焊接的种类
焊接的种类

代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。
缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。
(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。
电阻焊分为点焊、缝焊和对焊3种形式。
(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。
点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。
(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极
四、激光焊
激光焊利用聚焦的激光束作为能源轰击工件所产生的热量进行焊接。
激光焊具有如下特点:
1)激光束能量密度大,加热过程极短,焊点小,热影响区窄,焊接变形小,焊件尺寸精度高;
2)可以焊接常规焊接方法难以焊接的材料,如焊接钨、钼、钽、锆等难熔金属;
3)可以在空气中焊接有色金属,而不需外加保护气体;
交流焊机和直流焊机
都是靠短路电弧来进行焊接的,但直流焊更稳定,用于要求高的场合:
一、直流电焊机输出的电流没有“过零点”,不易断弧,电弧稳定,这是它最大的优点.
二、变压器二次电压峰值一定,直流电焊机比交流电焊机空载电压高,更容易引弧.
三、直流电焊机比交流电焊机多出整流部分,成本要稍高一些.
满焊:就是将准备焊在一起的2个工件的所有接触的地方都进行熔焊。比如两块钢板拼接,把一条焊缝全部焊满就是满焊,用于要求焊接强度较高的条件下。
花焊:在对连接强度要求不是太高的情况下,可以间断地进行焊接,即焊一段、间隔一段,就是花焊。
堆焊:在一个零件受损后,这时可以不重新制造新的零件,对其进行焊接,在受损部位进行堆焊,受损部位过大了也可以通过缺口内加入填充材料(在不影响使用强度要求的情况下)的方法进行堆焊。
1.焊接的种类及工艺过程 -回复

1.焊接的种类及工艺过程-回复焊接是一种常见的金属连接工艺,广泛应用于机械制造、汽车制造、建筑、航空航天等行业。
它可以将两个或多个金属部件通过热能加热和压力施加的方式连接在一起,形成一个结实的连续金属连接。
本文将介绍焊接的种类及其工艺过程,以帮助读者更好地了解焊接的原理和应用。
焊接的种类:1. 电弧焊接:电弧焊接是使用电弧热能将金属材料熔化,再通过填充材料的加入形成焊缝的焊接工艺。
常见的电弧焊接方法有手工电弧焊、埋弧焊、自动埋弧焊和气体保护焊等。
2. 气体焊接:气体焊接是利用气体燃料产生的火焰将金属材料加热至熔化状态,再通过填充材料的加入形成焊缝的焊接工艺。
常见的气体焊接方法有火焰焊、喷焰焊和气体保护焊等。
3. 电阻焊接:电阻焊接是利用电流通过接触电阻产生的热量将金属材料加热至熔化状态,再通过压力施加形成焊缝的焊接工艺。
常见的电阻焊接方法有点焊、缝焊和无接触电阻焊等。
4. 摩擦焊接:摩擦焊接是利用金属材料在摩擦热影响下达到熔化温度,并通过压力施加形成焊缝的焊接工艺。
常见的摩擦焊接方法有摩擦搅拌焊、摩擦摩擦焊和摩擦搅拌摩擦焊等。
焊接的工艺过程:1. 准备工作:包括准备焊接设备、选择适当的焊接电极、清洁金属表面和调节焊接参数等。
2. 接触加热:通过电流或气体燃烧产生的火焰、电子束等方式,将金属材料加热至预定温度范围。
3. 压力施加:在材料加热过程中,对加热区域施加适当的压力,以确保金属材料之间的良好接触和热量传递。
4. 熔化和混合:加热过程中,金属材料达到了熔化点,熔化的金属液体混合在一起,形成焊缝。
5. 冷却:焊接完成后,焊缝会自然冷却至室温。
在此过程中,焊缝的金属会重新结晶,形成新的晶粒结构。
6. 检验和处理:对焊接接头进行检验,检查焊缝的质量和强度是否符合要求。
若发现问题,进行相应的处理,如修补、重新焊接等。
7. 后处理:包括焊接接头的清理、抛光、喷涂防腐等,以确保焊接接头的外观和防腐性能。
焊接是一门需要经验和技术的工艺,正确选择焊接方法、设备和参数对焊接质量和效率至关重要。
电焊种类介绍

