8;(2)∵3MC CN =,6MN =,∴MC=34MN=92,CN=14MN=32,∴AM=12MC=94,BN=2NC=3,∴AB=AM+MC+CN+NB=94+92+32+3=454,答:AB 的长为454.【点睛】本题考查两点之间距离的计算方法,理解各条线段之间的和、差、倍、分的关系是正确计算的前提.24.(1)见解析;(2)236∠=︒【分析】(1)求出180ABC A ∠+∠=︒,根据平行线的判定推出即可;(2)根据平行线的性质求出3∠,根据垂直推出//BD EF ,根据平行线的性质即可求出2∠.【详解】(1)证明:180ABC A ∠=︒-∠ ,180ABC A ∴∠+∠=︒,//AD BC ∴;(2)解://AD BC ,136∠=︒,3136∴∠=∠=︒,BD CD ⊥ ,EF CD ⊥,∴∠BDC=∠EFC=90°,//BD EF ∴,2336∴∠=∠=︒【点睛】本题考查了平行线的性质和判定的应用,解题的关键是掌握①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.(1)12;(2)无关,见解析.【分析】(1)先计算A ﹣B 的值,再将x 和y 的值代入可得结果;(2)先计算A ﹣2B 的值,再将x 和y 的值代入可得结果;(1)解:A﹣B=(﹣6x2y+4xy2﹣5)﹣(﹣3x2y+2xy2﹣3)=﹣6x2y+4xy2﹣5+3x2y﹣2xy2+3=﹣3x2y+2xy2﹣2.∵|x﹣1|+(y+2)2=0,|x﹣1|≥0,(y+2)2≥0,∴x﹣1=0,y+2=0,解得:x=1,y=﹣2.∴A﹣B=﹣3×12×(﹣2)+2×1×(﹣2)2﹣2=﹣3×1×(﹣2)+2×1×4﹣2=6+8﹣2=12;(2)解:A﹣2B的值与x,y的取值无关.理由:∵A﹣2B=(﹣6x2y+4xy2﹣5)﹣2(﹣3x2y+2xy2﹣3)=﹣6x2y+4xy2﹣5+6x2y﹣4xy2+6=1,∴A﹣2B的值与x,y的取值无关.26.(1)|1﹣(﹣3)|(2)①7或1;②-1,0,1,2,3,4;(3)7;(4)4【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|列式即可;(2)①根据数轴上两点的距离可知x到4的距离为3,据此可求解;②表示4和-1的点的距离为5,可知x所表示的点在表示4和-1的点之间,求出所有整数即可;(3)当x所表示的点在表示-1和6的点之间时,值最小求解即可;(4)类似(3)求解即可.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离的式子是|1﹣(﹣3)|;故答案为:|1﹣(﹣3)|.x-=,(2)①∵43∴x到4的距离为3,当x在4左侧时,表示的数为4-3=1;当x在4右侧时,表示的数为4+3=7;故答案为:7或1;②∵表示4和-1的点的距离为5,∴使x 所表示的点到表示4和-1的点的距离之和为5的点在表示4和-1的点之间,x 所表示的数为:-1,0,1,2,3,4;故答案为:-1,0,1,2,3,4;(3)16x x ++-表示的是:数轴上点x 到﹣1和6两点的距离和,如图所示,当x 所表示的点在表示-1的点左侧时,它们的和大于7;当x 所表示的点在表示6的点右侧时,它们的和大于7;当x 所表示的点在表示6和-1的点之间时,它们的和最小,最小值为7;故答案为:7(4)149x x x ++-+-表示的是:数轴上点x 到﹣1和4和9三点的距离和,由(3)可知当x 所表示的点在表示9和-1的点之间时,它们的和最小,最小值为10;要使4x -最小,x 所表示的点与表示4的点重合时最小,故x 的值为4;故答案为:4;【点睛】本题考查数轴、绝对值、两点的距离,解答本题的关键是明确绝对值的定义,利用绝对值的知识和分类讨论的数学思想解答.27.(1)∠APD=80°;(2)∠PAB+∠CDP-∠APD=180°;(3)∠AND=45°.【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补以及内错角相等,即可求解;(2)作PQ ∥AB ,易得AB ∥PQ ∥CD ,根据平行线的性质,即可证得∠PAB+∠CDP-∠APD=180°;(3)先证明∠NOD=12∠PAB,∠ODN=12∠PDC,利用(2)的结论即可求解.【详解】解:(1)∵∠A=50°,∠D=150°,过点P作PQ∥AB,∴∠A=∠APQ=50°,∵AB∥CD,∴PQ∥CD,∴∠D+∠DPQ=180°,则∠DPQ=180°-150°=30°,∴∠APD=∠APQ+∠DPQ=50°+30°=80°;(2)∠PAB+∠CDP-∠APD=180°,如图,作PQ∥AB,∴∠PAB=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠CDP+∠DPQ=180°,即∠DPQ=180°-∠CDP,∵∠APD=∠APQ-∠DPQ,∴∠APD=∠PAB-(180°-∠CDP)=∠PAB+∠CDP-180°;∴∠PAB+∠CDP-∠APD=180°;(3)设PD交AN于O,如图,∵AP⊥PD,∴∠APO=90°,由题知∠PAN+12∠PAB=∠APD,即∠PAN+12∠PAB=90°,又∵∠POA+∠PAN=180°-∠APO=90°,∴∠POA=12∠PAB,∵∠POA=∠NOD,∴∠NOD=12∠PAB,∵DN平分∠PDC,∴∠ODN=12∠PDC,∴∠AND=180°-∠NOD-∠ODN=180°-12(∠PAB+∠PDC),由(2)得∠PAB+∠CDP-∠APD=180°,∴∠PAB+∠PDC=180°+∠APD,∴∠AND=180°-12(∠PAB+∠PDC)=180°-12(180°+∠APD)=180°-12 (180°+90°)=45°,即∠AND=45°.。

(word完整版)华师版七年级数学上期末考试题(附答案)

(word完整版)华师版七年级数学上期末考试题(附答案)

21.A.2.七年级数学期末考试题(100分钟完成,满分100分)、选择题(每题2分,共22分)下列各式不成立的是()|-2|= 2 B . |+ 2|= |- 2| C . - |+ 2|=± |- 2| 11-的相反数与绝对值313 D •—I—3|=+ ( - 3)B.- 312为的数的差为(31D .—或一333.A.C.下列说法中不正确的是a 一定是负数任何正数都大于它们的相反数B. 0既不是正数,也不是负数D.绝对值小于3的所有整数的和为04. 若n为正整数,则(1)n ( 1)n 1的值为B.5. 已知I x| 2,且x y,则x y的值为(A.6.B.5我国西部地区约占我国领土面积的,示,则我国西部地区的面积为(B . 640 X 104km2)C . 5条A . 6.4 X 107km27. 如图,共有线段(A . 3条B . 4条8. 一条船停留在海面上,()A.南偏西60°9.C .我国领土面积约为)C . 64 X 105km2从船上看灯塔位于北偏东960万D.1或—1km2 ,若用科学记数法表=.*4A B C D那么从灯塔看船位于灯塔的30°,D . 6.4X 106km2A.10.B .西偏南50°C.南偏西30°如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且则点D所表示的数是(10 B . 9 C . 6下列图形中不能转成正方体的是A B鼻半—6D .北偏东30°AB = BC = CD = DE ,C UE1411. 下列调查适合做全面调查的是A .世界上还幸存着多少只老虎C. 一户人家每天丢弃多少个塑料袋()A .B .C .D .二、填空题(每题2分,共22分)112. 的倒数的相反数是______)B .研究中学生上网是否对学习有影响的问题D .检查一批精度要求非常高的零件尺寸,绝对值是21. 小明抛掷一个普通的正方体骰子 的频数是 _________ ,他掷得奇数的频率是22.在计算器上按照下面的程序进行操作:中的x 与y 分别是输入的6个数及相应的计算结果: 上面 操作程序中所 按的第三 个键和第四个 键应是 和 三、计算(每题4分,共12分) 222323.3( 4)(3)(2)1 224. [1 (1 0.5 -)] [2 ( 3)2]31 2 1 3 325. . ( 2) [( 2)2 (2)3] | ;| ( 5)13. 找规律填数:- 1, 2,- 14.近似数3. 0 x 104精确到 15. 2 代数式a a 3的值为16. 若(a 1)y |a 2| 1是关于 17. 2 多项式3xy 1 2 : 1 x y 4, 8, y 的一次二项式,则 a3 X 3按x 的降幕排列为 ,有效数字是 2 7,则代数式2a 2a 3的值为 O 18. 如图,0C 平分/ BOD , OE 平分/ AOD ,则与/ COD 互余的角是 _____________ 19. 如图,/ 1 = 7 2,贝U //,理由是 20..如图,右边的两个图形分别是左边的物体从两种不同的方向 请你在这两种图形的下面填写它们各是什么方向看到的。

