建筑物理声学复习整理
建筑物理声学复习整理
1.吸声材料和吸声结构的分类?①多孔材料,板状材料,穿孔板,成型顶棚吸声板,膜状材料,柔性材料吸声结构:共振吸声结构,包括1。
空腔共振吸声结构,2。
薄膜,薄板共振吸声结构。
其他吸声结构:空间吸声体,强吸声结构,帘幕,洞口,人和家具,空气吸收(空气热传导性,空气的黏滞性和分子的弛豫现象,前两种比第三种的吸收要小得多)。
吸声与隔声有什么区别?吸声量与隔声量如何定义?它们与那些因素有关?答:吸声指声波在传播途径中,声能被传播介质吸收转化为热能的现象。
隔声指防止声波从构件一侧传向另一侧。
吸声量:指材料的吸声面积与其吸声系数的乘积,单位为m2。
隔声量:指建筑构件的传声损失,,单位为(dB)。
它们主要与构件的透射系数有关,和构件的反射系数和吸声系数有关。
2. 衍射的定义:当声波在传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。
影响因素:障碍物的尺寸或缝孔的宽度与波长接近或更小时,才能观察到明显的衍射现象,不是决定衍射能否发生的条件,仅是使衍射现象明显表现的条件,波长越大,越容易发生衍射现象。
3.解释“波阵面”的概念,在建筑声学中引入“声线”有什么作用?答:声波从声源发出,在某一介质内向某一方向传播,在同一时刻,声波到达空间各点的包迹面称为“波阵面”,或“波前”。
“声线”主要是可以较方便地表示出声音的传播方向;利用作图法确定反射板位置和尺寸。
波阵面为平面的称为“平面波”,波阵面为球面的称为“球面波”。
4.什么是等响线?从等响线图说明人耳对声音的感受特性。
答:等响线是指响度相同的点所组成的频谱特征曲线,从等响线图可知:1.人耳在高声压级下,对声音频率的响应较一致;2.在低声压级下,人耳对于低于1000Hz的声音和高于4000Hz的声音较不敏感,而对1000Hz~ 4000Hz的声音感受最为敏锐;3.在同一频率下,声压级提高10dB,相对响度提高一倍。
建筑物理(声)课堂笔记.
建筑物理(声)课堂笔记第一章基础知识建筑声学的两大任务:噪声控制,音质设计。
课程内容:1、声音的基本性质:声音的产生和传播2、人对声音的感知和评价:心理和生理声学3、室内传声质量4、材料和构件的吸声和隔声性能5、建筑物内外噪声控制当前建筑设计中存在的若干声学问题:1、大量住宅建设中的隔声问题2、各类厅堂中的室内音质问题3、轻薄结构和预制构件带来的隔声新问题4、施工和建筑内的机械设备5、城市噪声环境6、重造型、轻功能声环境控制的意义:创造良好的满足要求的声环境1、保证良好的听闻条件2、保证安静的环境,防止噪声干扰3、保证工艺过程要求(录音棚、演播室等)声音的产生是物体振动的结果,这些物理波动现象引起听觉感觉。
建筑声学考虑的问题都与主观听觉有关,因此频率、强度有限听觉的频率范围:20—20000Hz,正常频率100—8000Hz小于20Hz是次声波,如潜艇;大于20000Hz是超声波,如海豚。
声学的频带:把声频范围划分成几个频段,叫做频带,度量单位为频程。
频带宽度:△f=f2-f1频带中心频率:f c=错误!未找到引用源。
倍频程:两个频率之比为2:1的频程声音的传播声速与媒质的弹性、密度和温度有关。
空气中的声速:理想气体中c=错误!未找到引用源。
声压是空气压强的变化量而不是空气压强本身。
声音传播过程是一个状态传播过程,而不是空气质点的输运过程。
本质是能量的传播。
声源的种类:1、点声源(如嘴巴),尺寸小于1/7波长,波阵面为球面;2、线声源(如西大直街),单一尺寸小于1/7波长,波阵面为柱面;3、面声源,波阵面为平面。
波阵面是波形中振动相同的点所组成的面。
反射定律:1、入射角=反射角;2、入射线与反射线在法线两侧;3、入射线、法线、反射线在同一平面内。
透射系数:τ=Eτ/E0 ;反射系数:γ=Eγ/E0 ;吸声系数:α=1-γ=1- Eγ/E0一般情况下,透射部分的能量要小于反射部分的能量。
τ小的材料成为“隔声材料”,γ小的材料称为“吸声材料”。
建筑考试】《建筑物理》复习资料
【建筑考试】《建筑物理》复习资料Brightno2011年01月09日 01:38:10第一章建筑声学基本知识1、了解声音的基本性质,明确声功率、声强、声压、声功率级、声强级、声压级、频程和频谱等有关建筑声学物理概念及计算方法。
声功率:声源在单位时间内向外辐射的声能,符号:W,单位:瓦(W),微瓦(μW)声强:在单位时间内,垂直于声波传播方向的单位面积所通过的声能。
符号:I,单位:(W/m2),声强与声功率的计算:I= w/s声压:某瞬时,介质中的压强相对于无声波时压强的改变量。
符号:p,单位:N/m2, Pa(帕),μb(微巴)。
1N/m2 = 1 P a = 10 μb声压级:一个声音的声压与基准声压之比的常用对数乘以20。
Lp = 20lg (p/p0) (dB) (在0~120分贝之间)式中p0——参考声压(基准声压),p0=2´10-5N/m2,使人耳感到疼痛的上限声压为20N/m2声强级:一个声音的声强与基准声强之比的常用对数乘以10。
LI = 10lg (I/I0 ) (dB) (在0~120分贝之间)式中I0——参考声强(基准声强),I0=10-12W/m2,使人耳感到疼痛的上限声压为1W/m2。
声功率级:一个声音的声功率与基准声功率之比的常用对数乘以10。
LW = 10lg W/WO (dB) (在0~120分贝之间)式中W0——参考声功率(基准声功率),W0=10-12W声音的叠加:P270-271公式频谱表示某声音频率组成及各频率音量的大小倍频程(倍频带):f2 / f1=2n, n=1,中心频率:125,250,500,1000,2000,,4000…Hz。