电焊种类介绍
电焊,是利用电弧加热将工件接合的一种焊接方法。
根据不同的工艺特点和应用领域,电焊可以分为多种类型。
1.手工电弧焊:人工在焊接部位进行电弧放电,使金属熔化并接合。
2.埋弧焊:焊丝是埋在焊剂中的,焊接时形成的电弧不直接接触焊件表面,适合焊接较厚的金属板。
3.氩弧焊:利用惰性气体——氩气作为保护气体,使电弧燃烧在工件表面上,用于焊接高质量的薄板和不易氧化的金属。
4.CO2气保焊:外加含CO2气体的保护气体,焊接时电弧燃烧在工件表面,可广泛应用于钢质板材的焊接。
5.阴极保护焊:使用负极较低的电压,使工件表面成为电极,阴极保护焊可用于焊接非铁基合金和特殊金属。
6.等离子焊:在氩气环境中形成等离子体,将电弧引导到工件表面,适用于大面积的焊接。
7.TIG氩弧焊:使用钨极作为电极,氩气作为保护气体,在薄板及对焊缝质量要求高的部件中应用广泛。
8.MIG气体保护焊:使用金属焊丝,外加惰性气体或活性气体作为保护气体,在工业生产中应用广泛。
以上是电焊的常见种类,不同的焊接方法有不同的应用场景和特点,需要根据具体情况进行选择。
焊接方法分类

焊接方法分类焊接方法分类一般都根据热源的性质、形成接头的状态及是否采用加压来划分。
1、熔化焊熔化焊是将焊件接头加热至熔化状态,不加压力完成焊接的方法。
它包括气焊、电弧焊、电渣焊、激光焊、电子束焊、等离子弧焊、堆焊和铝热焊等。
2、压焊压焊是通过对焊件施加压力(加热或不加热)来完成焊接的方法。
它包括爆炸焊、冷压焊、摩擦焊、扩散焊、超声波焊、高频焊和电阻焊等。
3、钎焊钎焊是采用比母材熔点低的金属材料作钎料,在加热温度高于钎料低于母材熔点的情况下,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散实现连接焊件的方法。
它包括硬钎焊、软钎焊等。
焊接的特点及应用一、焊接的特点1、节约金属材料,产品密封性好2、以小拼大,化复杂为简单3、便于制造双金属结构缺点是焊缝处的力学性能有所降低,个别焊接方法的焊接质量检验仍有困难。
二、焊接的应用1、制造金属结构2、制造金属零件或毛坯3、连接电器导线焊条电弧焊电弧是两带电导体之间持久而强烈的气体放电现象。
1.电弧的形成(1)焊条与工件接触短路短路时,电流密集的个别接触点被电阻热Q=I2Rt所加热,极小的气隙的电场强度很高。
结果:①少量电子逸出。
②个别接触点被加热、熔化,甚至蒸发、汽化。
③出现很多低电离电位的金属蒸汽。
(2)提起焊条保持恰当距离在热激发和强电场作用下,负极发射电子并作高速定向运动,撞击中性分子和原子使之激发或电离。
结果:气隙间的气体迅速电离,在撞击、激发和正负带电粒子复合中,其能量转换,发出光和热。
2.电弧的构造与温度分布电弧由三部分构成,即阴极区(一般为焊条端面的白亮斑点)、阳极区(工件上对应焊条端部的溶池中的薄亮区)和弧柱区(为两电极间空气隙)。
3、电弧稳定燃烧的条件(1)应有符合焊接电弧电特性要求的电源a)当电流过小时,气隙间气体电离不充分,电弧电阻大,要求较高的电弧电压,方能维持必需的电离程度。
b)随着电流增大,气体电离程度增加,导电能力增加,电弧电阻减小,电弧电压降低。
焊接方法种类特点PPT课件

➢ 熔焊焊缝的形成
在高温热源的作用下,填充金属(如焊条)和基体 金属发生局部熔化。熔池 焊缝形成过程示意图 前部(2-1-2区)熔化金属 被电弧吹力吹到熔池后部 (2-3-2区),迅速冷却结 晶。随着热源不断移动, 从而形成连续的致密层状 组织焊缝。
气焊
定义:利用乙炔(物料编号:89042843)与氧
主要焊接方法
1、熔化焊 2、压力焊 3、钎焊
焊接方法(以焊件和填充材料发生结合时的物理状态分类)
熔化焊 (液相)
气焊
手弧焊
电弧焊
埋弧自动焊 气体保护焊
氩弧焊 CO2气体保护焊
电渣焊、等离子焊、电子束焊、激光焊等
电阻焊:点焊、缝焊、对焊(电阻对焊、闪光对焊)
压力焊 摩擦焊 (固相) 感应焊:高频焊、中频焊、爆炸焊、
含少量锑的锡铁合金钎料应用最广泛。
软钎焊所用的钎剂主要有:松香(物料编号: 89014653 )、 ZnCl2溶液、ZnCl2钎剂膏等(钎剂主要用来清除氧化物,保护 钎焊区,增加润湿性)。
软钎料主要应用于焊接受力不大的常温工作的仪表、 导电元件等。
钢焊条焊接钢材时的焊接电弧
焊接电弧是在电极和 工件间的气体介质中常时间 放电的现象。
电弧引燃时,弧柱中充 满了高温电离气体,发出大 量的光和热。
➢ 手工电弧焊的焊接过程
焊缝附近 基体金属
焊条
焊芯
药皮
电
电
弧
弧
熔化 焊缝
熔 渣 CO2↑ 保护熔池
手工电弧焊焊接 过程示意图
➢手弧焊工艺
(1)选择接头形式和坡口
➢ 焊接过程
如图所示,埋弧焊的焊接过程可概括为:自动送 丝;引弧;焊剂自动下料;焊机匀速运动;电弧在焊剂下 燃烧。
各种焊接方法