华师大版七年级上册数学期末考试试卷含答案

华师大版七年级上册数学期末考试试卷含答案

华师大版七年级上册数学期末考试试题一、单选题1.-2022的相反数是( )A .-2022B .12022C .2022D .12022- 2.若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°3.下列说法中正确的是( )A .单项式25xy -的系数是5-,次数是2 B .单项式m 的系数是1,次数是0 C .12ab -是二次单项式 D .单项式45xy -的系数是45-,次数是2 4.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( )A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-5.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a+b <0B .a ﹣b >0C .ab <0D .b a>0 6.如图,由几个相同的小正方体搭成一个几何体,从上面观察该图形,得到的平面图形是A .B .C .D .7.一只跳蚤在数轴上从原点开始,第1次向右跳2个单位长度,第2次向左跳4个单位长度,第3次向右跳6个单位长度,第4次向左跳8个单位长度,…依此规律跳下去,当它第2020次落下时,落点表示的数是( )A .2019B .2020C .2020-D .10108.如图是一个正方体的平面展开图,标注了字母m 的是正方体的前面,如果正方体的左面与右面标注的式子相等,前面与后面标注的数字互为相反数,则m 的值为( )A .3B .﹣3C .2D .﹣29.已知当1x =时,代数式334ax bx ++值为8,那么当1x =-时,代数式334ax bx ++值为( ) A .0 B .5- C .1- D .310.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D . 11.如图是一款手推车的平面示意图,其中AB∥CD ,126∠=︒,274∠=︒,那么3∠的度数为( )A .100°B .132°C .142°D .154°12.把四张形状大小完全相同的小长方形卡片(如图∥)不重叠地放在一个底面为长方形(长为m ,宽为n)的盒子底部(如图∥),盒子底面未被卡片覆盖的部分用阴影表示,则图∥中两块阴影部分的周长和是( )A .4mB .4nC .2(m +n)D .4(m -n) 二、填空题13.如果单项式﹣12xa ﹣2y 2b +1与单项式7x 2a ﹣7y 4b ﹣3是同类项,则ab = .14. 10.8万用科学记数法可表示为_____.15.已知两个角分别为35︒和145,︒且这两个有一条公共边,则这两个角的平分线所成的角为_________________________.16.定义一种对正整数n 的“F”运算:∥当n 为奇数时,结果为35n +;∥当n 为偶数时,结果为2k n ;(其中k 是使2kn 为奇数的正整数),并且运算可以重复进行,例如,取26n =,则:若49n =,则第2021次“F”运算的结果是___________.17.如图是一个数值运算的程序,若输出y 的值为1,则输入的值为____.18.如果一个数的平方是14,那么这个数是______. 19.在数轴上从左到右有A ,B ,C 三点,其中1AB =,2BC =,如图所示.设点A ,B ,C 所对应数的和是x .(1)若以点A 为原点,则C 表示的数是______;(2)若以BC 的中点为原点,则x 的值是______.20.已知关于x ,y 的多项式x 2ym +1+xy 2﹣2x 3﹣5是六次四项式,单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,则m ﹣n =_____.三、解答题21.计算 (1)5357722124812247⎛⎫⎛⎫+-+÷-- ⎪ ⎪⎝⎭⎝⎭ (2)2022211(10.5)2(3)2⎡⎤---⨯⨯--⎣⎦ 22.先化简,再求值:2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2);其中x 、y 满足(x -1)2+|y+2|=0.23.如图,CE 平分ACD ∠,F 为CA 延长线上一点,//FG CE 交AB 于点G ,140ACD ∠=︒,45B ∠=︒,求AGF ∠的度数.24.如图,P 是线段AB 上一点,AB =12cm ,M ,N 两点分别从点P ,B 出发以1cm/s 、3cm/s 的速度同时向左运动,运动时间为ts .(1)当t =1,且PN =3AM 时,求AP 的长.(2)当点M 在线段AP 上,点N 在线段BP 上运动的任一时刻,总有PN =3AM ,AP 的长度是否变化?若不变,请求出AP 的长;若变化,请说明理由.(3)在(2)的条件下,Q 是直线AB 上一点,且AQ =PQ+BQ ,求PQ 的长.25.分别指出下列图中的同位角、内错角、同旁内角.26. 一个高为8cm ,容积为50mL 的圆柱形容器里装满了水,现把高16cm 的圆柱垂直放入,使圆柱的底面与容器的底面接触,这时一部分水从容器中溢出,当把圆柱从容器中拿出后,容器中水的高度为6厘米.求圆柱的体积.参考答案1.C【分析】根据相反数的定义:只有符号不同的两个数互为相反数,特别地,0的相反数是0,求解即可.【详解】解:-2022的相反数是2022,故选:C .【点睛】本题考查相反数,熟练掌握相反数的定义是解题的关键.2.B【分析】根据补角、余角的定义即可求解.【详解】∥α∠的补角是150°∥α∠=180°-150°=30°∥α∠的余角是90°-30°=60°故选B .【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角3.D【分析】直接根据单项式的系数与次数的定义、多项式以及多项式的次数的定义解决此题.【详解】A .单项式25xy -的系数是15-,次数是3,故A 不符合题意; B .单项式m 的系数是1,次数是1,故B 不符合题意;C .12ab -是二次多项式,故C 不符合题意; D .单项式45xy -的系数是45-,次数是2,故D 符合题意; 故选:D .【点睛】本题主要考查单项式的系数与次数、多项式,熟练掌握单项式的系数与次数的定义,多项式的定义是解题的关键.4.D【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【详解】解:()22537351x x x x +---+22+--+-=537351x x x x2288=+-x x所以的计算过程是:()22288351+---+x x x x22=+---+x x x x2883512139=-+-x x故选:.D【点睛】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.5.D【分析】根据数轴的特点即可依次判断.【详解】由数轴可得a+b<0,正确;a>b,故a﹣b>0,正确;a>0>b,故ab<0,正确;b<0,故错误;a故选D.【点睛】此题主要考查数轴的应用,解题的关键是熟知有理数的运算.6.D【分析】观察图形可知,从上面看到的图形是两行:后面一行3个正方形,前面一行2个正方形靠左边,据此即可解答问题.【详解】解:根据题干分析可得,从上面看到的图形是.故选:D.【点睛】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.7.C【分析】根据数轴上的点的移动规律“左减右加”计算即可得出答案.【详解】解:设向左跳为负,向右跳为正,由题意得,[][](2)(4)(6)(8)4034(4036)4038(4040)++-+++-+++-++-(24)(68)(1012)(40344036)(40384040)=-+-+-++-+- 2020=-,故选:C .【点睛】本题考查了数轴上的点的变化规律,解题关键注意计算时的正负数的表示方法.8.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“m”与“x”是相对面,“﹣2”与“3”是相对面,“4”与“2x”是相对面,解∥正方体的左面与右面标注的式子相等,∥4=2x ,解得x =2;∥标注了m 字母的是正方体的前面,左面与右面标注的式子相等,前面与后面标注的数字互为相反数,∥m =﹣2.故选:D .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.A【分析】把x =1分别代入两个等式得到两个关于a 、b 的等式,然后把x =−1代入代数式,再把两个a 、b 、的等式整理代入进行计算即可得解.【详解】解:∥当1x =时,代数式334ax bx ++值为8,∥a+3b+4=8,即:a+3b=4,∥当1x =-时,334ax bx ++=()()()3131********a b a b a b ⋅-+⋅-+=--+=-++=-+=,故选A.【点睛】本题考查了代数式求值,根据系数的特点表示出所求代数式是解题的关键.10.D【分析】根据同位角的定义和图形逐个判断即可.【详解】A、不是同位角,故本选项错误;B、不是同位角,故本选项错误;C、不是同位角,故本选项错误;D、是同位角,故本选项正确;故选:D.【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.11.B【分析】先根据平行线性质求出∥A,再根据邻补角的定义求出∥4,最后根据三角形外角性质得出∥3=∥4+∥A.【详解】解:如图:∥AB∥CD,∥1=26°,∥∥A=∥1=26°,∥∥2=74°,∥2+∥4=180°,∥∥4=180°-∥2=180°-74°=106°,∥∥3=∥4+∥A=106°+26°=132°.故选:B.【点睛】本题考查了平行线性质和三角形外角性质的应用,解题的关键是求出∥A的度数和得出∥3=∥4+∥A.12.B【分析】本题需先设小长方形卡片的长为a ,宽为b ,再结合图形得出上面的阴影周长和下面的阴影周长,再把它们加起来即可求出答案.【详解】解:设小长方形卡片的长为a ,宽为b ,∥L 上面的阴影=2(n -a+m -a ),L 下面的阴影=2(m -2b+n -2b ),∥L 总的阴影=L 上面的阴影+L 下面的阴影=2(n -a+m -a )+2(m -2b+n -2b)=4m+4n -4(a+2b ),又∥a+2b=m ,∥4m+4n -4(a+2b)=4n ,故选:B .【点睛】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.13.25【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,求出a ,b ,再代入b a 中即可得出答案. 【详解】单项式22112a b x y -+-与单项式27437a b x y --是同类项, 2272143a a b b -=-⎧∴⎨+=-⎩, 解得:52a b =⎧⎨=⎩, 2525b a ∴==.故答案为:25.【点睛】本题考查同类项的定义以及有理数的乘方运算;同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,掌握同类项的定义是解题的关键.14.51.0810⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:10.8万=51.0810⨯,故答案为:51.0810⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.15.90或55.【分析】根据题意易得这两个角有两种位置关系:一种是叠合,一种是不叠合,然后直接求解即可.【详解】设35BOC ∠=︒,145,AOC ∠=︒OD 平分∥AOC ,OE 平分∥BOC .当这两个角叠合时,如图所示:∴()()11145355522DOE AOC BOC ∠=∠-∠=⨯︒-︒=︒; 当这两个角不叠合时,如图所示:∴()()11145359022DOE AOC BOC ∠=∠+∠=⨯︒+︒=︒. 故答案为90或55.【点睛】本题主要考查角的角度计算,关键是根据题意进行分类讨论,然后利用角的和差关系求解即可.16.98【分析】根据题意,可以写出前几次的运算结果,从而可以发现数字的变化特点,然后即可写出第2021次“F 运算”的结果.【详解】解:本题提供的“F 运算”,需要对正整数n 分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F∥运算,即3×49+5=152(偶数),需再进行F∥运算,即152÷23=19(奇数),再进行F∥运算,得到3×19+5=62(偶数),再进行F∥运算,即62÷21=31(奇数),再进行F∥运算,得到3×31+5=98(偶数),再进行F∥运算,即98÷21=49,再进行F∥运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2021÷6=336…5,则第2021次“F运算”的结果是98.故答案为:98.【点睛】本题考查了整式的运算能力,既渗透了转化思想、分类思想,又蕴涵了次数、结果规律探索问题,检测学生阅读理解、抄写、应用能力.17.3±【分析】设输入的数为x,根据程序列出关于x的方程,求出x即可.【详解】设输入的数为x,根据程序列方程得(1)x-÷2=112x-=3x=3x=±故答案为3±【点睛】本题考查了整式的程序计算,正确理解程序是解题的关键.18.1 2±【分析】根据有理数的乘方运算即可求出答案.【详解】解:21124⎛⎫±=⎪⎝⎭,∴这个数是12±,故答案为:12±. 【点睛】本题考查有理数的乘方,解题的关键是熟练运用有理数的乘方运算,本题属于基础题型.19. 3 -2【分析】根据数轴上两点之间的距离进行解答即可.【详解】解:(1)∥点A 为原点,1AB =,2BC =,∥3AB BC +=,∥点C 表示的数为3,(2)∥以BC 的中点为原点,2BC =,∥点B 表示的数为-1,点C 表示的数为1,又1AB =,∥点A 表示的数为-2,∥x=-2+(-1)+1=-2.故答案为:3,-2.【点睛】本题考查数轴上两点之间的距离,理解数轴上两点之间的距离等于两点差的绝对值是解题关键.20.1【分析】根据多项式x 2ym +1+xy 2﹣2x 3﹣5是六次四项式,可得216m ++=,根据单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,可得256n m +-=,两式联立即可得到m 、n 的值,代入计算即可求解.【详解】∥多项式212325m x y xy x 是六次四项式,∥216m ++=,解得3m =,∥单项式3x 2ny 5﹣m 的次数与这个多项式的次数相同,∥256n m +-=,即2536n ,解得2n =,∥1m n -=,故答案为1.【点睛】此题考查了单项式与多项式的定义和性质.解题的关键是掌握单项式和多项式的相关定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.21.(1)-7 (2)34- 【解析】(1) 解:5357722124812247⎛⎫⎛⎫+-+÷-- ⎪ ⎪⎝⎭⎝⎭ 5357242212481277⎛⎫⎛⎫=+-+⨯-- ⎪ ⎪⎝⎭⎝⎭ 5243245247242212747871277⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+-⨯-+⨯-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1018152227777=--+-- 7=-.(2) 解:2022211(10.5)2(3)2⎡⎤---⨯⨯--⎣⎦ ()1112922=--⨯⨯- ()1174=--⨯- 714=-+ 34=-. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 22.2266xy x y -,-36【分析】根据去括号法则,合并同类项法则,对整式的加减化简,然后根据非负数的意义求得x 、y 的值,再代入求值即可.【详解】解:原式=2222224610xy xy x y xy x y -++-2266xy x y =-由题意得:x 1,y 2==-∥2266xy x y -=6×1×(-2)-6×21×(-2)2=-36.【点睛】考点:整式加减运算,非负数23.25°【分析】根据角平分线的定义求出∥ACE ,再根据两直线平行,内错角相等可得∥AFG=∥ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∥GAF ,根据三角形的内角和定理即可得到结论.【详解】解:∥CE 平分ACD ∠,140ACD ∠=︒ ∥111407022ACE ACD ∠=∠=⨯︒=︒,18040ACB ACD ∠=︒-∠=︒, ∥//FG CE ,∥70AFG ACE ∠=∠=︒,∥85FAG B ACB ∠=∠+∠=︒,∥18025AGF AFG FAG ∠=︒-∠-∠=︒,故AGF ∠的度数是25°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.24.(1)AP 的长为3cm ;(2)AP 的长度不变,AP=3cm ,(3)PQ 的长为6cm 或12cm .【分析】(1)P 是线段AB 上一点,AB =12cm ,设AP=xcm ,BN=3tcm ,PN=(12-3t -x)cm ,AM=AP -MP=(x -t)cm ,当t =1,PN =3AM ,列方程12-3-x=3(x -1),解方程即可;(2)根据PN =3AM ,列方程12-3t -x=3(x -t),解方程得出x=3,AP 的长度不变;(3)根据点Q 的位置可分三种情况,当点Q 在BA 延长线上,QA <QP <QB ,此种情况AQ =PQ+BQ 不成立;当点Q 在AB 上,根据AQ=PQ+QB , 列方程2(3+PQ )=PQ+12,当点Q 在AB 延长线上,根据AQ =PQ+BQ ,列方程12+BQ=PQ+BQ ,解方程即可.【详解】解:(1)P 是线段AB 上一点,AB =12cm ,设AP=xcm ,BN=3tcm ,PN=(12-3t -x)cm ,AM=AP -MP=(x -t)cm ,当t =1,PN =3AM ,即12-3-x=3(x -1),解得x=3,∥AP 的长为3cm ;(2)∥PN =3AM ,∥12-3t -x=3(x -t)解得x=3cm ,AP的长度不变,AP=3cm,(3)根据点Q的位置可分三种情况,当点Q在BA延长线上,QA<QP<QB,此种情况AQ=PQ+BQ不成立;当点Q在AB上,∥AQ=PQ+QB,AQ=AP+PQ=3+PQ,BQ=12-AQ,∥AQ=PQ+12-AQ,∥2AQ=PQ+12,∥2(3+PQ)=PQ+12,解得PQ=6cm;当点Q在AB延长线上,AQ=PQ+BQ,AQ=12+BQ,∥12+BQ=PQ+BQ,∥PQ=12cm,∥PQ的长为6cm或12cm.【点睛】本题考查了一元一次方程的应用,两点间的距离,列代数式,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.25.图1中同位角有:∥1与∥5,∥2与∥6,∥3与∥7,∥4与∥8;内错角有:∥3与∥6,∥4与∥5;同旁内角有:∥3与∥5,∥4与∥6.;图2中同位角有:∥1与∥3,∥2与∥4;同旁内角有:∥3与∥2.【分析】根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.【详解】解:如图1,同位角有:∥1与∥5,∥2与∥6,∥3与∥7,∥4与∥8;内错角有:∥3与∥6,∥4与∥5;同旁内角有:∥3与∥5,∥4与∥6.如图2,同位角有:∥1与∥3,∥2与∥4;同旁内角有:∥3与∥2.【点睛】本题考查了同位角、内错角,同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.26.325m【分析】根据题意得出:因为浸入的圆柱体是垂直放入的,所以浸入的圆柱体的高度是8厘米,所以浸入部分的体积等于下降的水的体积,下降的水的体积等于高为8-6=2厘米的圆柱容器的体积;先用圆柱形容器的容积除以8求出圆柱形容器的底面积,再利用圆柱的体积公式计算出浸入的圆柱体的体积,因为浸入的8厘米是16厘米的一半,所以体积就是浸入的部分的体积的2倍,再乘2即可解答.【详解】解:()()()50886168÷⨯-⨯÷6.2522=⨯⨯()325cm =,答:圆柱的体积是325m .【点睛】解决本题的关键是明确浸入水中的圆柱体的体积等于下降的水的体积,而下降的水的高度是2厘米,不是6厘米.。

华师大七年级上期末数学试卷含答案.doc

华师大七年级上期末数学试卷含答案.doc

2017-2018学年山西省七年级(上)期末数学试卷一、仔细选择(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1. (3分)今的绝对值是()A. 2B.・ 2C.寺D・一|2. (3分)下面不是同类项的是()A. - 2 与 5B. - 2a2b 与a2bC. - x2y2与6x2y2D・ 2m 与2n3. (3分)拒绝〃餐桌浪费〃,刻不容」缓•节约一粒米的帐:一个人一H三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年・"3240 万〃这个数据用科学记数法表示为()A. 0.324X108B. 32.4X106C. 3.24X107D. 324X1084. (3分)单项式-mb?的系数及次数分别是()A. 0, 3」B.・ 1, 3C. 1,3D. - 1, 25. (3分)木工师傅在锯木板时,往往先在木板两端用墨盒弹一根墨线然后再锯,这样做的数学道理是()A. 两点确定--条直线B. 两点之间线段最短C. 在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D. 经过已知直线外一点,有且只有一条直线与已知直线平行6. (3分)下面计算正确的是()A. 6a - J5a=lB. a+2a2=3a2C. - (a - b) = - a+bD. 2 (a+b) =2a+b 7. (3分)如图,已知AB〃CD、AE平分ZCAB,且交CD于点D. ZC=10°,则ZEAB 为()C.& (3分)如图,方格中的任一行、任一列及对角线上的数的和相等,则m 等于9. (3分)如图,直线a/7b, 一块含60。