1/3倍频程(1/3倍频带):f2 / f1=2n, n=1/32.掌握声音在户外的传播的规律和计算(一)点声源随距离的衰减在自由声场中,声功率为W 的点声源,在与声源距离为r 处的声压级Lp 和距离r 的关系式:Lp =Lw –11 –20 lg r (dB)从上式可以看出,观测点与声源的距离增加一倍,声压级降低 6 dB,(二)线声源随距离的衰减线声源,如公路上的车辆,声波以圆柱状向外传播,当线声源单位长度的声功率为W,在与声源距离为r 处的声强为声压级为:Lp = Lw –8 –10 lgr (dB)因此,观测点与声源的距离每增加一倍,声压级降低3 dB。
建筑物理(声学复习)
第10章 建筑声学基本知识1. 声音的基本性质①声波的绕射当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。
②声波的反射当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。
③声波的散射(衍射)当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射. ④声波的折射像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。
这种由声速引起的声传播方向改变称之为折射.白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。
根据能量守恒定理:0E E E E γατ=++0E --单位时间入射到建筑构件上总声能;E γ——构件反射的声能; E α——构件吸收的声能; E τ-—透过构件的声能。
透射系数0/E E ττ=; 反射系数0/E E γγ=;实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为:11E E E E E γαταγ+=-=-=⑥波的干涉和驻波1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。
2。
驻波:两列同频率的波在同一直线上相向传播时,可形成驻波.2.声音的计量①声功率指声源在单位时间内向外辐射的声能。
符号W . 单位:瓦(W)或微瓦(μW). ②声强定义1:是指在单位时间内,改点处垂直于声波传播方向的单位面积上所通过的声能。
定义2:在声波传播过程中单位面积波阵面上通过的声功率。
符号:I ,单位:W/m 2dWI dS=意义:声强描述了声能在空间的分布;衡量声波在传播过程中声音强弱的物理量。
建筑物理复习资料声学部分框架整理
第三部分 声学■有关的声学基本知识(1)声音的产生、传播与基本物理性能; (2)声音的计量; (3)人耳的听觉特性; (4)室内声学原理 ■材料与结构的声学特性 (1)吸声材料与吸声结构;(2)建筑隔声; (3)声扩散处理。
■声环境设计中的噪声控制 ■音质设计(观演建筑)第一章 声音的物理特性和人对声音的感受 ■有关的声学基本知识● 声音的产生、传播与基本物理性能▲声速:340m/s p304频率、波长和声速之间的关系:ג=c/f 波长=声速/频率 ▲人耳听觉范围:20Hz~20kHz ▲倍频带▲声波传播过程中的特点反射 、衍射(绕射) 、散射、干涉、声吸收、声透射 ● 声音的计量▲常用术语声功率(W ,单位w ):声源在单位时间内向外辐射的声音能量。
声强(I ,单位w/m2 ,10-12~1):单位面积波阵面上通过的声功率。
声压(p ,单位N/m2,2×10-5~20):声能密度 cp I 02ρ=▲ 声压级、声强级、声功率级——级、分贝 ①声压变化范围大,实际计量不方便②声压的变化与人耳的听觉特性不一致★级——取一个物理量的两个数值之比的对数 ★人耳对声音变化的反应——对数关系 ▲声级的叠加叠加计算表达式 简便估算法 ▲声音在户外的传播■点声源与平方反比率在距离为r1处的声压级为Lp1,在距离r2=nr1处的声压级为Lp2,则有 Lp2=Lp1-20lg ( r2/r1 )=Lp1-20lgn 与声源的距离增加1倍,声压级降低6dB■线声源与反比率——距离较近,与声源的距离增加1倍,声压级降低3dB ;距离较远,与声源的距离增加1倍,声压级降低6dB ■面声源●人耳的听觉特性▲听觉范围■最高和最低的可听频率极限:20~20000Hz■最小和最大的可听声压级极限■最小声压级可辨阈:一般1.0dB,实验室环境0.3dB;噪声控制>10dB有意义。
▲听觉特性■人耳的频率响应与等响曲线几个概念▲响度、响度级:响度:人耳对声音强弱的主观感受,除与声压大小有关外,还与声音频率有关,响度单位为宋(sone)响度级:响度的强弱采用10为底的对数计量时,称为响度级,单位为方(phone)。
建筑物理光学声学部分复习参考题
二、《建筑光学》部分1.下面关于光的阐述中,(c )是不正确的。
A.光是以电磁波形式传播B.可见光的波长范围为380〜780nmC.红外线是人眼所能感觉到的D.紫外线不是人眼所能感觉到的2.辐射功率相同,波长不同的单色光感觉明亮程度不同,下列光中(b )最明亮。
A.红色B.黄色C.蓝色D.紫色3.下列(d )不是亮度的单位。
A. Cd/m2B. ntC. sbD. Cd4.某灯电功率40W,光辐射通量10W,所发单色光光谱光效率值0.29,它的光通量|( b )流明。
A. 7923B. 1981C. 11.6D. 2.95.某直接型灯具,发2200Lm光通量,光通均匀分布于下半空间,则与竖直方向成30。
夹角方向上光强为(a )Cd。
A.350B. 175C. 367D. 3036.离P点2m远有一个点光源,测出光强为100Cd,当将光源顺原方位移动到4m 远时,光强为(c) Cd。
A.25B. 50C. 100D. 2007.将一个灯由桌面竖直向上移动,在移动过程中,不发生变化的量是(a )。
A.灯的光通量B.灯落在桌面上的光通量C,桌面的水平面照度 D.桌子表面亮度8.关于照度的概念,下列(c )的常见照度数字有误。