各种焊接方法
焊接是一种将两个或多个金属材料连接在一起的方法。
在工业生产中,焊接是一项非常重要的技术,因为它可以将不同种类的金属材料连接在一起,从而创造出更强大、更耐用的产品。
在本文中,我们将介绍几种常见的焊接方法。
1. 电弧焊接
电弧焊接是一种将两个金属材料连接在一起的方法,它使用电弧来加热和融化金属。
在这种方法中,焊接材料被放置在两个金属材料之间,然后电弧被点燃,使焊接材料融化并与金属材料融合在一起。
这种方法适用于连接较厚的金属材料,如钢板和管道。
2. 气体保护焊接
气体保护焊接是一种将两个金属材料连接在一起的方法,它使用惰性气体来保护焊接区域,防止氧气和其他气体进入。
在这种方法中,焊接材料被放置在两个金属材料之间,然后惰性气体被喷射到焊接区域,以保护焊接区域。
这种方法适用于连接较薄的金属材料,如铝和不锈钢。
3. 焊锡
焊锡是一种将两个金属材料连接在一起的方法,它使用焊锡来连接金属材料。
在这种方法中,焊锡被加热到融化点,然后涂在金属材
料上,使其融合在一起。
这种方法适用于连接较小的金属材料,如电子元件和电线。
4. 摩擦焊接
摩擦焊接是一种将两个金属材料连接在一起的方法,它使用摩擦来加热和融化金属。
在这种方法中,两个金属材料被摩擦在一起,产生热量,使金属材料融化并融合在一起。
这种方法适用于连接较大的金属材料,如飞机和汽车的零部件。
焊接是一项非常重要的技术,它可以将不同种类的金属材料连接在一起,从而创造出更强大、更耐用的产品。
不同的焊接方法适用于不同的金属材料和连接要求,因此在选择焊接方法时,需要根据具体情况进行选择。
焊接方法的分类与选择介绍

焊接方法的分类与选择介绍焊接是一种常用的金属连接方法,广泛应用于各个行业,如建筑、制造、汽车等。
根据不同的需求和材料特性,我们可以使用不同的焊接方法。
本文将介绍常见的焊接方法的分类和选择。
一、按焊接方式分类:1. 手工焊接:也称为手动电弧焊接,是最基础的焊接方式之一。
焊工使用手持电焊机将电极与工作件间接触,通过高温电弧熔化工件表面并填充焊接材料,实现金属连接。
2. 自动焊接:自动焊机通过预先设置的程序和参数,能够自动完成焊接过程,提高了生产效率。
自动焊接可分为气体保护焊、电阻焊、激光焊等几种常见类型。
3. 机器人焊接:机器人焊接是将焊接任务交给具有人工智能的机器人来完成。
机器人焊接具有高度的精度和稳定性,广泛应用于重复性较高和要求高质量焊接的领域。
二、按焊接热源分类:1. 电弧焊接:利用电能产生的高温电弧将金属瞬间加热至高温,使其熔化并在熔池内形成焊缝。
电弧焊包括手工电弧焊、气体保护焊、离子束焊等。
2. 气焊:利用燃烧氧和燃气产生的火焰加热金属,并使用焊材填充焊缝进行连接。
气焊常用于铜、铝等低熔点金属的焊接。
3. 激光焊接:利用高能量激光束将工件局部加热至熔点,实现焊接。
激光焊接精度高、热影响区小,适用于高精度和对热影响要求较低的材料。
三、选择焊接方法的考虑因素:1. 金属材料:不同材料有不同的熔点和化学性质,因此需要选择适合该材料的焊接方法。
2. 分析焊接性能要求:焊接性能包括强度、密封性、抗腐蚀性等,针对不同要求选择相应的焊接方法。
3. 生产效率:考虑焊接方法的速度和效率,确保能够满足产量需求。
4. 设备条件:不同焊接方法需要不同的设备和工具支持,需要根据设备条件选择合适的方法。
综上所述,焊接方法可按焊接方式和热源来分类。
选择合适的焊接方法需要考虑金属材料、焊接性能需求、生产效率和设备条件等因素。
根据需求合理选择焊接方法可以提高焊接效率和产品质量。
当我们面临焊接任务时,需要根据具体情况选择适合的焊接方法。
焊接种类