角的直角三角板ABC (ZA=60°)按如图所示放置・若Zl=55°,则Z2的度数为(O \ /二、合理填空(本大题共5个小题,每小题3分,共15分)11. (3分)如果2 (x+3)的值与3(l-x )的值互为相反数,那么x 等于 ・12. (3分)定义贝I 」(2探3)※:L 二 _____________ ・13. (3分)如图,点0是直线AD 上一点,射线OC 、OE 分别是ZAOB, ZBODA. 110°B. 55°C. 40°D. 35°B. 10C. 13D.无法确定B. 110°C. 115°D. 120-°10. (3分)如图是某一立方体的侧面展开图,则该立方体是(A. 9A. 105°的平分线,若ZAOC=28°,则ZCOD= , ZBOE=14. (3分)如果代数式x- 2y 的值是3,则9・2x+4y 的值是 __________ ・15. (3分)下列图形都是由同样大小的五角星按一定的规律组成,其屮第①个 图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一-共有18 个五角星,・••,则第⑥个图形中五角星的个数为 ___ .★★ A AA A ★★★★★★三、精心解答(本大题共8个小题,共75分,解答应写出文字说明、证明过程 或演算步骤)16. (10分)计算.R 7 9⑴家煌X (-81)(2) -42+ (7 - 9) 34--|17. (6分)如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有 阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一 个进行解答,只填出一种答案即可)图1 图218. (7 分)先化简,再求值:2 (x 2y+3xy ) -3 (x 2y- 1) - 2xy- 2,其 + x= - 2, y=2.19. (5分)画图与计算:画出圆锥的三视图.(主视图、左视图、俯视图)20. (5分)如图,已知,线段AB=6,点C 是AB 的中点,点D 是线段AC 上的点, 且DC 二寺AC,求线段BD 的长.★★ ★★★★ ★★I ------------------------------ 1 -------------- 1MA DC B21. (10分)阅读与计算:请阅读以下材料,并完成相应的任务:出租车司机小李某天上午管运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2, +5, - 1, +1, - 6, - 2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.2L/km (升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若岀租车起步价为8元,起步里」程为3km (包括3km),超过部分每千米1・2元,问小李这天上午共得车费多少元?下面是部分简答过程.W-:(1)・ 2+5 ・ 1+1 一 6 ・ 2二・ 5・••小李在起始的西5km的位置.(2) | - 2|+|+5|+| - 1|+|+1|+| - 6|+| - 2=2+5+1+1+6+2=17任务:请按照上面的思路,写出该题的剩余解答部分.22. (8分)如图AD平分ZEAC.(1)___________________________________ 若ZB=50°, AD//BC,则ZDAC= °;(2)若ZC=55°, ZEAC=110°, AD 与BC 平行吗?为什么?请根据解答过程填空(理由或数学式)解:(1)则ZDAC= _____ °;(2) AD〃BC・理由:VAD平分ZEAC (已知)・・・」DAC二*ZEAC (角平分线的定义)VZEAC=110°(已知)・•・Z DAC二寺Z EAC二° (等式性质)V ZC=55°(己知)AZC=Z _________ (______ )・・・AD〃BC ( _ )23. (12分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(a>0).设半圆形条钢的总个数为x(x 为正整数),护栏总长度为y厘米.(1) ____________________________________ 当a=50, x二2吋,护栏总长度y 为厘米;(2)当a=60时,用含x的代数式表示护栏总长度y (结果要化简);(3)在第(2)题的条件下,若要使护栏总长度保持不变,而把a改为50,就要共用(x+8)个半圆形条钢,请求出x的值.24. (12分)综合与探究如图,已知AM〃BN, ZA=60°,点P是射线AM上一动点(与点A不重合).BC、BD分」别平分ZABP和ZPBN,分别交射线AM于点C, D.【发现】(1) VAM/7BN,・\ ZACB=Z __________ ;(2) 求ZABN、ZCBD 的度数;解:VAM//BN,A ZABN+ZA=180°,VZA=60°,AZABN= _______ ,Z J ABP+ZPBN=120°,TBC 平分ZABP, BD 平分ZPBN,・・・ZABP二2ZCBP、ZPBN= __ , ( ________ )/.2ZCBP+2ZDBP=120°,・•・ ZCBD二ZCBP+ZDBP二_ ・【操作】(3) 当点P运动时,ZAPB与ZADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.【探究】(4) 当点P运动到使ZACB二ZABD时,ZABC的度数是_______ ・A C P DM参考答案与试题解析一、仔细选择(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.【解答】解:根据绝对值的概念可知:I4|=T故选:c.2.【解答】解:A、-2与5,是同类项,不合题意;B、-2a2b与尹b,是同类项,不合题意;C、-x2y2与6x/,是同类项,不合题意;D、2m与2n,所含字母不同,不是同类项,故此选项正确. 故选:D.3.【解答】解:将3240万用科学记数法表示为:3.24X107.故选:C.4.【解答】解:单项式-ab2的系数及次数分别是3,故选:B.5.【解答】解:在木板两端用墨盒弹一根墨线然后再锯,这样做的数学道理是两点确定一条直线.故选:A.【解答】解:A、6a - 5a=a,故此选项错误;B、a+2a2无法计算,故此选项错误;C^ - (a - b) = - a+b,正确;D、2 (a+b) =2a+2b,故此选项错误; 故选七C.7.【解答】解:VAB/ZCD,AZC+ZCAB=180°,VZC=110°,A ZCAB=70°,VAE 平分ZCAB,・・.ZEAB 二*ZCAB 二35°.故选:D.8.【解答】解:由题意得三个数的和为39,・・・m左边的空格里面的数为13, m下面的空格里面的数为14. Am 的值为39 - 16 - 14二9.故选:A.9.【解答】解:如图,•・•直线a〃b,・•・ ZAM0=Z2;VZANM=Z1,而Zl=55°,A ZANM=55°,・•・ ZAMO=ZA+ZANM=60o+55°=115°,Z2=ZAMO=115°.故选:C.10・【解答】解:A、两个圆所在的面是相对的,不相邻,故A错误; B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;D、正确.故选:D.二、合理填空(本大题共5个小题,每小题3分,共15分)口・【解答】解:根据题意得:2 (x+3) +3 (1 - x) =0,去括号得:2X+6+3 - 3x=0,移项合并得:-x=-9,解得:x=9.故答案为:9.12.【解答】解:v a※匕莎小,・・・(2探3)※:L=(22-3)二 1 ※:L=12 - 1二0,13.【解答】解:VZAOC+ZCOD=180°, ZAOC=28°,/.ZCOD=152°;V 0C 是ZAOB 的平分线,ZAOC=28°,・・・ ZAOB=2ZAOC=2X 28°=56°,・・・ ZBOD=180° - ZAOB=180° - 56°=124°,VOE是ZBOD的平分线,・•・ ZBOE二吉ZBOD二£><124°二62°・故答案为:152。

(完整版)华师大版七年级数学上册期末试卷及答案(一),推荐文档

(完整版)华师大版七年级数学上册期末试卷及答案(一),推荐文档

2B1一、填空题(2´×10=20´)2七年级数学(上)期末测试卷(一)2ab 2 1.- 的倒数是 ,相反数是 .2.- 的系数是 ,次数35 是 .3.3695 精确到百位约为 . 4. 如果一个长方体纸箱的长为 a 、宽和高都是 b ,那么这个纸箱的表面积 S = (用含有 ab的代数式表示).5. 已知 a <0,ab <0,并且∣a ∣>∣b ∣,那么 a ,b ,-a ,-b 按照由小到大的顺序排列是. 6.75º12´的余角等于 度.A7.如图,m ∥n , AB ⊥m ,∠1=43˚,则∠2=.m2 23 3448.已知等式:2+ =22× ,3+ =32× ,4+ =42× ,……,338 8 15 15na a 10+ =102× ,(a ,b 均为正整数),则 a +b =.(µÚ7Ìâ)bb9.圆周上有 n 个点,它们分别表示 n 个互不相等的有理数,并且其中的任一数都等于它相邻两数的积,则 n = .10.如图,若| a +1 |=| b +1 |,| 1-c |=| 1-d |,则 a +b +c +d = a . 二、选择题(2´×10=20´)11.下列说法中,错误的是( ) b c d -1 01 (A) 零除以任何数,商是零 (B ) 任何数与零的积仍为零 (C ) 零的相反数还是零 (D ) 两个互为相反数的和为零12.1.61×104 的精确度为( )(A) 精确到百分位 (B ) 精确到百位 (C ) 精确到百分位 (D ) 精确到百位13.在-(-2),(-1)3,-22,(-2)2,-∣-2∣,(-1)2n (n 为正整数)这六个数中,负数的个数是( ) (A ) 1 个 (B ) 2 个 (C ) 3 个 (D ) 4 个14. 巴黎与北京的时间差为-7 时(正数表示同一时刻比北京时间早的时数),如果北京时间是 7月 2 日 14:00,那么巴黎时间是( ) (A ) 7 月 2 日 21 时 (B ) 7 月 2 日 7 时(C ) 7 月 1 日 7 时 (D ) 7 月 2 日 5 时 15. 如果用 A 表示 1 个立方体,用 B 表示两个立方体叠加,用 C 表示三个立方体叠加,那么右图中由 7 个立方体叠成的几何体,正视图为( )(A ) (B) (C ) (D ) 5 12a16. 已知,如图,下列条件中,不能判断直线 a ∥b 的是( ) (A ) ∠1=∠3 (B ) ∠2=∠3 (C ) ∠4=∠5 (D ) ∠2+∠4=180º 17.小丽制作了一个对面图案均相同的正方体礼品盒(如下左图所示),则这个正方 体礼品盒的平面展开图可能是 [ ].A B C D18. 若 2a m b 2m +3n 与 a 2n -3b 8 的和仍是一个单项式,则 m ,n 的值分别是()4 3bACA A A AC A BABAB AAB AA(A) 1,1 (B) 1,2 (C) 1,3 (D) 2,119.若∠AOB=90º,∠BOC=40º,则∠AOB 的平分线与∠BOC 的平分线的夹角等于( )(A) 65º(B) 25º(C) 65º或25º(D) 60º或20º20.如果代数式4y2-2y+5 的值是7,那么代数式2y2-y+1 的值等于()A. 2 B. 3 C.﹣2 D.4三、计算与化简 (5´×4=20´) 21.-33×(-2)+42÷(-2)3-∣-22∣÷523. 1 -2003 1 +20021 -20041 -20031 -2004120022 1 5 122.(-3)3-[(2-1.5)3÷2 ×(-8)2+×(-)2-( )3]3 2 2 224、化简,后求值:(2x 2 -1+ 3x) - 4(x -x 2 +1) ,其中x =-1.2 2 2四、解答题(5´×8=40´)1 125.若2x| 2a+1 |y 与xy| b |是同类项,其中a、b 互为倒数,求2(a-2b2)-(3b2-a)的值.2 2A1B2 26. 如图 3-12,已知直线 AB 和 CD 相交于 O 点,OC OE ,OF 平分∠AOE, ∠COF=34°,求∠BOD 的度数.F ECAO BD27.如图,已知∠1=∠2, ∠D =60˚, 求∠B 的度数.ECDF28.如图,已知 BE ∥DF ,∠B =∠D ,则 AD 与 BC 平行吗?试说明理由.EF29.(本题满分 10 分)如图,∠AOB 为直角,∠AOC 为锐角,且 OM 平分∠BOC, ON 平分∠AOC.(1) 如果∠AOC=50°,求∠MON 的度数.(2) 如果∠AOC 为任意一个锐角,你能求出∠MON 的度数吗?若能,请B求出来,若不能,说明为什么?MOANCDAC B30.正方形 ABCD 内部有若干个点,用这些点以及正方形 ABCD 的顶点 A、B、C、D 把原正方形分割成一些三角形(互相不重叠):A D A D A DB C 内部有 1 个B C内部有2 个B C内部有 3 个(1(2能,请说明理由。

华东师大版七年级数学上册期末考试及答案【完整版】

华东师大版七年级数学上册期末考试及答案【完整版】

华东师大版七年级数学上册期末考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.分解因式:32x 2x x -+=_________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2.如果关于x,y的方程组437132x ykx y k-=⎧⎪⎨+-=-⎪⎩的解中,x与y互为相反数,求k的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、A6、C7、B8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、60°3、()2 x x1-.4、(4,2)或(﹣2,2).5、2或2.56、54°三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、x=1,y=-1,k=9.3、略4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。

华东师大版七年级上学期期末考试数学试卷含答案(共3套)

华东师大版七年级上学期期末考试数学试卷含答案(共3套)