A.在40W白炽灯下1 m处的照度约为30LxB.加一搪瓷伞形罩后,在40W白炽灯下1m处的照度约为73LxC.阴天中午室外照度为5000〜8000LxD.晴天中午在阳光下的室外照度可达80000〜120000Lx9. 40W白炽灯与40W日光色荧灯发出的光通量下列(b )是错误的。
A.不一样B. 一样A. 40W白炽灯发出的光通量为0.5光瓦D. 0W日光色荧灯发出2200Lm10. 一块20cm2平板乳白玻璃受到光的均匀照射,其反光系数0.3,吸收系数0.1, 若已测出投射光通量为0.12 Lm,则其所受照度为(b )Lx。
A. 0.01B. 100C. 0.006D. 60011.下列材料中(c)是漫反射材料。
建筑物理 +声学部分+《第1章:建筑声学基础知识》
0c 又称为介质的特性阻抗。
郑州华信学院
建筑物理
第1章 建筑声学
1.2.2 声功率级、声强级和声压级 人耳刚能听见的下限声强为10-12w/m2,相应的声压为 2×10-5N/m2;使人感到疼痛的上限声强为1w/m 2,相 应的声压为20N/m2。所以用声强和声压计量声音很难。 1.声功率级( LW ) 声功率级是声功率与基准功率之比的对数的10倍。记为 LW W LW 10 lg (dB) W0
郑州华信学院
建筑物理
第1章 建筑声学
2.声强级(LI ) 声强级是声强与基准声强之比的对数的10倍。记为 LI
I LI 10 lg I0
(dB)
郑州华信学院
建筑物理
第1章 建筑声学
3.声压级(Lp) 声压级是声压与基准声压之比的对数的20倍。记为 Lp
p L p 20 lg (dB) p0
郑州华信学院
建筑物理
第1章 建筑声学
1.1.4 声音的透射、反射和吸收
当声波入射到建筑构件(如墙、天花)时,声能的一部 分被反射,一部分透过构件,还有一部分被构件吸收。 根据能量守恒定律,若入射总声能为E0,反射的声能 为Eρ,构件吸收的声能为Eα,透过构件的声能为Eτ, 则互相间有如下的关系:
E0=E 十Eα十E τ
Lp LW 20lg r 8
郑州华信学院
建筑物理
第1章 建筑声学
1.4.2 室内声压级的计算
1.直达声、早期反射声及混响声。
1.直达声:是指声源直接到达接收点的声音。 2.早期反射声:一般指直达声到达以后,相对延 迟时间为50ms内到达的反射声。(对于音乐声可 放宽至80ms)。 3.混响声:在早期反射声之后陆续到达的,经过 多次反射后的声音统称为混响声。
东南大学建筑物理(声学复习)张志最强总结
第10章 建筑声学基本知识1. 声音的基本性质①声波的绕射当声波在传播途径中遇到障板时,不再是直线传播,而是绕到障板的背后改变原来的传播方向,在它的背后继续传播的现象。
②声波的反射当声波在传播过程中遇到一块尺寸比波长大得多的障板时,声波将被反射。
③声波的散射(衍射)当声波传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。
④声波的折射像光通过棱镜会弯曲,介质条件发生某些改变时,虽不足以引起反射,但声速发生了变化,声波传播方向会改变。
这种由声速引起的声传播方向改变称之为折射。
白天向下弯曲 夜晚向上弯曲 顺风向下弯曲 逆风向上弯曲 ⑤声波的透射与吸收当声波入射到建筑构件(如顶棚,墙)时,声能的一部分被反射,一部分透过构件,还有一部分由于构件的振动或声音在其内部传播时介质的摩擦或热传导而被损耗(吸收)。
根据能量守恒定理:0E E E E γατ=++0E ——单位时间入射到建筑构件上总声能;E γ——构件反射的声能; E α——构件吸收的声能; E τ——透过构件的声能。
透射系数0/E E ττ=; 反射系数0/E E γγ=;实际构件的吸收只是E α,但从入射波和反射波所在空间考虑问题,常常定义吸声系数为:11E E E E E γαταγ+=-=-=⑥波的干涉和驻波1.波的干涉:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强、而在另一些位置,振动始终互相削弱或抵消的现象。
2.驻波:两列同频率的波在同一直线上相向传播时,可形成驻波。
2.声音的计量①声功率指声源在单位时间内向外辐射的声能。
符号W 。
单位:瓦(W )或微瓦(μW )。
②声强定义1:是指在单位时间内,改点处垂直于声波传播方向的单位面积上所通过的声能。
定义2:在声波传播过程中单位面积波阵面上通过的声功率。
符号:I ,单位:W/m2dW I dS=意义:声强描述了声能在空间的分布;衡量声波在传播过程中声音强弱的物理量。
建筑物理声学小抄
1、混响声与回声有何区别?它们和反射声的关系怎样?答:混响声实在前次反射后陆续到达的,经过多次反射的声音的统称。
回声是长时差的强反射声或直达声后50ms 到达的强反射声。
混响声和回声都是由反射声产生的,混响声的长短与强度将影响厅堂的音质,如清晰度和丰满度,回声使声音产生声缺陷。
2、房间共振对音质有何影响?什么叫共振频率的“简并”?如何避免?答:(1)某些振动方式的共振频率相同,即出现了共振频率的重叠现象,尤其是当三个边长有两个相等或全等时,会有许多共振频率相同,称为共振频率的“简并”。
(2)房间共振现象的出现会对室内音质造成不良影响,特别是在小型播音室和录音棚中传声器的布置带来的困难。
(3)为了克服“简并”现象,使房间共振频率范围变宽。
或避免集中于某几个频率,需选择合适的房间尺寸,比例和形状,以改变房间的简正方式,同时应避免房间边长相同或形成简单整数比,吸声材料也应不规则分布。
3、不同的吸声材料和吸声结构有着不同的主要吸声范围,是指不同的材料对吸不同频率声音有着 不同的效果。
试说明多孔材料、空腔结构、薄板结构分别适用于哪个频段的吸声?答:多孔材料本身具有良好的中高频吸收,背后留有空气层时还能吸收低频。
空腔结构一般吸收中频,与多孔材料结合使用吸收中高频,背后留大空腔还能吸收低频。
薄板结构具有低频的吸声特征。
4、多孔吸声材料是应用最广泛的吸声材料,但它也最容易受到环境、安装、施工的影响,请指出在使用多孔吸声材料时应注意的问题。