焊接种类1、焊条电弧焊:原理——用手工操作焊条进行焊接的电弧焊方法。
利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。
属气-渣联合保护。
主要特点——操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强(依赖于焊工的操作技能及现场发挥)。
应用——广泛用于造船、锅炉及压力容器、机械制造、建筑结构、化工设备等制造维修行业中。
适用于(上述行业中)各种金属材料、各种厚度、各种结构形状的焊接。
2、埋弧焊(自动焊):原理——电弧在焊剂层下燃烧。
利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材(焊件)而形成焊缝。
属渣保护。
主要特点——焊接生产率高;焊缝质量好;焊接成本低;劳动条件好;难以在空间位置施焊;对焊件装配质量要求高;不适合焊接薄板(焊接电流小于100A时,电弧稳定性不好)和短焊缝。
应用——广泛用于造船、锅炉、桥梁、起重机械及冶金机械制造业中。
凡是焊缝可以保持在水平位置或倾斜角不大的焊件,均可用埋弧焊。
板厚需大于5毫米(防烧穿)。
焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢、复合钢材等。
3、二氧化碳气体保护焊(自动或半自动焊):原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。
属气保护。
主要特点——焊接生产率高;焊接成本低;焊接变形小(电弧加热集中);焊接质量高;操作简单;飞溅率大;很难用交流电源焊接;抗风能力差;不能焊接易氧化的有色金色。
应用——主要焊接低碳钢及低合金钢。
适于各种厚度。
广泛用于汽车制造、机车和车辆制造、化工机械、农业机械、矿山机械等部门。
4、MIG/MAG焊(熔化极惰性气体保护焊):原理——采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。
保护气通常是氩气或氦气或它们的混合气。
MIG用惰性气体,MAG在惰性气体中加入少量活性气体,如氧气、二氧化碳气等。
主要特点——焊接质量好;焊接生产率高;无脱氧去氢反应(易形成焊接缺陷,对焊接材料表面清理要求特别严格);抗风能力差;焊接设备复杂。
焊接方法有哪些

焊接方法有哪些
焊接是一种常见的金属加工方法,通过将金属材料加热至熔点并连接在一起,来实现材料的连接和加工。
在工业生产和制造过程中,焊接方法有着广泛的应用。
下面将介绍几种常见的焊接方法。
首先,电弧焊是一种常见的焊接方法。
在电弧焊中,通过产生电弧来加热和熔化焊接材料,然后形成连接。
电弧焊可以分为手工电弧焊、气体保护电弧焊、手工氩弧焊等多种类型。
这种焊接方法操作简单,成本较低,适用于各种金属材料的连接。
其次,气体保护焊是一种常用的焊接方法。
在气体保护焊中,通过在焊接区域提供保护气体,来防止氧气和其他杂质对焊接熔池的污染,保证焊接质量。
常见的气体保护焊包括氩弧焊、氩气保护焊、氩气保护惰性气体焊等。
这种焊接方法适用于对焊接质量要求较高的材料,如不锈钢、铝合金等。
另外,激光焊是一种高精度的焊接方法。
激光焊利用高能激光束对焊接材料进行加热,实现材料的熔化和连接。
激光焊具有焊接速度快、热影响区小、变形小等优点,适用于对焊接精度要求高的材料,如精密零部件、微电子器件等。
最后,摩擦焊是一种新型的焊接方法。
在摩擦焊中,通过在焊接材料之间施加一定的压力和摩擦力,来产生热量并实现材料的连接。
摩擦焊不需要外部热源,具有节能环保、焊接速度快、焊接接头强度高等优点,适用于铝合金、钛合金等难焊材料的连接。
总的来说,焊接方法有很多种,每种方法都有其适用的材料和场合。
在实际的生产和制造过程中,选择合适的焊接方法对于保证焊接质量和提高生产效率都至关重要。
希望以上介绍的焊接方法能够为大家在实际应用中提供一定的参考和帮助。
各种焊接方法介绍