A.B.5C.-D.-52.计算|-|-的结果是()A.- B.C.-1D.17.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=∠AOB,则射线OC是∠AOB 华东师大版七年级上学期数学期末检测题时间:90分钟满分:120分一、选择题(每小题3分,共30分)1.5的倒数为()1155123311333.我市今年参加中考的人数约为42000人,将42000用科学记数法表示为()A.4.2×104B.0.42×105C.4.2×103D.42×1034.下列各式中,成立的是()A.a2+a2=2a4B.2a-a=1C.-5(a-b)=-5a+b D.a-b+c=a-(b-c)5.下列立体图形中,俯视图是正方形的是()6.数a,b在数轴上的位置如图所示,下列各式中正确的个数是()①a+b>0;②ab<0;③|a|+b<0;④a-b>0;⑤|a|=-a.A.1个B.2个C.3个D.4个,第6题图),第8题图)12的平分线;④连结两点之间的线段叫两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有()A.1个B.2个C.3个D.4个8.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n9.如图,直线a,b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°12.若- xy 3与 2x m -2y n +5 是同类项,则 n m =____. (1)(-1)2015-| - |× ×[22-(-4)2]; (2)-62÷2 ×(-1 )2+4-22×(- ).10.将一张长方形的纸对折(如图所示),得到一条折痕(图中的虚线),继续对折,每次折痕都保持平行,连 续对折三次后,可以得到 7 条折痕,那么 n 次对折可得到折痕的条数为( )A .2n -1B .2n -1C .2n +1D .2n +1二、填空题(每小题 3 分,共 24 分)11.在跳远测试中,合格的标准是 4.00 米,王凡跳出了 4.12 米,记作+0.12 米,李强跳出了 3.95 米,应记 作____.1 313.多项式 2xy 3-x 3y -1+3x 2y 2 是____次____项式,将它按 x 的降幂排列为____ .14.已知 m 2-m =6,则 1-2m 2+2m =____.15.如图,点 O 在直线 AB 上,OC 平分∠AOB ,∠MON =90°,则∠1 的余角是____,∠BOM 的补角是 ____.,第 15 题图) ,第 16 题图) ,第 18 题图)16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是____.17.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多 10 人,两种都会 的有 7 人,设会弹古筝的有 m 人,则该班同学共有____人.(用含有 m 的代数式表示) 18.如图,已知 l 1∥l 2,若∠1 与∠2 互余,∠3=120°,则∠4=____. 三、解答题(共 66 分) 19.(10 分)计算:1 7 21 1 12 4 34 2 320.(8 分)由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方体中的数字表示该位置的小正方体的个数,请画出图中这个几何体的主视图与左视图.(5x 2-3y 2)-[(5x 2-2xy -y 2)-2(3y 2-xy)],其中 x =-2,y =- .21.(8 分)先化简,再求值:1222.(8 分)如图,直线 AB ,CD 相交于点 O ,OD 平分∠AOF ,OE ⊥CD 于点 O ,∠AOE =50°,求∠FOC 的度数.23.(10 分)两种移动电话计费方式如下:月租费本地通话费全球通 15 元/月 0.10 元/分神州行0.20 元/分(1)一个月内某用户在本地通话时间是 x 分钟,请你用含有 x 的式子分别写出两种计费方式下该用户应该支 付的费用;(2)若某用户一个月内本地通话时间是 5 个小时,你认为采用哪种计费方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,全球通收费为 30 元,请你帮助他解决一下.24.(10 分)如图,∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?25.(12分)(1)如图①,已知数轴上A,B两点分别表示-3,5,则AB=____.数轴上M,N两点分别表示数m,n,则MN=____.(2)如图②,E,F为线段AB的三等分点,P为直线AB上一动点(P不与E,F,A重合).在点P的运动过程中,PE,PF,PA有何数量关系?请写出结论并说明理由.A.B.5C.-D.-52.计算|-|-的结果是(A)A.- B.C.-1D.17.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=∠AOB,则射线OC是∠AOB参考答案一、选择题(每小题3分,共30分)1.5的倒数为(A)1155123311333.我市今年参加中考的人数约为42000人,将42000用科学记数法表示为(A)A.4.2×104B.0.42×105C.4.2×103D.42×1034.下列各式中,成立的是(D)A.a2+a2=2a4B.2a-a=1C.-5(a-b)=-5a+b D.a-b+c=a-(b-c)5.下列立体图形中,俯视图是正方形的是(A)6.数a,b在数轴上的位置如图所示,下列各式中正确的个数是(C)①a+b>0;②ab<0;③|a|+b<0;④a-b>0;⑤|a|=-a.A.1个B.2个C.3个D.4个,第6题图),第8题图)12的平分线;④连结两点之间的线段叫两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有(C)A.1个B.2个C.3个D.4个8.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是(C)A.m-n B.m+nC.2m-n D.2m+n9.如图,直线a,b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为(A)A.110°B.115°C.120°D.130°12.若-xy3与2x m-2y n+5是同类项,则n m=__-8__.(1)(-1)2015-|-|××[22-(-4)2];(2)-62÷2×(-1)2+4-22×(-).10.将一张长方形的纸对折(如图所示),得到一条折痕(图中的虚线),继续对折,每次折痕都保持平行,连续对折三次后,可以得到7条折痕,那么n次对折可得到折痕的条数为(A)A.2n-1B.2n-1C.2n+1D.2n+1二、填空题(每小题3分,共24分)11.在跳远测试中,合格的标准是4.00米,王凡跳出了4.12米,记作+0.12米,李强跳出了3.95米,应记作__-0.05米__.1313.多项式2xy3-x3y-1+3x2y2是__四__次__四__项式,将它按x的降幂排列为__-x3y+3x2y2+2xy3-1__.14.已知m2-m=6,则1-2m2+2m=__-11__.15.如图,点O在直线AB上,OC平分∠AOB,∠MON=90°,则∠1的余角是__∠2和∠4__,∠BOM 的补角是__∠1和∠3__.,第15题图),第16题图),第18题图) 16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.17.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人,设会弹古筝的有m人,则该班同学共有__(2m+3)__人.(用含有m的代数式表示)18.如图,已知l1∥l2,若∠1与∠2互余,∠3=120°,则∠4=__150°__.三、解答题(共66分)19.(10分)计算:1721112434232解:原式=9解:原式=-30320.(8分)由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方体中的数字表示该位置的小正方体的个数,请画出图中这个几何体的主视图与左视图.解:图略(5x2-3y2)-[(5x2-2xy-y2)-2(3y2-xy)],其中x=-2,y=-.21.(8分)先化简,再求值:121解:原式=4y2,当x=-2,y=-2时,原式=122.(8分)如图,直线AB,CD相交于点O,OD平分∠AOF,OE⊥CD于点O,∠AOE=50°,求∠FOC 的度数.解:∵OE⊥CD,∠AOE=50°,∴∠AOD=90°-∠AOE=40°,又∵OD平分∠AOF,∴∠DOF=∠AOD=40°,∴∠FOC=180°-∠DOF=140°23.(10分)两种移动电话计费方式如下:月租费本地通话费全球通15元/月0.10元/分神州行0.20元/分(1)一个月内某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用;(2)若某用户一个月内本地通话时间是5个小时,你认为采用哪种计费方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,全球通收费为30元,请你帮助他解决一下.解:(1)全球通:15+0.1x,神州行:0.2x(2)全球通:15+0.1×5×60=45元,神州行:0.2×5×60=60元;45<60,采用全球通比较划算(3)(30-15)÷0.1=150(分),即通话时间为150分钟时,全球通的收费为30元24.(10分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?解:(1)AE∥FC,理由:∵∠2+∠CDB=180°,又∠1+∠2=180°,∴∠1=∠CDB,∴AE∥FC (2)AD∥BC,理由:由(1)得AE∥FC,∴∠A+∠ADC=180°,又∠A=∠C,∴∠C+∠ADC=180°,∴AD∥BC(3)BC平分∠DBE,理由:由AB∥CF,得∠EBC=∠C,由AD∥BC得∠DBC=∠ADB,∠C=∠ADF,∵DA平分∠BDF,∴∠ADF=∠ADB,∴∠EBC=∠DBC,∴BC平分∠DBE25.(12分)(1)如图①,已知数轴上A,B两点分别表示-3,5,则AB=__5-(-3)=8__.数轴上M,N两点分别表示数m,n,则MN=__n-m__.(2)如图②,E,F为线段AB的三等分点,P为直线AB上一动点(P不与E,F,A重合).在点P的运动过程中,PE,PF,PA有何数量关系?请写出结论并说明理由.解:P在A左边,PE-PA=PF-PE,即2PE-PF=PA;P在AE上,PE+PA=PF-PE,即PF-2PE =PA;P在EF上,PE+PF=AP-PE,即2PE+PF=PA;P在FB上,PE-PF=AP-PE,即2PE-PF =PA;P在B右边,PE-PF=PA-PE,即2PE-PF=PAA.2017B.-2017C.1D.-华师大版七年级上学期数学期末检测卷一、选择题(每小题4分,共40分).1.-2017的绝对值是().1201720172.当x=3时,代数式10-2x的值是().A.1B.2C.3D.43.下面不是同类项的是().A.-2与12B.-2a2b与a2bC.2m与2nD.-x2y2与12x2y24.下列式子中计算正确的是().A.5x2y-5xy2=0B.5a2-2a2=3C.4x y2-xy2=3xy2D.2a+3b=5ab5.下列各数中,比-3大的数是().A.-πB.-3.1C.-4D.-26.下列物体中,主视图是圆的是().A B C D7.中国药学家屠呦呦发明的青蒿素为保护人类健康做出了重大贡献,荣获2015年诺贝尔生理学或医学奖,奖金约为3020000元人民币.将3020000用科学记数法表示为().A.3.02⨯104B.302⨯104C.3.02⨯106D.302⨯1068.如图,锯木板前,在木板两端固定两个点,用墨盒弹一根墨线然后再锯,这样做的数学道理是().A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过直线外或直线上一点,有且只有一条直线垂直于已知直线D.经过已知直线外一点,有且只有一条直线与已知直线平行319.(8 分)先化简,再求值: 3 x 2 y + 2 x y + 2 x 2 y - 2 x y - 5x 2 y ,其中 x = 1 , y = -1 .(9.下面图形中,射线 OP 是表示北偏东 60°方向的是().10.一组数据:2,1 ,3 , x , 7 , -9,…,满足“从第三个数起,若前两个数依次为 a 、 b ,则紧随其后的数就是 2a - b ”,例如这组数中的第三个数“3”是由“ 2 ⨯ 2 -1”得到,那么该组数据中的 x 为().A. -2B. -1C. 1D. 2二、填空题(每小题 4 分,共 24 分).11.在有理数 - 0.5 、-5、 5 3中,属于分数的共有 个.12.把多项式 9 - 2 x 2 + x 按字母 x 降幂排列是.13.若 ∠A = 50︒ ,则 ∠A 的补角为.14.在数轴上,点 A 表示的数是 5,若点 B 与 A 点之间距离是 8,则点 B 表示的数是.15. 如图,直线 a ∥ b ,将三角尺的直角顶点放在直线 b 上,若∠1=35°,则∠2=.16.观察下列数字:第 1 层1 2第 2 层4 5 6第 3 层9 10 11 12(第 15 题图)第 4 层 16 17 18 19 20… … … …在上述数字宝塔中,第 4 层的第二个数是 17,请问 2510 为第层第 个数.三、解答题(共 86 分).17.(8 分)计算: 5×(-2)+(-8)÷(-2)18.(8 分)计算: - 32+ (7 - 9) ÷45) (): 20.(8 分)如图,已知 A 、B 、C 、D 是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.①画线段 AB ;②画直线 AC ;③过点 B 画 AD 的平行线 BE ;④过点 D 画 AC 的垂线,垂足为 F .A BDC21.(8 分)如图,点 B 是线段 AC 上一点,且 AB = 20 , BC = 8 .(1)试求出线段 AC 的长;(2)如果点 O 是线段 AC 的中点.请求线段 O B 的长.22.(10 分)根据解答过程填空(写出推理理由或根据):如图,已知∠DAF=∠F,∠B=∠D,试说明 AB ∥DC证明∵∠DAF=∠F( 已知 )∴ AD ∥ BF ()∴∠D=∠DCF()∵∠B=∠D()∴∠=∠DCF ( 等量代换 )∴AB∥DC()23.(10 分)某水泥仓库一周 7 天内进出水泥的吨数如下(“+”表示进库,“-”表示出库) +30、-25、-30、+28、-29、-16、-15、(1)经过这 7 天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这 7 天,仓库管理员结算发现库里还存 200 吨水泥,那么 7 天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨 a 元、出仓库的水泥装卸费是每吨 b 元,求这 7 天要付多少元装卸费?...........24.(12 分)下列是某初一数学兴趣小组探究三角形内角和的过程,请根据他们的探究过程,结合所学知识,解答下列问题.兴趣小组将图 △1 ABC 三个内角剪拼成图 △2,由此得 ABC 三个内角的和为 180 度.(1)请利用图 3 证明上述结论.(2)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图 4,点 D 为 BC 延长线上一点,则∠ACD 为△ABC 的一个外角.①请探究出∠ACD 与∠A 、∠B 的关系,并直接填空:∠ACD=.②如图 5 是一个五角星,请利用上述结论求∠A+∠B +∠C +∠D +∠E 的值.25.(14 分)我们知道:对边平行且相等,四个角都是直角的四边形是长方形.你可以利用这一结论解答问题.(1)如图 1 是某直三棱柱的表面展开图.①请指出图中哪三个字母表示多面体的同一点;②如果沿 BC 、GH 将其表面展开图剪成三块,恰好拼成一个长方形,那么△BMC 应满足什么条件?(直接写出所有满足条件,不必说明理由)(2)将图 2 中边长都是 20cm 的等边三角形纸片剪拼成一个底面是等边三角形的直三棱柱模型,使它的表面积与原等边三角形的面积相等;请按要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据).参考答案一、选择题(每小题4分,共40分)1.A;2.D;3.C;4.C;5.D;6.C;7.C;8.A;9.C;10.B.二、填空题(每小题4分,共24分)11.2;12.-2x2+x+9;13.130°;14.-3或13;(每对一个得两分)15.55°;16.50、11.三、解答题17.(本题8分)解:原式=-10+4…………………………………6分(化简正确每个2分)=-6……………………………………………………………8分18.(本题8分)解:原式=-9+(-2)3⨯54………………………4分(化简正确每个2分)=-9+(-8)⨯54…………………………………………6分=-9+(-10)…………………………………………………7分=-19………………………………………………………8分19.(本题8分)解:原式=3x2y+6xy+2x2y-4xy-5x2y……4分(化简正确每个2分)=2x y………………………………………………………5分当x=1,y=-1时,原式=2⨯1⨯(-1)…………………………………7分=-2…………8分(没化简直接代入求值且答案正确得3分)20.(本题8分)每画对一条得2分(点E、点F没标注各扣1分)21.(本题8分)解:(1)∵AC=AB+BC………………………………………2分又∵AB=20,BC=8∴AC=20+8………………………………………………3分[]= 28………………………………………………4 分(2)∵ O 是 AC 的中点,∴ CO = 1AC ……………………………………………5 分2= 14……………………………………………6 分BM ∴ OB = CO - BC ………………………………………7 分= 14 - 8A1 C2D= 6 ……………………………………………8 分22.(本题 10 分)证明:∵∠DAF=∠F( 已知 )∴ AD ∥ BF (内错角相等,两直线平行 )…………2 分∴∠D=∠DCF( 两直线平行, 内错角相等 )………4 分∵∠B=∠D( 已知) ………………………………6 分∴∠ B =∠DCF( 等量代换 ) ………………………8 分∴AB∥DC (同位角相等,两直线平行 ).……………10 分23.(本题 10 分)解:(1)∵+30-25-30+28-29-16-15=-57………………………2 分∴ 经过这 7 天,仓库里的水泥减少了 57 吨 ……………………3 分(2)∵200+57=257 ………………………………………………4 分∴那么 7 天前,仓库里存有水泥 257 吨 ……………………6 分(3)依题意:进库的装卸费为: [(+ 30)+ (+ 28)]a = 58a ;… …………………………7 分出库的装卸费为: - 25 + - 30 + - 29 + -16 + -15 b = 115b … ………8 分∴ 这 7 天要付多少元装卸费 58a + 115b …10 分(直接列式求得答案且正确不扣分)24.(本题 12 分)证明 (1)过点 C 作 CM // AB ……………………………………1 分C M // AB (已作)∴ ∠A = ∠2 (两直线平行,同位角相等)…………2 分∠B = ∠1(两直线平行,内错角相等) ……………3 分∠BCA + ∠1 + ∠2 = 180 0 ………………………4 分∴ ∠BCA + ∠A + ∠B = 180 0 ………………………5 分∴(2)① ∠A+∠B, …………………………………8 分o ,②对于△BDN, ∠MNA=∠B+∠D, ……………9 分对于△CEM , ∠NMA=∠C+∠E, …………10 分对于△ANM , ∠A+∠MNA+∠NMA=180 ,……11 分∴∠A+∠B +∠D+∠C +∠E=180 o ……………………12 分25.(本题 14 分)解:(1)点 A 、M 、D 三个字母表示多面体的同一点.……………3 分(2△) BMC 应满足的条件是:a 、∠BMC=90°,且 BM=DH ,或 CM=DH ;………………5 分b 、∠MBC=90°,且 BM=DH ,或 BC=DH ; ……………7 分c 、∠BCM=90°,且 BC=DH ,或 CM=DH ; ………………9 分(3)如上图,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可.A.2和-2B.-2和C.-2和-D.-和2华师大版七年级上学期数学期末检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各组数中,互为倒数是的()1112222.下列各图中,∠1与∠2互为余角的是()3.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.-2xy2B.3x2C.2xy3D.2x34.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.90°B.100°C.105°D.120°,第4题图),第7题图),第8题图)5.计算8+6÷(-2)的结果是()A.-7B.-5C.5D.76.今年元旦,某风景区的最低气温为-5℃,最高气温为10℃,则这个风景区今年元旦的最高气温比最低气温高()A.-15℃B.15℃C.5℃D.-5℃7.如图所示,该几何体的俯视图是()8.如图,点A,B,C顺次在直线上l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件()A.AB=12B.BC=4C.AM=5D.CN=29.在某月的日历上用矩形圈到a,b,c,d四个数(如图),如果d=18,那么a+b+c=()A.38B.40C.48D.58,第9题图),第10题图) 10.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个12.计算:-3.5+|- |-(-2)=___.(1)-1.5+1.4-(-3.6)-1.4+(-5.2);(2)-14-[2-(-3)2]÷( )3.二、填空题(每小题 3 分,共 24 分)11.若+10 万元表示盈余 10 万元,那么亏损 3 万元表示为____.5213.已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为____. 14.化简:(2xy +3x 2y)-3(2x 2y -xy 2)=__ _.15.一个多边形有 8 条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到____个三角形. 16.如图,∠AOC =150°,则射线 OA 的方向是____ .,第 16 题图),第 17 题图) ,第 18 题图)17.将一副学生用三角板按如图所示方式放置,若 AE ∥BC ,则∠AFD 的度数是____.18.(2016· 河南模拟)如图是钢琴键盘的一部分,若从 4 开始,依次弹出 4,5,6,7,1,4,5,6,7,1,…,按照上述规律弹到第 2016 个音符是___.三、解答题(共 66 分) 19.(6 分)计算:1 220.(6 分)一只小虫从某点 P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点 P ;(2)如果小虫爬行的速度为 0.5 厘米/秒,那么小虫共爬行了多长时间.(1)当 a =- ,b =4 时,求 A -2B 的值;21.(6 分)如图已知 AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上相应依据.22.(8 分)先化简再求值:(1)5(3a 2b -ab 2)-4(-ab 2+3a 2b),其中 a =-1,b =2;(2)x +2(3y 2-2x)-4(2x -y 2),其中|x -2|+(y +1)2=0.23.(8 分)如图所示,l 1,l 2,l 3 交于点 O ,∠1=∠2,∠3∶∠1=8∶1,求∠4 的度数.24.(10 分)已知多项式 A =2a 2+ab -2a -1,B =a 2+ab -1.12(2)若多项式 C 满足:C =A -2B -C ,试用 a ,b 的代数式表示 C.25.(10分)如图,请按照要求回答问题:(1)数轴上的点C表示的数是____;线段AB的中点D表示的数是____;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC 能否平分∠MBN,并说明理由.26.(12分)AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数;(用含n的代数式表示)(2)将(1)中线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.A.2和-2B.-2和C.-2和-D.-和2参考答案一、选择题(每小题3分,共30分)1.下列各组数中,互为倒数是的(C)1112222.(2016·长沙)下列各图中,∠1与∠2互为余角的是(B)3.(2015·厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是(D)A.-2xy2B.3x2C.2xy3D.2x34.把两块三角板按如图所示那样拼在一起,则∠ABC等于(D)A.90°B.100°C.105°D.120°,第4题图),第7题图),第8题图)5.计算8+6÷(-2)的结果是(C)A.-7B.-5C.5D.76.(2016春·长兴县月考)今年元旦,某风景区的最低气温为-5℃,最高气温为10℃,则这个风景区今年元旦的最高气温比最低气温高(B)A.-15℃B.15℃C.5℃D.-5℃7.(2016·和县一模)如图所示,该几何体的俯视图是(B)8.如图,点A,B,C顺次在直线上l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件(A)A.AB=12B.BC=4C.AM=5D.CN=29.在某月的日历上用矩形圈到a,b,c,d四个数(如图),如果d=18,那么a+b+c=(A)A.38B.40C.48D.58,第9题图),第10题图) 10.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为(C)(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.若+10万元表示盈余10万元,那么亏损3万元表示为__-3万元__.12.计算:-3.5+|- |-(-2)=__1__.(1)-1.5+1.4-(-3.6)-1.4+(-5.2);(2)-14-[2-(-3)2]÷( )3. (2)原式=-1-[2-9]÷ =-1-(-7)× 8=-1+56=55 5 2 13.已知∠A 与∠B 互余,若∠A =20°15′,则∠B 的度数为__69.75°__.14.化简:(2xy +3x 2y)-3(2x 2y -xy 2)=__5xy 2-3x 2y __.15.一个多边形有 8 条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到__6__个三角形.16.如图,∠AOC =150°,则射线 OA 的方向是__北偏东 30°__.,第 16 题图),第 17 题图) ,第 18 题 图)17.将一副学生用三角板按如图所示方式放置,若 AE ∥BC ,则∠AFD 的度数是__75°__.18.(2016· 河南模拟)如图是钢琴键盘的一部分,若从 4 开始,依次弹出 4,5,6,7,1,4,5,6,7, 1,…,按照上述规律弹到第 2016 个音符是__4__.三、解答题(共 66 分)19.(6 分)计算:1 2解:(1)原式=-1.5+1.4+3.6-1.4-5.2=(-1.5-1.4-5.2)+(1.4+3.6)=-8.1+5=-3.1 1 820.(6 分)一只小虫从某点 P 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,-3,+10,-8,-6,+12,-10.(1)通过计算说明小虫是否回到起点 P ;(2)如果小虫爬行的速度为 0.5 厘米/秒,那么小虫共爬行了多长时间.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=5-3+10-8-6+12-10=0,所以 小虫能回到起点 P(2)(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒),答:小虫共爬行了 108 秒21.(6 分)如图已知 AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°.请完善说明过程,并在括号内填上 相应依据.解:∵AD ∥BC(已知),∴∠1=∠3( 两直线平行,内错角相等 ),∵∠1=∠2,∴__∠2=∠3__( 等量代换 ),∴__BE ∥DF __( 同位角相等,两直线平行 ),∴∠3+∠4=180°( 两直线平行,同旁内角互补 ).22.(8 分)先化简再求值:(1)5(3a 2b -ab 2)-4(-ab 2+3a 2b),其中 a =-1,b =2;解:原式=15a 2b -5ab 2+4ab 2-12a 2b =3a 2b -ab 2,把 a =-1,b =2 代入得:6+4=10(2)x +2(3y 2-2x)-4(2x -y 2),其中|x -2|+(y +1)2=0.解:原式=x +6y 2-4x -8x +4y 2=-11x +10y 2,∵|x -2|+(y +1)2=0,∴x =2,y =-1,则原式=- 22+10=-1223.(8 分)如图所示,l 1,l 2,l 3 交于点 O ,∠1=∠2,∠3∶∠1=8∶1,求∠4 的度数.解:设∠1=x ,则∠2=x ,∠3=8x ,依题意有 x +x +8x =180°,解得 x =18°,则∠4=18°+18°=36°,故∠4 的度数是 36°24.(10 分)已知多项式 A =2a 2+ab -2a -1,B =a 2+ab -1.(1)当a=-,b=4时,求A-2B的值;(2)由C=A-2B-C,得到C=A-B=a2+ab-a--a2-ab+1=-ab-a+解:(2)∵线段BC的中点E表示的数是=0.75,∴DE=|-2-0.75|=2.75∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,∴∠ABE=2∠ABC=2n°,∠CDE=∠ADC=40°,∴∠BED=∠BEF+∠DEF=n°+40°(12(2)若多项式C满足:C=A-2B-C,试用a,b的代数式表示C.解:(1)∵A=2a2+ab-2a-1,B=a2+ab-1,∴A-2B=2a2+ab-2a-1-2a2-2ab+2=-ab-2a 1+1,当a=-2,b=4时,原式=2+1+1=4111112222225.(10分)如图,请按照要求回答问题:(1)数轴上的点C表示的数是__2.5__;线段AB的中点D表示的数是__-2__;(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC能否平分∠MBN,并说明理由.-1+2.52(3)如下图(可以标出不同角的度数)BC平分∠MBN.理由是∵∠ABM=120°,∴∠MBC=180°-120°=60°,又∠CBN=60°,∴∠MBC=∠CBN,即BC平分∠MBN26.(12分)AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ABC=n°,∠ADC=80°.(1)若点B在点A的左侧,求∠BED的度数;(用含n的代数式表示)(2)将(1)中线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.解:1)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,111122∠ADC =80°,∴∠ABE =2∠ABC =2n °,∠CDE =2∠ADC =40°,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴ ∠BEF =180°-∠ABE =180°-2n °,∠CDE =∠DEF =40°,∴∠BED =∠BEF +∠DEF =180°-2 2(2)∠BED 的度数改变,过点 E 作 EF ∥AB ,如图②,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,1 1 11 11 n °+40°=220°- n °。