答:(1)材料中空气的流阻(2)孔隙率(3)材料厚度(4)材料表观密度(5)材料背后的空气层(6)饰面的影响(7)声波的频率与入射条件(8)材料吸水、吸湿。
5、穿孔板吸声结构随穿孔的孔径增大,吸声的共振频率如何变化?而当穿孔板的空洞被施工喷涂堵塞时,对吸声频率有何影响?答:穿孔板吸声结构随穿孔的孔径增大,吸声的共振频率增大。
当穿孔板的空洞被施工喷涂堵塞时,穿孔率降低,从而穿孔板吸声结构的共振频率降低。
建筑物理-声学基本知识
1000Hz
4m
21
0.004
0.01
0.024
Architectural Acoustics
2019年3月8日星期五
第一章 建筑声学基本知识
室内声学原理 混响与混响时间
混响时间的意义及影响因素
• •
反映了声波在房间衰减的快慢程度; 大致反映了直达声与反射声的比例;
人耳的主观听觉特性 人耳的听闻范围
听觉过程:外耳——中耳——内耳——大脑 人耳对不同频率的声音的敏感程度不一样
•
对中、高频敏感;对低频不敏感
听闻范围
人耳所感觉的声音的大小称为响度
相同声压级,不同频率的声音,响度不同 • 相同频率,不同声压级的声音,响度不同 • 等响
•
响度
响度的单位为宋(sone)
线源声音随距离的衰减
无限长线声源:传播距离加倍,声压级降低 3 dB 有限长线声源:传播距离加倍,声压级降低 3~6 dB
面源声音随距离的衰减
近处:声能没有衰减 远处:传播距离加倍,声压级降低3~6dB
14
2019年3月8日星期五
Architectural Acoustics
第一章 建筑声学基本知识
声波的性质>>声波的折射 声波的折射
介质的温度、密度等条件发生变化后,会产生声传播的弯曲现象 温度的影响:
白天,地面附近的空气温度高,声波向上弯曲; 夜间,地面附近的空气温度低,声波向下弯曲
风的影响:
顺风时声波向下弯曲;逆风时向上弯曲
建筑物理 第1章 声学基本知识
• 声音来源于物体的振动。 • 通常把受到外力作用而产生振动的物体称为声
源。传播声音的物质称为传声介质。
• 声源在空气中振动,使邻近的空气(或其它介 质)随之产生振动并以波动的方式向四周传播 开来,当传到人耳时,将引起耳膜产生振动, 最后通过听觉神经产生声音的感觉。
敲打音叉之后,音叉产生振动,振动中的音叉会来回推撞周围的空气,使得空气的压力时高 时低,而使得空气分子产生密部和疏部的变化。
Lp 20lg P (dB) P0
Lp 20lg P (dB) P0
• 当几个不同声源同时作用时,它们在某处形成 的总声强是各个声强的代数和,即:
I I1 I 2 In
• 而它们的总声压则是各声压的均方根值,即:
P p12 p22 ... pn2
• 但是,声强级、声压级的叠加不能简单地进行 算术相加,而要按对数运算规律进行。
• 对于1000Hz的声音,听觉下限为2×10-5Pa,上限为20Pa, 相差106倍,如果以10倍为一级划分,则从可闻阈到疼痛 阈只有七级。
• 2)人耳对声音的大小的感觉,并不与声强或 声压值成正,而是近似地与它们的对数值成正 比。
• 声强级的定义就是声音的强度I和基准声强I0之 比的常用对数来表示,单位为贝尔(BL)。但一 般不用贝尔,而用它的十分之一作单位,称为 分贝(dB)。
• :波长,在传播途径上,两相邻同相位质 点距离。单位:m,声波完成一次振动所走 的距离。
• c :声速,声波在某一介质中传播的速度。 单位:m/s。
• 声速的大小与声源无关,只与传声介质的弹性、 密度和温度有关。不同的介质声速不同。
在 0oC 时,C钢=5000m/s, C水=1450m/s, C混凝土=3100m/s。
建筑声学复习题
建筑声学复习题名词解释1、波的干涉2、驻波3、吸声系数4、响度级5、掩蔽6、混响过程7、混响时间8、简并9、吸声材料10、吸声结构11、前次反射声12、回声13、质量定律14、吻合效应15、声桥填空题第十章1、建筑声学要解决的声学问题,可大致分为和。
2、声音来源于,是以形式传播的。
3、空气质点只是在其附件振动,并没有随一直向外移动下去。
4、波的传播过程中,质点的振动方向和波的传播方向相垂直,称为。
波的传播过程中,质点的振动方向和波的传播方向相平行,称为。
在常温下声音在空气中传播的声波为。
5、有声波存在的空间,称为“▁▁▁▁▁”。
在某一时刻,声波到达空间的各点的包迹面,称为“▁▁▁▁▁”。
波阵面为平面的,称为“”;波阵面为球面的,成为“”。
6、▁▁▁▁▁在▁▁▁▁▁中的传播速度,称为“声速”。
声速的大小与▁▁▁▁▁的特性无关,而与▁▁▁▁▁的▁▁▁▁▁、▁▁▁▁▁以及▁▁▁▁▁等有关。
7、人耳听到的声波的频率范围大约在之间。
8、传声介质有固体、液体、气体之分,相应的声音也就分为▁▁▁▁▁、▁▁▁▁▁和▁▁▁▁▁。
建筑声学中所研究的声音,主要是▁▁▁▁▁和▁▁▁▁▁。
9、声的传播路径,通常用“▁▁▁▁▁”表示。
在个向同性的介质中,▁▁▁▁▁与波阵面相垂直。
10、利用可以解释声波的绕射、反射现象。
11、利用惠更斯原理可以解释声波的、现象。
12、声波在传播过程中遇到有小孔的障板时,若孔的尺寸与波长相比很小时,小孔处的质点可近似的看作一个集中的,它的子波的包迹面就可近似的看作以小孔为球心的球面。
波通过小孔之后,将产生以小孔为中心的,而与无关。
13、在声波的传播过程中,若遇到得障板的尺度比波长大得多的时候,绕射范围有限,板后将产生明显的。
14、如果用声线表示声波的前进方向,反射声线可以看作是从声源发出的。
15、两新波源到达某一点的路程差为时,在该点处振动加强。
16、两新波源到达某一点的路程差为时,在该点处振动减弱。
普通本科大学 建筑物理-声学总结
建筑声学第3.1章 建筑声学基本知识一、声音的基本性质声源是辐射声音的振动物体。
声波是纵波。
人耳可听到的声波频率范围是20-20000Hz 。
介质的密度越大,声音的传播速度越快,声音在空气中的传播速度为340 m/s 。