各种焊接方法介绍焊接是通过加热和加压将两个或多个工件的接触面加热至熔化状态,使其混合并冷却以形成连接的过程。
焊接被广泛应用于制造业,特别是在金属制造和建筑行业。
下面将介绍一些常见的焊接方法:1.电弧焊接:电弧焊接是通过电流产生的弧光来加热和熔化工件,然后形成焊缝。
常见的电弧焊接方法包括手工电弧焊、气体保护电弧焊和碳弧气焊。
电弧焊接适用于钢铁、不锈钢和铝等金属材料的连接。
2.气体焊接:气体焊接使用燃气燃烧生成的火焰来加热工件,使其熔化并形成焊缝。
常见的气体焊接方法包括乙炔焊接、氢焊接和甲烷焊接。
气体焊接适用于多种金属材料,如钢铁、铜和铝等。
3.熔覆焊接:熔覆焊接是将一种或多种金属材料熔化并喷射到工件表面,形成附着层以提高工件的抗磨损和耐腐蚀性能。
常见的熔覆焊接方法包括喷焊、喷粉焊接和喷丸焊接。
熔覆焊接广泛应用于航空航天、能源和汽车工业等领域。
4.摩擦焊接:摩擦焊接是通过相对运动产生的热量将材料加热至熔化状态,形成焊接接头。
常见的摩擦焊接方法包括摩擦搅拌焊接、摩擦串焊和摩擦摩擦抓焊。
摩擦焊接适用于铝合金、钛合金和镁合金等难焊材料的连接。
5.激光焊接:激光焊接是利用激光束的高能量密度将材料加热至熔化状态,形成焊接接头。
激光焊接具有高精度、高速度和无接触等优点,广泛应用于微电子、航空和电子行业。
6.点焊:点焊是通过施加电流和压力将材料加热至熔化状态,然后形成焊点连接。
点焊适用于金属薄板的连接,常见于汽车制造和电子行业。
7.水下焊接:水下焊接是在水下环境中进行的焊接,主要用于海洋工程和船舶修理等领域。
水下焊接常通过深海潜水员或水下焊接机器人进行。
总结起来,焊接是将材料通过热加工的方法连接在一起的过程。
不同的焊接方法适用于不同类型的材料和应用领域。
随着技术的不断发展,新的焊接方法也在不断涌现,为制造业和建筑行业带来了许多创新和便利。
四种常用的焊接方法

四种常用的焊接方法焊接是一种将两个或多个金属材料通过熔化或加热使其粘结在一起的技术。
在工业生产和制造过程中,焊接是非常重要的一项技术,因为它可以使得不同的金属材料连接在一起,从而形成一个整体。
在本文中,我们将介绍四种常用的焊接方法。
1. 电弧焊接电弧焊接是一种将电流通过两个金属材料之间的空隙产生弧光,将金属材料熔化并粘结在一起的方法。
这种焊接方法需要使用电焊机和电极,电极会在电弧的作用下熔化并将金属材料熔化在一起。
电弧焊接可以用于连接不同种类的金属材料,如钢铁、铜、铝等。
它是一种简单易学的焊接方法,但需要注意安全措施,因为电弧产生的光和热能会对人造成伤害。
2. 气体保护焊接气体保护焊接是一种将金属材料熔化并粘结在一起的方法,使用的是惰性气体作为保护气体。
这种焊接方法使用一根电极,将电极和金属材料之间的空气排出,并用惰性气体(如氩气)将空气取代,以避免金属材料被氧化。
气体保护焊接可以用于连接铝、镁、钛等难以焊接的金属材料,它可以产生高质量的焊缝,且焊接后不需要进行清理。
3. 熔化极气体保护焊接熔化极气体保护焊接是一种将金属材料熔化并粘结在一起的方法,使用的是电极和惰性气体作为保护气体。
这种焊接方法需要使用专门的设备,将电极和保护气体送入焊接区域,产生高温并使金属材料熔化。
熔化极气体保护焊接可以用于连接不同种类的金属材料,如钢铁、铝、镁等,它可以产生高强度的焊缝,且焊接后不需要进行清理。
4. 摩擦焊接摩擦焊接是一种将金属材料通过摩擦热产生的热能将其熔化并粘结在一起的方法。
这种焊接方法需要使用专门的设备,将金属材料放在一起并施加压力,然后通过高速旋转的工具在金属材料之间产生摩擦,产生高热并使金属材料熔化。
摩擦焊接可以用于连接不同种类的金属材料,如铝、铜、钛等,它可以产生高质量的焊缝,且焊接后不需要进行清理。
总结焊接是一种将金属材料连接在一起的技术,它在工业生产和制造过程中起着非常重要的作用。
在本文中,我们介绍了四种常用的焊接方法,包括电弧焊接、气体保护焊接、熔化极气体保护焊接和摩擦焊接。
简述常用焊接方法的种类、特点及应用