华东师大版七年级数学上册期末考试题及答案【完整版】

华东师大版七年级数学上册期末考试题及答案【完整版】

华东师大版七年级数学上册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.下列图形具有稳定性的是()A.B.C.D.5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32137x y x y +=⎧⎨-=-⎩ (2)()45113812x y y x y ⎧+=+⎪⎨+=⎪⎩2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,O ,D ,E 三点在同一直线上,∠AOB=90°.(1)图中∠AOD 的补角是_____,∠AOC 的余角是_____;(2)如果OB 平分∠COE ,∠AOC=35°,请计算出∠BOD 的度数.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、A5、A6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、40°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、40°6、5三、解答题(本大题共6小题,共72分)1、(1)12xy=-⎧⎨=⎩;(2)14xy⎧=⎪⎨⎪=⎩2、74n=-,38m=.3、(1)∠AOE,∠BOC;(2)125°4、∠BOE的度数为60°5、(1)30;(2)①补图见解析;②120;③70人.6、(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.。

华师版数学七年级上学期期末测试题 (11)含答案

华师版数学七年级上学期期末测试题 (11)含答案

华师版数学 七年级上学期 期末测试题一、单选题(每题3分,共24分)1. 在0,﹣1,1,﹣2这四个数中,最小的数是( )A. 0B. 1C. ﹣1D. ﹣2【答案】D2. 2021年8月19日,由《环球时报》发起的“要求加拿大释放被美国迫害的中国公民”联署活动,最终签名人数高达1400多万。

经过中国政府不懈努力,9月25日,孟晚舟女士乘坐中国政府包机,回到祖国。

将14000000这个数用科学记数法表示为( )A. 51.410⨯B. 61.410⨯C. 71.410⨯D. 81.410⨯ 【答案】C3. 把(﹣3)﹣(﹣7)+4﹣(+5)写成省略加号的和的形式是( )A. ﹣3﹣7+4﹣5B. ﹣3+7+4﹣5C. 3+7﹣4+5D. ﹣3﹣7﹣4﹣5 【答案】B4. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,则在原正方体中,与“展”字所在面相对面上的汉字是( )A. 长B. 春C. 新D. 区【答案】C 5. 下列运算正确的是( ).A. 325a b ab +=B. 22523y y -=C. 77mn mn -=D. 2222p p p --=-【答案】D6. 如图所示,正方形网格中有α∠和β∠,如果每个小正方形的边长都为1,估测α∠与β∠的大小关系为( )A. αβ∠<∠B. αβ∠=∠C. αβ∠>∠D. 无法估测【答案】A7. 如图1,A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是()A 两直线相交只有一个交点 B. 两点确定一条直线C. 两点之间,线段最短D. 经过一点有无数条直线【答案】C8. 如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为()A 2α B. 90°+α C. 180°﹣α D. 180°﹣2α【答案】D二、填空题(每题3分,共18分)9. 比较大小:34-______23-(“>”,“<”或“=”).【答案】<10. 圆周率π=3.1415926…精确到千分位的近似数是_____.【答案】3.14211. 七年级全体同学参加某项国防教育活动,一共分成n个排,每排3个班,每班10人,则七年级一共有_____名同学.【答案】30n12. 如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为_____米.(填具体数值)【答案】3.1513 如图,已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于_____.【答案】85°14. 下列图案均是用相同的小木棒按一定的规律拼搭而成;拼搭第1个图案需7根小木棒,拼搭第2个图案需12根小木棒……依此规律,拼搭第n个图案需小木棒_____根.【答案】(5n+2)##(2+5n)三、解答题(本题共10小题,共78分)15. 计算:(1)6+(﹣8)﹣3+(﹣5);(2)(﹣316)﹣(﹣512)+(﹣412)﹣456;(3)(153364-+)×(﹣36);(4)3+50÷22×(15-)﹣1.【答案】(1)-10;(2)-7;(3)-9;(4)12-. 16. 先化简,再求值:)()(2332231231xy x x xy ----+,其中2x =-,1y =-.【答案】23853xy x --;2117. 如图,已知点C 为线段AB 的中点,点D 为线段BC 的中点,AB =16cm ,求线段AD 的长度.【答案】12cm18. 如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D 是∠ABC 的边BC 上的一点,点M 是∠ABC 内部的一点,点A 、B 、C 、D 、M 均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:(1)过点M 画BC 的平行线MN 交AB 于点N ;(2)过点D 画BC 的垂线DE ,交AB 于点E ;(3)点E 到直线BC 的距离是线段 的长度.【答案】(1)见解析;(2)见解析;(3)DE19. 如图,如果∠1=60°,∠2=120°,∠D =60°,那么AB 与CD 平行吗?BC 与DE 呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知)∠ABC =∠1 (① )∴∠ABC =60°(等量代换)又∵∠2=120°(已知)∴(② )+∠2=180°(等式的性质)∴AB ∥CD (③ )又∵∠2+∠BCD =(④ °)∴∠BCD =60°(等式的性质) ∵∠D =60°(已知)∴∠BCD =∠D (⑤ )∴BC ∥DE (⑥ )【答案】对顶角相等;∠ABC ;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行. 20. 我国首个空间实验室“天宫一号”顺利升空.全国人民信受鼓舞,某校开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a 、b 的代数式表示该截面的面积S ;(2)当a =2cm ,b =2.5cm 时,求这个截面的面积.【答案】(1)222S ab a =+,(2)18 cm 2.21. 如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.【答案】22︒22. 如图,在表一中,将第1行第3列的数记为[1,3],则[1,3]=3,将第3行第2列的数记为[3,2],则[3,2]=6;按照要求回答下列各题:(1)在表一中,[3,5]= ,[8,10]= ;(2)在表一中,第3行第n +1列的数可以记为[3,n +1]= ;(3)如图,表二、表三、表四分别是从表一中截取的一部分,求3a +b ﹣2c 的值.【答案】(1)15,80;(2)3n +3;(3)28.23 网约车已成为我们日常出行的一种便捷工具,某市网约车计价方式如表: 计费项目起程价 里程价 停车等待时长价 价格(单价) 6元(2千米) 1.4元/千米 0.3元/分注:车费由起程价、里程价、停车等待时长价三部分构成.其中,起程价为6元,2千米以内(包括2千米)的车费为6元;里程价为:超过2千米后,每行驶1千米收费1.4元(不足1千米按1千米计算);停车等待时长价为:在等待红灯或堵车时,按车辆停止时间收费,每分钟0.3元(不足1分钟按1分钟计算).如,行驶里程为3千米,停车等待2分钟的计价方式为:6+1.4×(3﹣2)+0.3×2=8元.(1)请你根据表信息计算:若小明乘坐网约车行驶15千米,没有停车等待,则需付费 元;若行驶4千米,停车等待3分钟,则需付车费 元;(2)设行驶里程为x 千米(x >2,且为整数),停车等待时长为y 分钟,则需付车费多少元?(用含x 、y 的式子表示,并化简).(3)李叔叔家离工作单位8千米,且从李叔叔家到工作单位的路上有3个红绿灯,其中每个红灯最长等待时间为1分钟.在不考虑堵车的前提下,请你计算李叔叔从家到工作单位乘坐网约车至少需付费多少元?最多付费多少元?【答案】(1)6;9.7;(2)1.40.3 3.2x y ++;(3)至少需付费14.4元;最多付费15.3元.24. 小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB则有∠BEF=∠B∵AB∥CD∴EF∥CD∴∠FED=∠D∴∠BED=∠BEF+∠FED=∠B+∠D请你参考小亮的思考问题的方法,解决问题:(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠P AC=15°,∠PBD=40°,求∠APB的度数.(2)拓展:如图③,若点P在直线EF上,连接P A、PB(BD<AC),直接写出∠P AC、∠APB、∠PBD 之间的数量关系.【答案】(1)55°;(2)当P在线段CD上时,∠APB=∠P AC+∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠P AC;当P在CD延长线上时,∠APB=∠P AC-∠PBD;。