将声音的频率范围划分为若干个区段,称频带。
声学设计和测量中常用倍频带和1/3倍频带。
倍频带的中心频率有11个:16、31.5、63、125、250、500、1000、2000、4000、8000Hz 、16kHz 。
小于200 Hz 为低频,500~1000Hz 为中频,大于2000Hz 为高频。
声波从声源出发,在介质中传播,声波同一时刻所到达的各点的包络面称波阵面。
声线表示声波的传播方向和途径。
声波可分为球面波、平面波和拄面波。
声波在传播过程中会发生反射(镜像反射和扩散反射)、绕射(声波绕过障蔽边缘进入声影区的现象)、干涉(相同频率、相位的两列波在叠加区域内引起的振动加强和削弱的现象)。
材料的反射系数r 、透射系数τ和吸收系数α分别表示被反射、透过和吸收的声能占总声能的比例。
τ小的材料就是隔声材料,α> 0.2的材料就是吸声材料。
二、声音的计量声功率W :声源在单位时间内向外辐射的声能。
声强I :单位时间,垂直于声波传播方向上单位面积通过的声能。
点声源 24/r W I π=声压p :介质有无声波传播时压强的改变量。
自由声场中 c p I 02/ρ=声能密度E :单位体积内声能的强度。
c I E /=级的概念,声压级0/lg 20p p L p =;声强级0/lg 10I I L I =;声功率级0/lg 10W W L W =(其中p 0=2×10-5Pa ;I 0=10-12W/m 2;W 0=10-12W );几个等声压级的叠加n p p L p lg 10lg 200+=。
两个等声压级叠加时,总声压级比一个声压级增加3dB ,两声 级之差超过10dB 时,附加值可忽略不计,总声压级等于最大声压级。
建筑物理声学部分总结归纳
声音:是由物体振动产生,以声波的形式传播。
声音只是声波通过固体或液体、气体传播形成的运动。
声音的要素:声音的强弱、音调的高低、音色的好坏声源:声音来源于震动的物体,辐射声音的振动物体称之为声源。
弹性介质:气体、固体、液体介质:一种物质存在于另一种物质内部时,后者就是前者的介质;某些波状运动(如声波、光波等)借以传播的物质叫做这些波状运动的介质。
也叫媒质波阵面:声波从声源发出,在同一介质中按一定方向传播,在某一时刻,波动所达到的各点包络面称为“波阵面”。
为平面的成“平面波”,为球面的成为“球面波”波长:声波在传播途径上,两相邻同相位质点之间的距离称为波长,记作λ,单位米。
声速是指声波在弹性介质中传播速度记作c,单位是米每秒,声速不是质点振动的速度是振动状态的速度。
它取决于传播介质本身的弹性和惯性声音的传播原理:绕射规律:当声波在传播途径中遇到障板时,不再是直线传播,而是能绕道展板的背后改变原来的传播方向,在他背后继续传播的现象称之为绕射反射规律:1、入射线、反射线和反射面的法线在同一平面内;2、入射线和反射线分别在法线的两侧;3、反射角等于入射角。
干涉概念:当具有相同频率、相同相位的两个波源所发出的波相遇叠加时,在波重叠的区域内某些点处,振动始终彼此加强,,而在另一些位置,振动始终互相削弱或抵消,这种现象叫做波的干涉。
驻波概念:当两列频率的波在同一直线上相向传播时将形成“驻波”。
驻波是注定的声压起伏,它是由两列在相反方向上传播的同频率、同振幅的声波相互叠加而形成。
驻波形成条件:当单频率平面波在两平行界面之间垂直传播,两个反射面上都满足声压为极大值(位移为零)。
吸收:在声音的传播过程中,由于振动质点的摩擦,将一部分声能转化成热能,称为声吸收吸收是把透射包括在内,也就是声波入射到围蔽结构上不再返回该空间的声能损失透射:声音入射到建筑材料或构件时还有一部分能量穿过材料或建筑部件传播到另一侧空间去。
材料或构件的透射能力是用透射系数来衡量的。
建筑声学复习提纲
第二讲声环境基本知识1.名词解释波阵面、声线、吸声量、声透射、隔声量声功率、声强、声压、声功率级、声强级、声压级倍频程、1/3倍频程、响度、等响线、响度级、掩蔽级、声级2.简述题、计算题、证明题(1)简述声压叠加原理并回答问题:一个0分贝1000赫兹的声音能否为正常人耳所听闻?两个这样的声音同时存在时为几分贝?能否为正常人耳所听闻?(2)简述哈斯(Hass)效应及其在音质设计中的应用。
(3)简述掩蔽效应及声音的掩蔽特性。
(4)从等响线图说明了人耳对声音的响应有哪些特点?(5)与1000赫兹40分贝声音有相同响度的400赫兹声音的声压级是多少?其响度级是多少?响度为多少宋?若400赫兹声音声压级增加到70分贝,响度又为多少宋?响度级为多少方?(6)在离室外广播10米处听到的声音为80分贝,在离广播100米处,听到的声压级为多少?(7)证明任一处声音的声压级和声强级相等。
(8)声音采用级来计量有何意义?第三讲室内声学原理1.名词解释:房间常数、稳态声压级、混响时间、驻波、房间的简并现象,混响半径。
2简述题、计算题、作图题(1)简述室内几何声学原理,用作图法确定图中反射板的大小,要求反射板的反射声在纵向能照顾到座席全部,横向能照顾到所有座席。
(2)有一尺寸为38×25×8m(高)的厅堂,土建完成后,未设置座椅,室内表面平均吸声系数为0.1,若声源置于台口中心,声功率级为99分贝且指向性因数为1,试求距离声源5米和36米处的声压级,厅堂的混响半径为多少?『)44lg(102Rr QL L w p ++=π』;若在地面设1200个座位,每个座位占地面积为0.6m 2,每一空座位的吸声量为0.28m 2,有听众后每一座位的吸声量为0.4m 2;试求设置空座后,离声源36米处的声压级为多少?该处的吸声减噪量为多少?空场时混响时间为多少?听众上座2/3情况下,混响时间为多少。