简述常用焊接方法的种类、特点及应用
焊接是一种将两个或以上的金属或非金属材料加热熔化后连接在一起的技术。
焊接方法不同,其工艺及特点也不同。
常用的焊接方法有以下几种:
1. 电弧焊接:使用电弧加热将两个金属连接在一起的焊接方法。
特点是焊接速度快,周围环境要求不高,但产生的光弧和烟雾较大。
适用于大型加工设备、大型钢结构及船舶等薄板焊接。
2. 气焊接:利用燃烧的气体将工件加热熔化然后快速连接在一起。
气焊接方式成本较低且容易学习和使用,但需要在通风明亮的环境下使用。
适用于拼件、工艺设备和导轨加工等应用。
3. TIG焊接:氩气保护的焊接方式,用于制造高质量焊缝。
特点是焊接工艺复杂,需要经过特殊的培训和技巧,但可达到高精度及高质量连接。
适用于铁路车辆、航空发动机、航空器和核电站等高精度焊接应用。
4. MIG/MAG焊接:容易掌握、速度快且适用于大规模生产。
是一种使用保护气的电弧焊接方式,适用于钢铁建筑、机械设备和汽车制造等大批量焊接应用。
5. 激光焊接:采用激光束加热材料,可以达到高温度和速度。
特点是焊缝美观,精度高,但设备成本较高。
适用于微小零件和精密设备的高精度焊接应用。
总之,不同的焊接方法各有优缺点和适用范围,选择合适的焊接方法可以大大提高焊接效率和质量。
焊接基础知识焊接的种类和应用

保
如铝、镁、钛及其合
护
金、耐热钢、不锈钢
焊
等。为了预防保护气 流破环,同步为降低
焊接成本,氩弧焊应
尽量在室内进行。
技术发展部
工艺室
三、焊接旳种类及应用
二氧化碳气体保护焊
气 1、定义:利用CO2作为保护气体旳气体保护焊。
体
保
知识点补充:
护
NBC-250 N MAG MIG焊机
焊
B 半自动焊 C 二氧化碳焊机
焊
电弧焊措施。
条
电
弧
焊
技术发展部
工艺室
三、焊接旳种类及应用
2、优点:
焊条电弧焊具有设备
简朴,操作灵活,成
焊
本低。
条
缺陷:
电
有强烈弧光和烟尘污 染,劳动条件差,生
弧
产率低,焊缝质量依
焊
赖性强(依赖于焊工
旳操作技能及现场发
挥),质量不稳定。
技术发展部
工艺室
三、焊接旳种类及应用
3、应用:
广泛用于造船、锅炉
气体保护焊 等离子弧焊
技术发展部
工艺室
三、焊接旳种类及应用
定义:气体保护电弧焊用外加气体作为电弧介质并保 护电弧和焊接区旳电弧焊。
气
体
两种应用较为普遍旳气保焊
保
护
氩弧焊
焊
二氧化碳气体保护焊
技术发展部
工艺室
三、焊接旳种类及应用
氩弧焊
1、定义:氩弧焊是使用氩气作为保护气体旳气体保护焊。
气 体 保 护 焊
激 2、原理:
光
利用激光器受激产生 旳激光束,经过聚焦系统
焊 聚焦到十分微小旳焦点,
焊接方法种类、特点、

1、焊接质量高且稳定;
2、熔深大,节省焊接材料; 3、无弧光,无金属飞溅,焊接烟雾少; 4、自动化操作,生产效率高。 5、设备昂贵,工艺复杂,适于长的直线焊缝和圆筒形 工件的纵、环焊缝的批量生产。
气体保护电弧焊
气体保护焊是利用保护性气体防止外界有害气体对
熔池进行侵害的特殊焊接方法。它适于一些化学性质活泼 的金属焊缝的焊接作业。
钎焊接头的形成过程
钎焊接头的形成包括两个过程:⑴ 钎料熔化和流
入、填充接头间歇形成钎料充满焊缝的过程;⑵ 液态钎 料与钎焊金属相互作用。
钎料填充焊缝过程示意图
液态钎料和固态金属之间的相互作用
软钎焊和硬钎焊
软钎焊
软钎焊是指使用的钎料熔点低于450℃的钎焊,通常
用烙铁加热。软钎焊的接头强度不高(<70MPa)。 含少量锑的锡铁合金钎料应用最广泛。
钢焊条焊接钢材时的焊接电弧
量的光和热。
手工电弧焊的焊接过程
焊 条 焊 芯 电 弧 药 皮 电 弧
手工电弧焊焊接 过程示意图
焊缝附近 基体金属
熔化
焊 缝
熔 渣
CO2↑
保护熔池
手弧焊工艺
(1)选择接头形式和坡口
根据焊件的结构形式、厚度和对焊缝质量要求不同进 行选择,对接接头使用最多。
(2)接头清理 易于引弧、稳定电弧燃烧,保证焊缝质量 (3)焊接位置
超声波焊、扩散焊、冷压焊等
钎焊
(固相兼液相)
软钎焊:锡焊
硬钎焊:铜焊、银焊等
一、 熔 化 焊
熔化焊是焊接最基本的焊接方法。根据焊接能源种
类、能源传递介质和方式的不同,熔化焊可分为电弧焊、 气焊、电渣焊、电子束焊、激光焊和等离子焊等。
焊接技术基础知识——焊接的三大分类