七年级数学上册第一学期期末综合测试卷(华师版 2024年秋)

七年级数学上册第一学期期末综合测试卷(华师版 2024年秋)

七年级数学上册第一学期期末综合测试卷(华师版2024年秋)一、选择题(每题3分,共30分)题序12345678910答案1.-12024的相反数是()A.2024B.-2024 C.12024D.-120242.为了加快构建清洁低碳、安全高效的能源体系,国家发布《关于促进新时代新能源高质量发展的实施方案》,旨在锚定到2030年我国风电、太阳能发电总装机容量达到1200000000千瓦以上的目标.数据1200000000用科学记数法表示为()A.1.2×1010B.1.2×109C.1.2×108D.12×108 3.中国古代数学著作《九章算术》中,将两底面是直角三角形的直棱柱称为“堑堵”.将一个“堑堵”按如图所示方式摆放,则它的左视图为()4.已知单项式7x n-1y与3x2y m-2的和仍是单项式,则m+n=() A.5B.6C.4D.35.2024年1月1日起,《洛阳市洛阳牡丹保护与发展条例》实施,对于促进牡丹文化传承具有重要意义.将“牡丹文化传承”六个汉字分别写在下面正方体展开图中,折成正方体后“传”与“文”相对的是()6.下列各式中,合并同类项正确的是()A .2x +x =2x 2B.2x +x =3x C .a 2+a 2=a 4 D.2x +3y =5xy7.如图,直线a ∥b ,直线c 与直线a ,b 分别交于A ,B 两点,AC ⊥AB 于点A ,交直线b 于点C ,如果∠1=52°,那么∠2的度数为()A .52° B.48° C.38° D.32°(第7题)8.已知3a -2b +6的值为8,则-6a +4b +1的值为()A .-3B .-4C .-5D .59.如图,甲从A 处出发沿北偏西20°方向行走至B 处,又沿南偏西60°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为()(第9题)A .100°B .80°C .50°D .20°10.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )=n 2k (其中k 是使F (n )为奇数的正整数),两种运算交替进行,例如,取n =12,则有,按此规律继续计算,第2024次“F ”运算的结果是()A.322022B .37C .1D .4二、填空题(每题3分,共15分)11.比较大小:-2________-312.(填“<”或“>”)12.小明值日时想把教室桌椅摆放整齐,为了将一列课桌对齐(在同一条直线上),他先把这列课桌的最前面一张和最后面一张摆好位置,然后调整其余课桌的位置,这样就可以将一列课桌对齐,所用到的数学知识是____________________________________.13.如图,已知直线AB,CD,EF相交于点O,∠1=94.3°,∠2=31°24′,则∠BOE=________.(第13题)14.定义新运算“*”,规定:a*b=2a-b,如:3*4=2×3-4=2,则2*(-3)=________.15.如图,M为线段AC的中点,点B在线段AC上,N为直线AC上的一点,若CN BN=12,AC=10,BC=4,则线段MN的长为________.(第15题)三、解答题(16~19题每题8分,20题9分,21~22题每题10分,23题14分,共75分)16.计算下列各题:(1)16÷(-2)3-12|;(2)(-1)5---113÷(-2)2.17.先化简,再求值:2(2mn+m2)-3(mn-m2),其中m=-1,n=2.18.如图所示,C是线段AB的中点,点D在线段AB上,且AD=12DB,若AC =9,求线段DC的长.(第18题)请将下面的解题过程补充完整:解:∵C是线段AB的中点(已知),∴AB=______AC().∵AC=9(已知),∴AB=________.∵点D在线段AB上,AD=12DB(已知),∴AD=______AB,∴AD=______,∴DC=______-______=______-______=______.19.某公司6天内货品进出仓库的吨数如下(“+”表示进库,“-”表示出库):+21,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是__________(填“增多了”或“减少了”);(2)经过这6天,仓库管理员结算发现仓库里还有货品470吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨4元,那么这6天要付多少元装卸费?20.在“老城换新颜”小区改造中,为了提高居民的宜居环境,某小区规划修建一个广场(平面图形如下图阴影部分所示).(1)用含m,n的代数式表示广场(阴影部分)的面积S;(2)若m=12,n=20,修建每平方米需费用20元,求出修建该广场的总费用.(第20题) 21.如图,已知AD⊥BC,GF⊥BC,∠1=∠2.试说明∠3=∠B.(第21题)22.【教材呈现】下面是华师版七年级上册数学教材习题1.7第6题内容.6.求出下列每对数在数轴上的对应点之间的距离:(1)3与-2.2;(2)4.75与2.25;(3)-4与-4.5;(4)-323与21 3 .你能发现所得的距离与这两个数的差有什么关系吗?【阅读完成】下面是聪聪同学在完成这一题后,写的一篇数学日记,其中一部分不小心被墨迹所覆盖.9月20日星期二晴我发现,数轴上,若A,B两点分别表示数a,b,那么A,B两点之间的距离与a,b两数的差有如下关系:AB=.我认识到,数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,这样能够用“数形结合”的方法解决一些问题.我自编了如下这几个问题:(1)如图,数轴上的点A,B分别表示有理数2,-5.(第22题)①A,B两点之间的距离是________.②点C为数轴上一点,且AC=6,则点C所表示的数为________.③被墨迹覆盖的部分:AB=________________.(2)|x+2|的几何意义是数轴上表示数x与数________两点之间的距离.(3)请你借助数轴探究:当表示数x的点在整条数轴上移动时,直接写出能使|x-3|+|x+2|=7成立的x的值.23.已知∠AOB,过顶点O作射线OP,若∠BOP=12∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图①,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数.(2)如图②,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”.(3)如图③,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止旋转.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,直接写出符合条件的所有的旋转时间.(第23题)答案一、1.C 2.B3.D4.B5.A6.B7.C8.A 9.B10.D 点拨:当n =12时,第1次结果是1222=3,第2次结果是3×3+1=10,第3次结果是1021=5,第4次结果是3×5+1=16,第5次结果是1624=1,第6次结果是3×1+1=4,第7次结果是422=1,第8次结果是3×1+1=4,…,可以看出,从第5次开始,结果就只是1,4两个数轮流出现,且当次数是偶数次时,结果是4;当次数是奇数次时,结果是1.所以第2024次“F ”运算的结果是4.二、11.>12.两点确定一条直线13.54°18′(或54.3°)14.715.113或9点拨:BM =10÷2-4=1.当点N 在点B 、C 之间时,BN =4÷(1+2)×2=83;当点N 在点C 的右边时,BN =4÷(2-1)×2=8.∴MN =1+83或MN =1+8,即MN =113或MN =9.三、16.解:(1)16÷(-2)3-12|=-16÷8+14×12=-2+3=1.(2)(-1)5---113÷(-2)2=-13×49-43÷41-43-=-1+53=23.17.解:2(2mn +m 2)-3(mn -m 2)=4mn +2m 2-3mn +3m 2=5m 2+mn .当m =-1,n =2时,原式=5×(-1)2+(-1)×2=5×1-2=5-2=3.18.2;线段中点的定义;18;13;6;AC ;AD ;9;6;319.解:(1)减少了(2)进库:21+35=56(吨),出库:32+16+38+20=106(吨),470-56+106=520(吨).答:6天前仓库里有货品520吨.(3)|+21|+|-32|+|-16|+|+35|+|-38|+|-20|=21+32+16+35+38+20=162(吨),162×4=648(元).答:这6天要付648元装卸费.20.解:(1)由题意,得S=2m·2n-(2n-n-0.5n)m=4mn-0.5mn=3.5mn(平方米).(2)∵m=12,n=20,∴S=3.5mn=3.5×12×20=840(平方米),840×20=16800(元).答:修建该广场的总费用为16800元.21.解:∵AD⊥BC,GF⊥BC,∴AD∥GF,∴∠1=∠A.又∵∠1=∠2,∴∠2=∠A,∴DE∥AB,∴∠B=∠3.22.解:(1)①7②8或-4③|a-b|(或|b-a|)(2)-2(3)x=-3或4.点拨:如图,(第22题)当-2<x<3时,x-3<0,x-(-2)=x+2>0,则|x-3|+|x+2|=3-x+x+2=5≠7,不符合题意;当x≤-2时,x-3<0,x-(-2)=x+2≤0,则|x-3|+|x+2|=3-x-(x+2)=1-2x=7,解得x=-3;当x≥3时,x-3≥0,x-(-2)=x+2>0,则|x-3|+|x +2|=x-3+x+2=2x-1=7,解得x=4.综上所述,使|x-3|+|x+2|=7成立的x的值是-3或4.23.解:(1)∵射线OP是∠AOB的“好线”,且∠BOP=30°,∴∠AOP=2∠BOP =60°.①当OP在∠AOB的内部时,∠AOB=∠BOP+∠AOP=90°;②当OP在∠AOB的外部时,∠AOB=∠AOP-∠BOP=30°.∴∠AOB的度数为90°或30°.(2)∵OB,OA分别是∠MOP和∠PON的平分线,∠MOB=30°,∴∠AOB=∠BOP+∠AOP=12(∠MOP+∠NOP)=90°,∠BOP=∠BOM=30°,∴∠AOP=90°-30°=60°,∴∠BOP=12∠AOP,∴OP是∠AOB的一条“好线”.(3)能.5s,7.5s.。