『)1ln(161.0161.060αα--=⋅=S V S V T 』第四讲、吸声材料与吸声结构1词解释:空气流阻、结构因子、吸声结构2简述题、计算题(1)简述多孔材料的吸声机理和吸声特点(2)影响多孔吸声材料吸声的因素有哪些?说明是如何影响的?(3)简述穿孔板吸声机理和吸声特点(4)穿孔板的穿孔率为0.2,板厚为4毫米,孔半径为4毫米,试求穿孔板背后有空气间层100毫米和300毫米时,穿孔板的共振频率分别为多少?(5)用图定性地说明穿孔板的吸声系数与声音频率间关系,以及在背后空气间层中加多孔吸声材料后,吸声系数的变化情况。
建筑物理真题答案整理(西建大+可通用)
第二部分 热工学
一、名词解释
室外综合温度:室外综合温度是基于一种等效的概念,即室外气温和太阳辐射的共同作用等 效于室外综合温度的作用。 导热系数:厚度为 1m 的材料,当两侧表面温差为 1K 时,在单位时间内通过 1m2 表面积 的导热量。 遮阳系数:在直射阳光照射的时间内,透过有遮阳时窗口的太阳辐射量与透过没有遮阳时窗 口太阳辐射量的比值。 黑度:从灰体的定义出发,同温度条件下,灰体的辐射力与黑体的辐射力之比是一常数,这 一常数称为物体的黑度(发射率)。 太阳辐射吸收系数:表征建筑材料表面对太阳辐射热吸收能力的无量纲指标。围护结构外表 面吸收的太阳辐射照度与投射到围护结构外表面的太阳辐射照度之比值。 预计热指标 PMV:PMV 是基于体温调节和热平衡理论得出的,全面反映室内各气候要素 对人们热感觉影响的综合评价方法。其意是指一大群人对给定的环境热感觉进行投票所得的 投票平均值。 延迟时间:某个温度波的特征量(如最高温度或最低温度)在其传播方向上到达物体某个位 置(使该位置出现最高温度或最低温度)所经历的时间。 传热系数:围护结构与两侧空气温度差为 1K 时,单位时间内 1m2 面积传递的热量。 露点温度:在湿空气的压力和含湿量保持不变的情况下,冷却空气,这时湿空气的相对含湿 度会随着温度下降而提高,当相对湿度达到 100%时,湿空气就变成了饱和湿空气,此时的 温度就称为湿空气的露点温度。 长波辐射:常温物体发射的热辐射能量绝大部分是集中在红外线区段的长波范围内,因此将 常温物体的辐射称为长波辐射。 热惰性指标:材料层的热惰性指标是用来说明材料层抵抗温度波动能力的一个指标,用 D 表示。它的大小受材料本身的热阻 R 和蓄热系数 s 控制,即 D=sR。 太阳高度角:太阳光线与地平面的夹角。 材料的蓄热系数:对于一个有一定厚度的匀质材料层来说,如果一侧的空气温度作周期性波 动,那么材料层表面的温度也会随着作周期性波动,此时用表面上的热流波幅与表面温度波 幅之比表示材料蓄热能力大小,称为蓄热系数。 围护结构传热阻:表示维护结构和两侧空气边界层共同阻抗热量传递的能力。 太阳方位角:太阳光线在地面上的投影线与地平面正南子午线所夹的角。 相对湿度:在一定大气压力下,温度一定时,湿空气的绝对湿度与同湿度下饱和湿空气的绝 度湿度之比称为相对湿度。 衰减倍数:在周期传热过程中,空气温度、表面温度到物体内部温度的温度波幅依次减小。 用衰减倍数来衡量温度波的衰减程度,通过用温度波幅的衰减前值比衰减后值得到。
建筑物理声学总结归纳
建筑物理声学总结归纳建筑物理声学是研究建筑环境中声音传播、吸声、隔声等现象的学科。
在建筑设计与施工过程中,充分考虑建筑物理声学问题,可以提供良好的声学环境,提高建筑空间的舒适性。
本文将对建筑物理声学的相关概念、作用以及调控方法进行总结归纳。
一、建筑物理声学概念建筑物理声学是以声学理论和实验为基础,研究建筑空间内声波的传播、吸声和隔声等现象的学科。
建筑物理声学涉及的主要概念包括声压级、声能级、声速、声波传播路径等。
1. 声压级(Sound Pressure Level,SPL):声压级是描述声音强弱的物理量,用单位分贝(dB)表示。
声压级的高低直接影响建筑内部的声音感知。
2. 声能级(Sound Energy Level,SEL):声能级是描述声音总能量的物理量,单位同样为分贝(dB)。
声能级的高低与声音的持续时间和强度有关。
3. 声速(Speed of Sound):声速是声音在介质中传播的速度,与介质的密度和弹性有关。
不同介质中的声速存在差异,对声音传播具有重要影响。
二、建筑物理声学的作用1. 提供舒适的声学环境:合理控制建筑内部的声音传播和回声,创造出舒适的听觉感受。
在住宅、办公室等场所,保证语音的清晰传递是一个重要目标。
2. 保护隐私:通过隔声设计,在密闭空间内避免室内外声音干扰,确保私密性。
这在酒店客房、医院病房等场所尤为重要。
3. 助于声学表演:在剧院、音乐厅等场所,正确调整声音的吸收和反射方式,能够提高表演的音质和声场效果。
4. 防止噪声污染:通过合理的隔声设计,减少建筑内外噪声的传播,保障周边环境的安宁。
三、建筑物理声学调控方法1. 吸声处理:通过合适的吸声材料和结构设计,减少声音的反射和回声,降低噪音和噪声对人体的影响。
常用的吸声材料包括吸声板、吸声瓦、吸声窗帘等。
2. 隔声设计:采用适当的隔声结构和隔音材料,阻断声音传播路径,减少建筑内外的噪声干扰。
隔声设计中常用的材料包括隔声墙体、隔声门窗以及隔声隔板等。
建筑物理声学复习
§2-2、声波的性质(p221) 1、波阵面 球面波、柱面波、平面波 类比:水波 2、声波的方向性(想想为什么?) 低频声—几乎无 中频声—弱 高频声—强 3、频率、波长、声速三者的关系 波长λ =声速v(340m/s)÷频率f • 高频声波长=0.085~0.042m(<10cm) • 中频声波长=0.68~0.34m(~0.5m) • 低频声波长=5.4~2.7m(≧3m)
§2-7、驻波现象 (p267~268) 1、小房间电声的驻波现象 (1)定义:声波不动时的强弱分布。 (2)现象:房间内某处声压级较高而某处声压级较 低。 (3)产生原因:两互相平行的刚性声反射面之间的 距离刚好是反射声波半波长的整数倍。 (4)驻波间距:低频声明显,高频声不明显。 2、驻波现象的避免(房间尺寸合适的高宽长比:小 型—1:1.25:1.6;中型—1:1.5:2.5;或1: 1.25:3.20,或 不平行的两侧面、声扩散、声吸 收)
•
• •
房间有无驻波现象?驻波间距随频率增加有何变化?