焊接技术基础知识——焊接的三大分类焊接作为一种常见的金属连接技术,在各行各业都有广泛的应用。
它通过将金属材料熔化并使其相互结合,从而实现强度和密封性的增强。
在焊接技术中,根据不同的操作方式和焊接材料,可以将焊接技术分为三大分类:压力焊接、熔化焊接和固相焊接。
一、压力焊接压力焊接是一种利用外力施加在待连接金属材料上,通过固态原子间扩散或金属的流动来实现金属材料的连接。
这种焊接方式通常不需填充金属,因此适用于连接同种或相似金属材料。
常见的压力焊接方法有以下几种:1. 高频阻抗焊接:该方法使用高频电流通过接头,通过电阻热效应使金属瞬间熔化,然后在压力的作用下迅速结合。
2. 冷焊接:冷焊接利用金属的塑性变形,通过外力的作用,将金属表面相互连接。
3. 爆炸焊接:通过将两个金属件迅速靠近并施加压力,然后迅速拉开,使两者之间产生高温和高压,金属表面瞬间熔化,然后迅速结合。
二、熔化焊接熔化焊接是将焊接点加热至熔化状态,并在熔融金属中形成连接。
这种焊接方式适用于连接不同种类的金属,通过填充金属料可以实现更持久的连接。
熔化焊接常用的方法有:1. 电弧焊接:通过电弧放电将金属电极加热至熔化状态,产生熔池,然后使焊接材料熔化并流动,形成焊缝。
2. 气体火焰焊接:利用氧和燃料气体的燃烧可以产生高温火焰,将金属件加热至熔化并加入填充材料,实现金属连接。
三、固相焊接固相焊接是一种不需要熔化金属的连接方法,通过加热金属至一定温度,使金属表面发生塑性变形,然后施加外力使金属表面紧密接触,达到金属连接的目的。
常见的固相焊接方法有:1. 摩擦焊接:将两个金属件相互摩擦产生热量,使接触面处的金属局部熔化,然后迅速施加外力实现连接。
2. 超声波焊接:利用超声波的高频振动使金属表面发生塑性变形,并在外界压力的作用下实现连接。
总结起来,焊接技术可以分为压力焊接、熔化焊接和固相焊接三大分类。
每种焊接方式都有其适用的情况和优势,根据实际需求选择合适的焊接方法可以提高焊接质量和效率。
焊接的分类

焊接的分类焊接是一种常见的加工工艺,它通过将金属或其他材料加热至一定温度,使其熔化并与其他材料连接在一起。
由于焊接的广泛应用,不同的焊接方法和技术被开发出来,以适应不同的应用场景和材料。
本文将介绍焊接的分类,包括传统焊接和现代焊接技术。
我们将讨论每种焊接方法的原理和适用范围,以及它们的优缺点。
一、传统焊接1. 熔化焊接熔化焊接是一种将金属材料熔化并连接在一起的焊接方法。
它包括以下几种类型:(1) 电弧焊接电弧焊接是一种通过电流产生的弧光来熔化金属材料并连接在一起的焊接方法。
电弧焊接有多种类型,包括手工电弧焊接、自动电弧焊接和等离子弧焊接等。
电弧焊接适用于连接铁、钢、铜和铝等金属材料。
(2) 气焊气焊是一种使用燃气火焰来加热金属材料并连接在一起的焊接方法。
气焊通常使用乙炔和氧气产生的火焰,适用于不锈钢、铜、铝和镍合金等材料。
(3) TIG焊接TIG焊接是一种使用惰性气体来保护焊接区域的焊接方法。
它使用非消耗性钨电极来产生弧光,适用于焊接不锈钢、铜、铝和镍合金等材料。
(4) MIG/MAG焊接MIG/MAG焊接是一种使用惰性气体或活性气体来保护焊接区域的焊接方法。
它使用消耗性金属焊丝来熔化金属材料并连接在一起,适用于焊接铁、钢、铜和铝等材料。
2. 压力焊接压力焊接是将金属材料在一定压力下连接在一起的焊接方法。
它包括以下几种类型:(1) 点焊点焊是一种将金属材料在两个电极之间加热并连接在一起的焊接方法。
点焊通常用于连接薄板金属,如汽车制造和家用电器。
(2) 摩擦焊接摩擦焊接是一种通过摩擦产生的热量来熔化金属材料并连接在一起的焊接方法。
它适用于焊接铝、钛和镁等材料。
(3) 焊接焊接是一种将金属材料在一定压力下热塑性变形并连接在一起的焊接方法。
它适用于焊接铜和铝等材料。
二、现代焊接技术现代焊接技术是指使用先进的工艺和设备来实现高效、精确和可重复的焊接。
以下是几种现代焊接技术:1. 激光焊接激光焊接是一种使用激光束来熔化金属材料并连接在一起的焊接方法。
焊接方法分为哪几类