华师大版七年级上册数学期末考试试卷及答案

华师大版七年级上册数学期末考试试卷及答案

华师大版七年级上册数学期末考试试题一、单选题1.-|-2021|等于( )A .2021B .-2021C .1D .02.数字86000000用科学记数法表示为( ).A .0.86×108B .86×106C .8.6×108D .8.6×1073.某班数学老师在班级内组织了一堂“正方体展开图猜猜看”活动课,下图是该正方体展开图的一种,那么原正方体中,与“建”字所在面对面上的汉字是( )A .礼B .年C .百D .赞4.若|2||1|0a b -++=,则2()a b +等于( )A .1-B .0C .1D .2-5.一个几何体由若干个大小相同的小正方体搭成从上面看到的几何体形状如图所示,其中小正方形中的数字表示该位置小正方体的个数能表示该几何体从左面看到的形状图是( )A .B .C .D . 6.如图所示,点M ,N 是线段AB 上的两个点,且M 是AB 的中点,N 是MB 的中点,若AB =a ,NB =b ,下列结论:①AM =12a①AN =a ﹣b①MN =12a ﹣b①MN =14a .其中正确的有( )A .1个B .2个C .3个D .4个7.下列说法中正确的是( )A .单项式25xy -的系数是5-,次数是2 B .单项式m 的系数是1,次数是0C .12ab -是二次单项式 D .单项式45xy -的系数是45-,次数是2 8.如图,直线AB ,CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒.则AOC BOD ∠+∠的度数为( )A .100°B .80°C .90°D .70°9.当1x =时,代数式3234ax bx ++的值为2,则当1x =-时,代数式3234ax bx ++的值为( ) A .5- B .4- C .2 D .610.(阅读理解)计算:25×11=275,13×11=143,48×11=528,74×11=814,观察算式,我们发现两位乘11的速算方法:头尾一拉,中间相加,满十进一.[拓展应用]已知一个两位数,十位上的数字是a ,个位上的数字是b ,这个两位数乘11,计算结果的十位上的数字可表示为( )A .a 或a +1B .a +b 或abC .a +b−10D .a +b 或a +b−10 11.如图,把ABC 剪成三部分,边AB ,BC ,AC 放在同一直线l 上,点O 都落在直线MN 上,直线//MN l .在ABC 中,若125BOC ∠=︒,则BAC ∠的度数为( )A .60︒B .65︒C .70︒D .75︒12.已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a 、b 、m 、n 中的一个量即可,则要知道的那个量是()A .aB .bC .mD .n二、填空题13.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.14.阅读下列材料: 2111236=⨯⨯⨯ 221122356+=⨯⨯⨯; 22211233476++=⨯⨯⨯; 2222112344596+++=⨯⨯⨯; …根据材料计算:(1)2222123n ++++=_____(用含n 的代数式表示); (2)22222246850+++++ 的值为_____.15.如图,已知AB①CD ,BE 、DE 分别平分①ABF 、①CDF ,①F =40°,则①E =___.16.有理数a 、b 、c 在数轴上的位置如图所示,化简:222a c c b a b +--++=___________.17.已知a 是有理数,[]a 表示不超过a 的最大整数,如[]3.23=,[]1.52-=-,[]0.80=,[]22=等,那么[][]13.14352⎡⎤÷⨯-=⎢⎥⎣⎦_______. 18.一个正方体的表面展开图如图所示,则原正方体中的“①”所在面的对面所标的字是_____19.如图是一个数值运算程序,当输入的值为﹣2时,则输出的的值为 _____.20.如图,直线AB 、CD 、EF 相交于点O ,若12150∠+∠=︒,则3∠=______.︒三、解答题21.计算 (1)()3221322334⎛⎫⎡⎤-+⨯+--÷- ⎪⎣⎦⎝⎭(2)()()2022251132436⨯-+-÷-⨯ 22.先化简后求值 (1)()()223233a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =(2)若2225a b +=,求多项式()()22223223a ab b a ab b -+---的值.23.某服装厂一周计划生产2100件上衣,计划平均每天生产300件,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:件):(1)根据记录可知该服装厂一周共生产上衣多少件?(2)产量最多的一天比产量最少的一天多生产多少件?(3)该服装厂实行计件工资制,每生产一件上衣50元,每天超额完成任务每个奖20元,每天少生产一个扣10元,那么该服装厂工人这一周的工资总额是多少?24.如图:已知,120A ∠=︒,60ABC ∠=︒,BD DC ⊥于点D ,EF DC ⊥于点F , 求证:(1)//AD BC ;(2)12∠=∠.25.任意一个正整数n 都可以分解为两个正整数的乘积:n =p×q (p 、q 是正整数,且p≤q ),在n 的所有这种分解中,当q -p 的绝对值最小时,称p×q 是n 的最佳分解,并规定F (n )=p q .例如:3的最佳分解是3=1×3,F (3)=13;20的最佳分解是20=4×5,F (20)=45. (1)求:F (2)=_________;F (12)=_________.(2)如果一个两位正整数t ,交换其个位与十位上的数字得到的新的两位数记为t′,且t′-t =18①求出正整数t 的值;①我们称数t 与t′互为一对“吉祥数”,写出所有“吉祥数t”中F (t )的最大值.26.如图,直线PQ①MN ,点A 、B 分别是PQ 、MN 上的两点,点C 是PQ 、MN 之间(不在直线PQ 、MN 上)的一个动点,且90ACB ∠=︒,BD 平分CBM ∠交PQ 于点D .(1)如图1,若120PDB ∠=︒,求NBC ∠的度数;(2)如图1,在(1)问的条件下,求QAC ∠的度数;(3)延长AC 交直线MN 于点G ,如图2,GH 平分AGB ∠交DB 于H ,设2CBM x ∠=︒,2AGB y ∠=︒,请探究GHB ∠的度数是否与x 、y 的取值有关?并说明理由.参考答案1.B【分析】根据负数的绝对值是它的相反数,去绝对值符号作答.【详解】①|-2021|=2021,①-|-2021|=-2021,故选:B.【点睛】本题考查去绝对值符号,正数和零的绝对值是它本身;负数的绝对值是它的相反数.2.D【分析】结合题意,根据科学记数法的性质计算,即可得到答案.【详解】数字86000000用科学记数法表示为:8.6×107故选:D .【点睛】本题考查了科学记数法的知识;解题的关键是熟练掌握科学记数法的性质,从而完成求解.3.C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“礼”与“赞”是相对面,“建”与“百”是相对面,“党”与“年”是相对面;故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手.4.C【分析】根据被开方数及绝对值的非负性,可计算得出a、b的值,代入求解出结果.【详解】①20a-,①a-2=0,即a=2,b+1=0,即b=-1,①(a+b)2=(2-1)2=1.故选:C.【点睛】本题主要考查绝对值的非负性和算术平方根的非负性,解此题的关键在于熟练掌握其知识点.5.B【分析】左视图有3列,每列小正方形最大数目数目分别为2,4,3.据此可画出图形.【详解】解:左视图有3列,每列小正方形最大数目分别为2,4,3如图所示:故答案选:B【点睛】本题主要考查几何体的三视图画法的知识点,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.D【分析】根据线段的中点定义可得AM=MB=12AB,BN=NM=12BM,再根据线段之间的和差关系列出等式即可.【详解】解:①M是线段AB的中点,①AM=MB=12AB=12a,故①正确;AN=AB﹣BN=a﹣b,故①正确;MN=MB﹣NB=12AB﹣BN=12a﹣b,故①正确;①M 是线段AB 的中点,N 是AM 的中点,①AM =BM =12AB =12a ,MN =12MB =12×12a =14a ,故①正确; 故选:D .【点睛】本题考查线段中点的有关计算.能结合图形正确分析得出线段之间的和差关系是解题关键.7.D【分析】根据单项式的定义、单项式的系数与次数的定义逐项判断即可得.【详解】解:A 、单项式25xy -的系数是15-,次数是123+=,则此项说法错误;B 、单项式m 的系数是1,次数是1,则此项说法错误;C 、11222ab ab -=-是二次二项式,则此项说法错误;D 、单项式45xy -的系数是45-,次数是112+=,则此项说法正确;故选:D .【点睛】本题考查了单项式、单项式的系数与次数,熟记定义是解题关键.8.B【分析】根据垂直的定义及对顶角相等即可求解.【详解】①EO AB ⊥,50EOD ∠=︒①BOD ∠=90°-40EOD ∠=︒①直线AB ,CD 相交于点O ,①40AOC BOD ∠=∠=︒①AOC BOD ∠+∠=80°故选B .【点睛】此题主要考查角度的求解,解题的关键是熟知对顶角相等.9.D【分析】由当1x =时,3234ax bx ++的值是2,得到232a b +=-,则当1x =-时,3234234246ax bx a b ++=--+=+=.【详解】解:由题意得,当1x =时,3234ax bx ++的值是2,2342a b ∴++=,232a b ∴+=-,232a b ∴--=,当1x =-时,3234234246ax bx a b ++=--+=+=.故选D .【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握整体代入的思想求解.10.D【分析】根据题目中的速算法可以解答本题.【详解】由题意可得,某一个两位数十位数字是a ,个位数字是b ,将这个两位数乘11,得到一个三位数,则根据上述的方法可得:当a+b< 10时,该三位数百位数字是a ,十位数字是a + b ,个位数字是b ,当a+b≥10时,结果的百位数字是a + 1,十位数字是a+b - 10,个位数字是b .所以计算结果中十位上的数字可表示为:a+b 或a+b−10.故选:D .【点睛】此题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.11.C【分析】首先利用平行线间的距离处处相等,得到点O 是①ABC 的内心,点O 为三个内角平分线的交点,从而容易得到①ABC+①ACB=2(180°-125°),再根据三角形内角和定理即可求解.【详解】解:如图,过点O 分别作OD①AC 于D ,OE①AB 于E ,OF①BC 于F , ①直线MN①AB ,①OD=OE=OF ,①点O 是①ABC 的内心,点O 为三个内角平分线的交点,①①ABC+①ACB=2(①OBC+①OCB )=2(180°-125°)=110°,①①BAC=70°.故选:C .【点睛】本题考查了平行线的性质及三角形内心的判定及性质,利用平行线间的距离处处相等判定点O 是①ABC 的内心是解题的关键.12.D【分析】先用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.【详解】解:如图,由图和已知条件可知:AB =a ,EF =b ,AC =n ﹣b ,GE =n ﹣a .阴影部分的周长为:2(AB+AC )+2(GE+EF )=2(a+n ﹣b )+2(n ﹣a+b )=2a+2n ﹣2b+2n ﹣2a+2b=4n .①求图中阴影部分的周长之和,只需知道n 一个量即可.故选:D .【点睛】本题主要考查了整式的加减,能用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽是解决本题的关键.13.-1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,据此可得m 、n 的值,再代入所求式子计算即可.【详解】解:①单项式2xmy 5和﹣x 2yn 是同类项,①m =2,n =5,①n ﹣3m =5﹣6=-1.故答案为:-1.【点睛】本题主要考查了同类项的定义和代数式求值,熟知同类项的定义是解题的关键. 14. ()()11216n n n ++ 22100 【分析】(1)根据题意可得()()22111123111111266=⨯⨯⨯==⨯⨯+⨯++,()()22111223522122166+=⨯⨯⨯=⨯⨯+⨯++;()()2221112334733133166++=⨯⨯⨯=⨯⨯+⨯++;()()22221112344594414566+++=⨯⨯⨯=⨯⨯+⨯+;…由此发现规律,即可求解;(2)把原式变形为()222224123425⨯+++++,即可求解.【详解】解:(1)根据题意得:()()22111123111111266=⨯⨯⨯==⨯⨯+⨯++()()22111223522122166+=⨯⨯⨯=⨯⨯+⨯++;()()2221112334733133166++=⨯⨯⨯=⨯⨯+⨯++;()()22221112344594414566+++=⨯⨯⨯=⨯⨯+⨯+;… 由此发现,()()()()2222111231112166n n n n n n n n ++++=+++=++;故答案为:()()11216n n n ++(2)22222246850+++++()()()()()2222221222324225=⨯+⨯+⨯+⨯++⨯()222224123425=⨯+++++()14252625266=⨯⨯⨯⨯+22100=故答案为:22100【点睛】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键. 15.20°【分析】根据平分线的性质得到①1=①2,①3=①4,再根据三角形内角和与外角定理得到2①E=①F ,故可求解.【详解】解:如图,①BE 、DE 分别平分①ABF 、①CDF ,①①1=①2,①3=①4,①AB①CD ,①①1=①5在①EGD 中,①5=①E+①4,①①1=①E+①4在①EBH 与①DFH 中,①E+①2=①3+①F①①E+①E+①4=①3+①F故2①E=①F①①E=20°故答案为:20°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知三角形的内角和、外角定理. 16.2b c -【分析】根据数轴上点的位置判断出0b a c <<<,c b <,a c <,由此判断绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:由题可知0b a c <<<,c b <,a c <,①0a c +>,20c b ->,20a b +<, ①222a c c b a b +--++()()222a c c b a b =+---+=242a c c b a b +-+--=2b c -,故答案为:2b c -.17.-6【分析】根据[]a 表示不超过a 的最大整数,求出各个数,再计算即可求解.【详解】解:①[]a 表示不超过a 的最大整数,①[][]13.14352⎡⎤÷⨯-⎢⎥⎣⎦=33(6)÷⨯-=6-;故答案为:6-.18.海【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:相对的面的中间要相隔一个面,则“①”所在面的对面所标的字是“海”. 故答案为:海.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.-18【分析】把x =﹣2代入运算程序求值即可得最后结果.【详解】解:把x =﹣2代入得,(﹣2)2×(﹣5)+2=4×(﹣5)+2=﹣20+2=﹣18,故答案为:﹣18.20.30【分析】根据平角的定义可以求出AOC ∠,再根据对顶角的性质求出3∠即可.【详解】解: 12180AOC ∠+∠+∠=︒,12150∠+∠=︒30AOC ∴∠=︒3AOC ∠=∠330∴∠=︒.故答案为:30.21.(1)-1 (2)43【分析】(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.(2)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:原式=()()296343-+⨯--⨯-9412=--+1=-(2)解:原式=5111323166⨯-⨯⨯ 5133=- 43= 22.(1)229a ab -;27(2)()2222a b +;10【分析】(1)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.(1)解:原式()2232333a ab a b ab b ⎡⎤=---++⎣⎦2236333a ab a b ab b =--+--229a ab =-当3a =-,13b =时,原式()()212393189273=⨯--⨯-⨯=+= (2)解:原式22223223a ab b a ab b =-+-++2224a b =+()2222a b =+当2225a b +=时,原式2510=⨯=23.(1)2100;(2)19件;(3)105180元.【分析】(1)由每周的计划工作量加上每天实际超出与不足的工作量,从而可得答案;(2)由表格信息可得生产最多的一天是星期四,最少的一天是星期五,求解最多与最少的差即可得到答案;(3)由实际生产的数量乘以每件的工资单价,再加上奖励工资,减去扣罚的金额,即可得到答案.【详解】解:(1)()3007+31410954210002100,⨯--+-+-=+=所以该服装厂一周共生产上衣2100件;(2)星期四生产最多为:300+10=310,星期五生产最少为:3009291,-=31029119∴-=(件),所以产量最多的一天比产量最少的一天多生产19件;(3)基本工资为:502100=105000⨯(元),奖金为:()3+10+520=360⨯(元),扣款为:()1+4+9+410=180⨯(元),总金额为:105000+360180105180-=(元),答:该厂工人这一周的工资总额是105180元.24.(1)见解析;(2)见解析【分析】(1)根据平行线的判定证明即可;(2)根据平行线的性质计算即可;【详解】证明:(1)①120A ∠=︒,60ABC ∠=︒,①180A ABC ∠+∠=︒.①//AD BC (同旁内角互补,两直线平行).(2)①//AD BC .①13∠=∠(两直线平行,内错角相等).①BD DC ⊥,EF DC ⊥,①90BDF ∠=︒,90EFC ∠=︒(垂直的定义).①90BDF EFC ∠=∠=︒.①//BD EF (同位角相等,两直线平行).①23∠∠=(两直线平行,同位角相等).①12∠=∠.【点睛】本题主要考查了平行线的判定与性质,准确计算是解题的关键.25.(1)12,34;(2)①13,24,35,46,57,68,79;①57 【分析】(1)根据题意,由最佳分解定义求解即可;(2)①根据“吉祥数”定义知(10)(10)18y x x y +-+=,即2y x =+,结合x 的范围可得2位数的“吉祥数”,①求出每个“吉祥数”()F t 的值,比较大小可得.【详解】解:(1)根据定义:2的最佳分解为:12⨯,1(2)2F ∴=, 12的最佳分解为:1234=⨯,3(12)4F ∴=, 故答案是:12,34; (2)①设交换t 的个位上的数与十位上的数得到的新数为t ', t 为“吉祥数”,(10)(10)9()18t t y x x y y x ∴'-=+-+=-=,2y x ∴=+,∴“吉祥数”有:13,24,35,46,57,68,79,①∴所有“吉祥数”中()F t 的值为:1(13)13F =,42(24)63F ==,5(35)7F =,2(46)23F =,3(57)19F =,4(68)17F =,1(79)79F =,其中最大值为:5(35)7F =. 【点睛】本题主要考查了新定义,解题的关键是理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算.26.(1)60°(2)30°(3)GHB ∠的度数与x 、y 的取值无关,理由见解析【分析】(1)根据PQ①MN ,可得60MBD ∠=︒,从而得到2120MBC DBM ∠=∠=︒,即可求解;(2)过点C 作CE①PQ ,可得90ACE BCE ∠+∠=︒,QAC ACE ∠=∠,CE①MN ,进而得到60BCE NBC ∠=∠=︒,可得9030ACE BCE ∠=︒-∠=︒,即可求解;(3)根据三角形外角的性质可得90CBM CGM BCG ∠-∠=∠=︒,从而得到45x y -=︒,再由GH 平分AGB ∠,BD 平分CBM ∠,可得12DBM CBD CBM x ∠=∠=∠=︒,12HGB AGB y ∠=∠=︒,然后根据三角形外角的性质,即可求解. (1)解:①//PQ MN ,①180PDB MBD ∠+∠=︒,①120PDB ∠=︒,①60MBD ∠=︒,①BD 平分CBM ∠,①2120MBC DBM ∠=∠=︒,①18060NBC MBC ∠=︒-∠=︒;(2)解①过点C 作CE①PQ ,如图,①90ACE BCE ∠+∠=︒,QAC ACE ∠=∠, ①CE①PQ ,PQ①MN ,①CE①MN ,①60BCE NBC ∠=∠=︒,①9030ACE BCE ∠=︒-∠=︒,①30QAC ACE ∠=∠=︒;(3)解①GHB ∠的度数与x 、y 的取值无关.理由: ①90ACB ∠=︒,①90BCG ∠=︒,①MBC ∠是BCG ∆的外角,①90CBM CGM BCG ∠-∠=∠=︒, ①2CBM x ∠=︒,2AGB y ∠=︒,①2290x y -=︒,①45x y -=︒,①GH 平分AGB ∠,BD 平分CBM ∠, ①12DBM CBD CBM x ∠=∠=∠=︒,12HGB AGB y ∠=∠=︒,①DBM ∠是ΔHBG 的外角,①①DBM=①BGH+①GHB ,①GHB DBM HGB ∠=∠-∠=45x y -=︒, ①GHB ∠的度数与x 、y 的取值无关.。

华师大版七年级上册数学期末测试卷(附答案)

华师大版七年级上册数学期末测试卷(附答案)