在播放各倍频程纯音时,比较门、隔墙或耳罩的隔声效果。 以上步骤可重复2~3次。
四、实验报告:
实验结束后,每个实验小组须向教师交1份完整的实验报
告。实验报告内容应有:
• 实验地点、日期、时间、人员
• 仪器名称、型号、规格、产地 • 实验题目、实验目的、实验内容、实验步骤 • 数据记录、测点平面图 • 实验原理、数据处理、结果表示(自己设计图表) • 各人讨论实验结果与心得。
纯音等响曲线说明: (1) 对于相同大小声压而不同频率的单 声(纯音)人耳主观感觉的响度是不同的: 低频声(31.5~250Hz)响度较低,中频、中 高频声(500~5000Hz)较高,高频声(6000~ 8000Hz)又较低。 (2)对于相同大小响度而不同频率的单声 (纯音)其客观声压是不同的:低频声 (31.5~250Hz)声压较高,中频、中高频声 (500~5000Hz)较低,高频声(6000~8000Hz) 又较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.吸声材料和吸声结构的分类?①多孔材料,板状材料,穿孔板,成型顶棚吸声板,膜状材料,柔性材料吸声结构:共振吸声结构,包括1。
空腔共振吸声结构,2。
薄膜,薄板共振吸声结构。
其他吸声结构:空间吸声体,强吸声结构,帘幕,洞口,人和家具,空气吸收(空气热传导性,空气的黏滞性和分子的弛豫现象,前两种比第三种的吸收要小得多)。
吸声与隔声有什么区别?吸声量与隔声量如何定义?它们与那些因素有关?答:吸声指声波在传播途径中,声能被传播介质吸收转化为热能的现象。
隔声指防止声波从构件一侧传向另一侧。
吸声量:指材料的吸声面积与其吸声系数的乘积,单位为m2。
隔声量:指建筑构件的传声损失,,单位为(dB)。
它们主要与构件的透射系数有关,和构件的反射系数和吸声系数有关。
2. 衍射的定义:当声波在传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。
影响因素:障碍物的尺寸或缝孔的宽度与波长接近或更小时,才能观察到明显的衍射现象,不是决定衍射能否发生的条件,仅是使衍射现象明显表现的条件,波长越大,越容易发生衍射现象。
3.解释“波阵面”的概念,在建筑声学中引入“声线”有什么作用?答:声波从声源发出,在某一介质内向某一方向传播,在同一时刻,声波到达空间各点的包迹面称为“波阵面”,或“波前”。
“声线”主要是可以较方便地表示出声音的传播方向;利用作图法确定反射板位置和尺寸。
波阵面为平面的称为“平面波”,波阵面为球面的称为“球面波”。
4.什么是等响线?从等响线图说明人耳对声音的感受特性。
答:等响线是指响度相同的点所组成的频谱特征曲线,从等响线图可知:1.人耳在高声压级下,对声音频率的响应较一致;2.在低声压级下,人耳对于低于1000Hz的声音和高于4000Hz的声音较不敏感,而对1000Hz~ 4000Hz的声音感受最为敏锐;3.在同一频率下,声压级提高10dB,相对响度提高一倍。
5. 等效连续A声级解释Leq,L50 LA表示什么意义?答: Leq的含义是:噪声的A声级是变化的,不能简单的使用某一时刻的A声级,需要使用在一段时间内使用平均A声级来表示能量平均,即Leq。
L50的意义是: L50 表示在所测的时间范围内有百分之50的时间出现了A声级大于 L50 的情况。
如:L10=70dB,表示有10%的时间里噪声的A声级超过了70dB。
Las是声级计上的A计权网络直接读出的数据,单位dB。
等效连续A声级:噪声评价的一种方法。
在规定的时间内某一连续稳态声的A(计权网络)声压具有与时间变化的噪声相同的均方A声压级,则这一连续稳态的声级就是此时间变化噪声的等效声级。
6.解释“声功率”、“声强”、“声压”概念。
答:声功率:单位时间内声源向外辐射的能量,单位为J/s 或W。
声强:单位时间内通过声波传播方向垂直单位面积上的声能。
声压:空气质点由于声波作用而产生振动时所引起的大气压力起伏;有两层意思,(1)瞬时声压,是指某时刻媒质中的压力超过静压力的值即压差;(2)有效声压,即在一段时间(几个周期)内,各瞬时值平方的算术平均值的平方根,不影响计算过程。
符号P, 单位N/m 2 (牛顿/米2 ) ,或Pa(帕斯卡)。
7.在建筑声学中,采用“级”的方法来计量声音的强弱有何意义?答:“级”是某一物理量与对应基准值的比值取对数所得到的数值。
在建筑声学中采用“级”来计量声音的强弱,可以大大压缩计量的范围,例如1000Hz的声音,人耳刚能听到的声压为2×10-5Pa,感到震耳时为20Pa ,两者相差百万倍。
另外,人耳对声音的感觉并不与声压或声强成正比,而是近似与其对数成正比,采用“级”来计量声音的强弱,可与人耳对声音的感受一致。
8.分别写出声功率级、声强级、声压级的计算表达式,以及它们的基准值和单位。
答:声功率级LW=10lg (W/W0)(dB)W0=1×10-12W 声强级LI=10lg(I/I0)(dB)I0=1×10-12W/(m2) 声压级LP=20lg (P/P0)(dB)I0=2×10-5W/(m2)或Pa9.简述声音在空气中的传播特性答:人耳能感受的声音最终是通过空气才感受到的;质点振动方向与波的传播方向一致。
声音在空气中传播主要有以下特性:A.声波为行波中的“纵波”,质点只在自身位置来回运动,振动方向与传播方向相同 ;B.声波传播方向与空气流动没有关系或与流向无关;C.压力变化微小,是大气压的百万分之一。
D.振动随距声源距离的增加而减小(振动能量减少)。
2.常温下空气声速约为( 340 )m/s,1000Hz 的声音,其波长为( 0.34 )m。
解:根据公式λ=c/f=340/1000=0.34m10.声音的绕射有什么特点?在进行声音的反射设计和扩散处理时,要注意什么问题?答:1.声音在传播过程中遇到孔洞或障碍物将发生绕射现象。
绕射的情况与声波的波长和障碍物(孔洞)的尺寸有关,而与原声波的波形无关。
2.在进行声音的反射和扩散处理时,要正确地使用凸形界面,以有助于声场的均匀扩散和防止一些声学缺陷的出现;避免出现凹形界面,使声音汇聚于某一区域或出现声焦点,从而造成声场分布不均匀。
11.什么是“吻合效应”,如何消除吻合效应?答:“吻合效应”是声波斜入射时在一定的频率范围使墙体放生弯曲共振(这是入射声波沿墙体激发的弯曲波的波长在声波入射方向的投影等于入射波的波长)的现象。
消除“吻合效应”的方法是:①材料选择注意避开吻合效应频率范围;②采用双层构造,且两层不平行布置12.人耳听觉定位有什么特点?答:人耳听觉定位是由双耳对声音感觉的时间差和强度差来判定的。
通常对于高于1400Hz的声音,主要由强度差其主要作用;而对于低于1400Hz的声音,主要由时间差起主要作用。
人耳对声音的方向感强于远近感,对水平方向声音位置的变化的识别强于竖直方向。
13.简述哈斯效应及其在室内音质设计中的应用。
答:当同一声音的反射声到达人耳的时间迟于直达声的时间在50ms之内时,人耳分辨不出是两次声音,反射声对直达声音有加强作用,且人耳感到声音方向与直达声相同,不会有声音漂移感。
而当前后两次声音到达人耳的时间差超过50ms后,人耳就有近似回声感;当时间差超过80ms后,有明显的回声感,这种效应称为哈斯效应。
14.什么是掩蔽效应?声音掩蔽有何特征?答:一个声音的听阙因另一个声音的存在而提高的现象,叫声音的掩蔽效应。
听阙提高的分贝数,称为掩蔽级。
声音掩蔽有下列的特点:1.频率相近的声音掩蔽效应强;2.低频声对高频声的掩蔽较强;3.高频声对低频声的掩蔽效应弱;4.一个声音低于另一个声音10dB后,其对另一个声音的掩蔽效应可忽略去。
15.音质的主观评价和客观指标:答:1合适的响度2较高的清晰度和明晰度3足够的丰满度4良好的空间感5没有声缺陷和噪声干扰客观指标:1声压级与混响时间2反射声的时间与空间分布16早期反射声:在直达声以后到达的对房间的音质起到有利作用的所有反射声。
时间范围一般取直达声以后50ms,也有人认为可取到95ms。
早期反射声能与混响声能之比称为明晰度。
明晰度高,语言清晰度也高,如明晰度达到50%,音节清晰度就可达90%以上。
对听音乐来说,情况复杂得多,不仅要考虑早期反射声所占的比重,还要考虑从侧向来的早期反射声,能使声源的空间距离展宽,增加立体感,但侧向早期反射声过强,又会形成虚声源,造成移位错觉的不良后果。
1充分利用直达声2争取控制早期反射声3扩散设计17.以横排的方式,列出31.5Hz~2000Hz之间的倍频程和1/3倍频程数值。
答:倍频程:31.5、63、125、250、500、1000、2000 1/3倍频程:31.5、40、50、63、80、100、125、16018.产生驻波的必要条件是什么?1000Hz声音产生的驻波,离壁面最近的波节其距壁面距离为多少?答:产生驻波的必要条件是:1.频率相同的波;2.两列波在同一直线上相向而行。
什么是驻波? 频率和振幅均相同、振动方向一致、传播方向相反的两列波叠加后形成的波19.简述门窗的隔声措施答:1、要提高门扇本身的隔声能力及门缝的密闭程度。
可采用复合结构的门,即夹层门,也可选用密实厚重的材料做门,甚至是钢筋混凝土做的门扇。
经常开启的门,门扇不宜太重,否则门缝不易密封。
当要求较高时,可采用双层门,也可设置“声闸”,即做成门斗形式,在门斗两道门之间布置强吸声材料。
2、隔声窗的设计,要保证窗玻璃有足够的厚度,各层玻璃的厚度应不相同,以错开“吻合谷”,同时两层玻璃不应平行,以免引起共振。
另外,两层玻璃之间的窗樘上应布置强吸声材料,保证玻璃与窗扇边梃、窗扇与窗框、窗框与墙壁等所有接口的密封。
20. 什么是质量隔声定律?180mm砖墙对500Hz的隔声量为多少?答:墙的单位面积的质量越大,其隔声效果越好,这一规律被成为“质量定律”。
查表得180mm砖墙的面密度为450kg/m2。
21.环境噪声有哪些危害?答:噪声的危害主要有:1、噪声对人的听力具有很大的损坏作用。
2、噪声对睡眠产生一定的干扰。
3、噪声对语言交流产生干扰。
4、噪声可引起多种疾病。
5、噪声可降低工作的效率。
6、噪声对建筑物的寿命产生一定的影响22.城市噪声的来源有哪些?试从建筑群体布置和建筑单体设计的角度论述如何控制噪声。
答:城市噪声的主要来源有:交通噪声污染、其次是施工机械噪声及工厂噪声,此外还有商业噪声和社会生活噪声。
23.消声器的结构形式?答:阻性(在管道内布置阻性吸声材料吸收声能,对高频较有效),抗性(利用声音的共振,反射,叠加,干涉等原理消声,用于中低频噪声)阻抗复合式(用于频带较宽的噪声)公式:声强I=dw÷ds 即声能除以面积自由声场中:I=p2÷ρC (ρC=415N?S∕m3)声能密度:D=I∕C声压级:Lp=20 lg(P∕P0) 其中:P表示某点的声压,P0表示参考声压,以2×10的负五次方为参考值声强级:Li=10 lg(I∕I0) 其中:I表示某点的声强,I0表示参考声强,以10的负12次方为参考值声功率级:Lw=10 lg(W∕W0) 其中:W表示某声源的声功率,W0表示参考声功率,以10的负12次方为参考值室外声压级:Lp=Lw+10 lg(1∕4πr2) Lp表示空间某点的声压级,Lw表示声源的声功率级,r表示测点与声源的距离Lp=Lw-20lgr-11室内声压级:Lp=Lw+10lg(Q/4πr2 + 4/R ),其中,Lw表示声源的声功率级,W表示声源声功率,r 表示离开声源的距离,Q表示声源指向性因数度,R表示房间常数,R=S×α/(1-α) S表示室内总表面积,α表示室内平均吸声系数Lp=10lgW + 10lg(Q/4πr2 + 4/R) +120混响半径: Q/4πr2 = 4/R 其中,Q表示声源的指向性因数;r表示混响半径;R表示房间常数1.简述多孔吸声材料的吸声机理和吸声特性;影响多孔吸声材料吸声的因素有哪些?如何提高多孔吸声材料的在中低频范围内的吸声性能?答:多孔材料的吸声机理:①当声波入射到多孔材料上,声波能顺着孔隙进入材料内部,引起空隙中空气分子的振动。