华师大版七年级上册数学期末测试卷一、单选题(共15题,共计45分)1、某商店销售某一品牌洗衣机,其中洗衣机每台进价为元,商店将进价提高30%出售,又以七五折促销,这时候洗衣机的零售价为()元A. B. C. D.2、如图,AB∥CD,若∠1=60°,则∠2等于()A.60ºB.90ºC.120ºD.150º3、下列说法正确的是()A.符号相反的数互为相反数B.当时,总大于0C.一个数的绝对值越大,表示它的点在数轴上越靠右D.一个有理数不是正数就是负数4、下列各组两个数中,互为相反数的是()A. 和2B. 和C. 和D. 和5、下列计算正确的是()A.a 3﹣a 2=aB.2a 2+3a 2=5a 2C.2a 2﹣a 2=1D.a 2+2a 3=3a 56、下列各式中,与3x2y3是同类项的是()A.2x 5B.3x 3y 2C.﹣y 5D.﹣x 2y 37、如图,AB∥DE,∠B=150°,∠D=140°,则∠C的度数是()A.60°B.75°C.70°D.50°8、2的相反数是()A.2B.﹣2C.D.-9、若x的相反数是5,|y|=8,且x+y<0,那么x-y的值是( )A.3B.3或-13C.-3或-13D.-1310、如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25°,∠2=70°,则∠B=()A.65°B.55°C.45°D.35°11、将正整数的算术平方根按如图所示的规律排列下去.若用有序实数对(m,n)表示第m排,从左到右第n个数,如(4,3)表示实数,则(8,6)表示的实数是()A. B. C. D.12、计算(+2)+(﹣3)所得的结果是()A. B. C. D.13、下列四个命题中,真命题有()两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;三角形的一个外角大于任何一个内角;若,则.A.1个B.2个C.3个D.4个14、如图,下列条件:① ,② ,③ ,④,能判断直线的有()A.4个B.3个C.2个D.1个15、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、大于﹣4.2且小于5.6的所有整数的和是________.17、多项式﹣x2+4x﹣的次数是________,常数项是________.18、将 1 295 330 精确到十万位后,近似数是________(用科学记数法表示)19、把化成幂的形式是________20、已知∠α= 29°18′,则∠α的余角为________.21、绝对值小于5的所有整数之积为________.22、一天早晨的气温是﹣8℃,中午上升了12℃,午夜又下降了10℃,午夜的气温是________℃.23、如图,△ABC是等边三角形,AD是BC边上的高,E是AC上一点,且AE=AD,则∠AED的度数为________.24、规定图形表示运算a–b + c,图形表示运算.则+ =________(直接写出答案)25、将940万吨用科学记数法表示为________吨.三、解答题(共5题,共计25分)26、计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.27、如图,已知直线AB,CD相交于O,OE⊥AB,OF平分∠COB,∠AOC=32°,求∠EOF的度数.28、已知b的倒数与a互为相反数,c,d互为倒数,m的绝对值为4,求5(a+2)+6cd﹣7m的值.29、已知:点M,N分别是线段AC,BC的中点.(1)如图,点C在线段AB上,且AC=9cm,CB=6cm,求线段MN的长;(2)若点C为线段AB上任一点,且AC=acm,CB=bcm,用含有a,b的代数式表示线段MN的长度.(3)若点C在线段AB的延长线上,且AC=acm,CB=bcm,请你画出图形,并且用含有a,b的代数式表示线段MN的长度.30、将数-2,+1,0,,在数轴上表示出来,并用“<”连接各数.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、D5、B6、D7、C8、B9、A10、C11、B12、B13、A14、B15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、30、。

(必考题)华师大版七年级上册数学期末测试卷及含答案(新一套)

(必考题)华师大版七年级上册数学期末测试卷及含答案(新一套)

华师大版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.﹣1+(﹣1)=0B.0﹣(﹣1)=﹣1C.1÷(﹣3)=D.﹣2×(﹣3)=62、在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3、下列运算正确的是()A.1﹣2=1B.3×(﹣2)=6C.D.3×(2y﹣1)=6y﹣34、已知:|x|=3,|y|=2,且x>y,则x﹣y的值为()A.5B.1C.5或1D.﹣5或﹣15、如图,AB∥CD,∠1=110°,∠ECD = 70°,∠E的大小是()A.30°B.40°C.50°D.60°6、设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= ( )A.1B.0C.1或0D.2或07、如果和互补,且>,则下列表示的余角的式子中:①;②;③;④,正确的是()A.①②③④B.①②④C.①②③D.①②8、如图,是一个正方体的表面展开图,那么原正方体中与“祝”字所在的面相对的面上标的字是()A.考B.试C.顺D.利9、下列几何体中,俯视图为矩形的是()A. B. C. D.10、下列各数中,绝对值最小的数是()A.-2B.-3C.1D.011、把―(―1),―,―|―|,0用“>”连起来的式子正确的是()A.0>―(―1) >―>―|―|B.―(―1) >0>―|―|>-C.0>―>―|―|―(―1)D.―(―1) >0>―>―|―|12、下列计算正确的是()A. B. C. D.13、下列运算正确的是( )A.a+a=a 2B.a 3÷a=a 3C.a 2•a=a 3D.(a 2) 3=a 514、若|x+2y+3|与(2x+y)2互为相反数,则x2﹣xy+y2的值是()A.1B.3C.5D.715、下面不正确的是()A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数的绝对值较小C.数轴可以表示任意有理数D.原点在数轴的正中间二、填空题(共10题,共计30分)16、有理数a,b,c在数轴上的位置如图所示,化简|c﹣a|﹣|a﹣b|﹣|c|=________.17、若单项式﹣2x3y n与4x m+2y5合并后的结果还是单项式,则(﹣m)n=________.18、观察一列单项式:﹣2x,4x2,﹣8x3, 16x4,…,则第5个单项式是________.19、如图,直线AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于G.若∠1=50°,则∠2=________.20、已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,线段AM的长是________.21、如图所示,当________时,有CE∥AB成立.(只需要写出一个条件即可)22、若,则________.23、广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为________.24、已知线段AB=6 cm,在直线AB上画线段AC=2 cm,则BC的长是________.25、(1)侧面可以展开成一长方形的几何体有________;(2)圆锥的侧面展开后是一个________;(3)各个面都是长方形的几何体是________;三、解答题(共5题,共计25分)26、先化简,再求值:其中27、王师傅买来九块木板,向自己做一个书架.现在有两个书架的样子,请你观察一下,再猜一猜,王师傅做的是哪个样子的书架,并说明理由.28、如图1,已知直线l1∥l2,直线l和直线l1、l2交于点C和D,在直线l有一点P,(1)若P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD之间的关系,不必写理由.29、比较大小:2100与375(说明理由)30、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知)∴AC∥__▲_(_▲_)∴∠C=∠CEF(_▲_).∵∠C=∠D(已知),∴__▲_=∠CEF(_▲_)∴BD∥CE(_▲__)参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、C5、B6、B7、B8、D9、C10、D11、D12、B13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、30、。

华师大版七年级数学上册期末考试卷(含答案)

华师大版七年级数学上册期末考试卷(含答案)

七学年上数学期末考试一、选择题:(每小题3分,共30分) ( )1.-2的绝对值是A .-2B .2C .12D .-12( )2.如图1,已知线段AB ,以下作图不可能的是A. 在AB 上取一点C ,使AC=BCB. 在AB 的延长线上取一点C ,使BC=ABC. 在BA 的延长线上取一点C ,使BC=ABD. 在BA 的延长线上取一点C ,使BC=2AB( )3. 下列计算正确的是 A. - (23)3=276- B.-(32)2 =94 C. - (32)3=278 D. - (53)3= - 12527( )4.下列方程中,属于一元一次方程的是A.021=+xB. 3x 2+4y=2C. x 2+3x=x 2-1D.x 2+3x-1=8+5x ( )5.下列事件中,必然发生的事件是(A )明天会下雨 (B )小明数学考试得99分(C )今天是星期一,明天就是星期二 (D )明年有370天 ( )6.如图,∠AOB=180°,OD 、OE 分别是∠AOC 和∠BOC 的平分线,则与线段OD 垂直的射线是A.OAB.OCC.OED.OB( )7. 用一个平面去截一个正方体,截面的形状不可能是 A 、梯形 B 、五边形C 、六边形D 、七边形( )8.如果2(x+3)的值与3(1-x)的值互为相反数,那么x 等于A.9B.8C.-9D.-89..某工厂现有工人x 人,若现有人数比两年前原有人数减少35%,则该工厂原有人数为 A%351+x B %351-xC (1+35%)xD (1+35%)x10.如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y+1的值等于 A . 2 B . 3 C .﹣2 D .4 二、耐心填一填:(本大题8小题,每小题3分,计24分)11、若点C 是线段AB 的中点,且AB=10cm,则AC = cm .12、姚明一定不会输给其他任何一个NBA 球员:是 事件(填必然,不可能或不确定)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师版七年级数学期末复习测试
(测试时间:90分钟 满分:
100分) 班级 姓名 得分_______
一、填空:(每题1分,共10分) 1.若2x+5=7,则4x= 。

2.已知x=-3是方程(2m+1)x-3=0的解,则m= 。

3.一个三角形内角中,至少有 个锐角。

4.一个多边形的每一个外角为120, 这个多边形的边数 。

-
5.只用一种正多边形可以铺满地板,这样的正多边形的边数为 。

6.已知等腰三角形的一个内角为300,则它的顶角为
度。

7.如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm ,
则△ABD 的周长为 。

8.如图,在△ABC 中,AB=AC ,BD 是∠ABC 的平分线,若∠ADB=930, 则A= 。

9.举一个随机事件的例子: 。

10.某商场5月份随机抽查了6天的营业额,结果如
下:,,,,,(单位:万元)。

试估计该商场5月份的营业额,
大约是 万元。

二.选择(每题2分,共16分) 1.羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是( )

A .1
B .2
C .3
D .4
2.已知2
243
x -=,则x 的值是( )
A .-3
B .9
C .-3或9
D .以上结论都不对 3.若△ABC 的三边分别为m 、n 、p ,且()2
0m n n p -+-=,则这个三角形为( )
A .等腰三角形
B .等边三角形
C .直角三角形
D .等腰直角三角形 4.我国民间流传着很多诗歌形式的数学题,令人耳目一新,其中有一“鸡兔同笼”的问题;鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔设鸡为x 只,兔为y 只,则可列方程组( )
A E
C D A C
D
B
A.
36
22100
x y
x y
+=


+=

;B.
18
22100
x y
x y
+=


+=

;C.
36
42100
x y
x y
+=


+=

;D.
36
24100
x y
x y
+=


+=

}
5.正六边型的对称轴共有()
A.2条B.4条C.6条D.无数条6.以下的调查适合作抽样调查的有()
(1)了解一批灯泡的使用寿命;(2)研究某种新式武器的火力;
(3)了解七年级(2)班同学期末考试的数学成绩;(4)审查一篇科学论文的正确性。

A.1种B.2种C.3种D.4种7
)A.B.36.8 C.D.
8.已知一组数据为:20,30,40,50,50,60,70,80,50。

其平均数为a、中位数b和众数c的大小关系是()
A.a>b>c B.c>b>a C.b<c<a D.a=b=c 三、解方程或方程组:(每题4分,共16分)
1.223
23
x x
-+
= 2.
22 1.43
2
0.330.2
x x
-
+=
-
3.
28
347
y x
x y
=-+


+=

4.2327
x y x y
-=+=

·
四、解答(58分)
1、(6分)在正方形网格上有一个△ABC。

(1)作△ABC关于直线MN的对称轴;
(2)在网格上最小正方形的边长为1,求△ABC的面积。

&
2、某厂生产一种产品,它的每件产品成本是2元,零售价是3元,年销售量为100万件。

为了获得更好的效益,厂里准备拿出一定的奖金做广告,根据经验,每投入1万元广告可多销售万件产品,那么投入多少万广告费时可以获得利润18万元(利润=销售总额-产品成本-广告费)(6分)

]

3、(6分)下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”。

两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手。

“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”。

现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分。

(1)小明和同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次。

请你用所有的数学知识求出小明“布”赢“锤子”,“锤子”赢“剪子”各多少次
(2)如果小明与同学玩了若干次,得了30分。

请你探究一下小明各种可能的赢法,并选择其中三种赢法填入下表。

?
4、(7分)在等边三角形△ABC 中,BD 平分∠ABC ,延长BC 到E ,使CE=CD ,连接D 、E 。

(1)成峰同学说:BD=DE ,她说得对吗请你说明理由; &
(2)把“BD 平分∠ABC 该成其它条件,也能得到同样的结论”,你认为应该如何改呢
A
E
C
D
B
,
5.在三角形△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,如果△ADE 的周长为10cm ,BC=5cm ,那么△ABC 的周长是多少并说清理由。

(7分)
A
E C
D O
B
`
6.(8分)甲、乙两人投掷一个普通的正方体子,如果两者的积为奇数,那么甲得1分,如果两者之积为偶数,那么乙得1分。

连续投掷20次,谁得分高,谁就获胜。

(1)请你想一想,谁获胜的可能性(机会)大简要说明理由;
(2)你认为这个游戏公平吗如果不公平,请为他们设计一个公平的游戏。

:
7.(8分)世界杯决赛分成8组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个对进入16强。

胜一场得3分,平一场得1分,负一场得0分。

请问:
(1)每小组共比赛多少场
(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确

8.某单位召开小型座谈会,请小李购买千克苹果,千克橘子和千克瓜子,共用去元。

后因故又请小李按原价增购了2千克苹果,5千克橘子和千克瓜子,又用去元。

有一位顾客按小李的购货价购买了苹果、橘子和瓜子各0.千克,营业员收他货款元,小李觉得营业员算帐有错误。

你同意小李的看法吗请说明理由(10分)
:


>
参考答案
一、1.4 2.-1 3.两 4.30 5.正三角形,正方形,正六边形
6.300或1200 7.21cm 8.560 9.略 10. 二、1~8 BCBD CBAD 三、1.X=0 2.X=
1
5 3. 52x y =⎧⎨=-⎩ 4.31
x y =⎧⎨=-⎩ 四、1.略 2.设投入的广告费为x 万元,
根据题意,得()x=18,解得x=12万元 3.(1)设小明“布”赢“锤子”为x 次,“锤子”赢“剪子”为y 次,则有
7219572108x y x y ++=⎧⎨
++⨯=⎩ 解之,得6
8x y =⎧⎨=⎩
%
答:小明“布”赢“锤子”为6次,“锤子”赢“剪子”为8次。

(2)
∴∠ABC=∠ACB=600, ∵BD 平分∠ABC , ∴∠DBC =300, 又因为CE=CD , ∴∠E=∠CDE ,
由三角形的外角性质得∠ACB=∠E+∠CDE , ∴∠E=300, ∴∠E=∠DBE , ∴BD=DE ;
(2)BD ⊥AC 于D 或AD=DC
5.∵DE10cm10cm5cm15cm 三种水果每0.5千克的价格是x 、y 、z 元,则
3716.3
41021.8
x y z x y z ++=⎧⎨
++=⎩ ①×2-②得2x+4y+z=, 即(x+3y )+(x+y+z )=
③,把①化成:2(x+3y )+(x+y+z )=……④, 由③、④得x+y+z=, ∴多收了元.。

相关文档
最新文档