焊接方法分为哪几类
焊接方法可以分为以下几类:
1. 弧焊方法:弧焊方法包括手工电弧焊、气焊、碳弧气焊、埋弧焊等。
这些方法都是利用电弧产生高温,并通过填充金属来完成焊接。
2. 焊条焊接方法:焊条焊接方法是将焊条作为填充金属,通过电弧将焊条熔化并与工件融合。
这是一种常用的手工焊接方法。
3. TIG焊接方法:TIG焊接方法又称为氩弧焊,其特点是采用
惰性气体(如氩气)来保护焊缝,以防止氧化和污染。
常见的TIG焊接方法还包括Heliarc焊接法和国际常用AAA焊接法等。
4. MIG/MAG焊接方法:这是一种常用的半自动或全自动焊接
方法,其中MIG代表金属惰性气体焊接,MAG代表金属活性气体焊接。
这些方法使用电弧加热并融化填充金属,同时通过喷射气体封住焊缝。
5. 点焊方法:点焊方法常用于焊接薄板或连续焊接。
它采用高电流和短时间的电弧,通过电弧瞬间加热来完成焊接。
6. 激光焊接方法:激光焊接方法利用激光束直接加热焊缝,从而将工件焊接在一起。
这种方法具有高功率密度和高精度的特点。
值得注意的是,这只是焊接方法的一小部分,根据不同的焊接应用和要求,还有其他种类的焊接方法。
电焊分类及用途

电焊分类及用途
1、电弧焊
电弧焊是目前应用最广泛的焊接方法。
它包括有:手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。
2、电阻焊
这是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。
电阻焊包括:电阻点焊,涂焊,缝焊,高频焊,闪光对焊。
3、高能束焊
这一类焊接方法包括:电子束焊和激光焊。
4、钎焊
钎焊的能源可以是化学反应热,也可以是间接热能。
它是利用熔点比被焊材料的熔点低的金属作钎料,经过加热使钎料熔化,靠毛细管作用将钎料及入到接头接触面的间隙内,润湿被焊金属表面,使液相与固相之间互扩散而形成钎焊接头。
5、其它焊接方法
这些焊接方法属于不同程度的专门化的焊接方法,其适用范围较窄。
主要包括以电阻热为能源的电渣焊、高频焊;以化学能为焊接能源的气焊、气压焊、爆炸焊;以机械能为焊接能源的摩擦焊、冷压焊、超声波焊、扩散焊。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接的种类一、焊条电弧焊(一)、焊接电弧电弧是两带电导体之间持久而强烈的气体放电现象。
1.电弧的形成(1)焊条与工件接触短路短路时,电流密集的个别接触点被电阻热Q=I2Rt所加热,极小的气隙的电场强度很高。
结果:①少量电子逸出。
②个别接触点被加热、熔化,甚至蒸发、汽化。
③出现很多低电离电位的金属蒸汽。
(2)提起焊条保持恰当距离在热激发和强电场作用下,负极发射电子并作高速定向运动,撞击中性分子和原子使之激发或电离。
结果:气隙间的气体迅速电离,在撞击、激发和正负带电粒子复合中,其能量转换,发出光和热。
2.电弧的构造与温度分布电弧由三部分构成,即阴极区(一般为焊条端面的白亮斑点)、阳极区(工件上对应焊条端部的溶池中的薄亮区)和弧柱区(为两电极间空气隙)。
3、电弧稳定燃烧的条件(1)应有符合焊接电弧电特性要求的电源a)当电流过小时,气隙间气体电离不充分,电弧电阻大,要求较高的电弧电压,方能维持必需的电离程度。
b)随着电流增大,气体电离程度增加,导电能力增加,电弧电阻减小,电弧电压降低。
但当降低到一定程度后,为了维持必要的电场强度,保证电子的发射与带电粒子的运动能量,电压须不随电流增大而变化。
(2)做好清理工作,选用合适药皮的焊条。
(3)防止偏吹。
(4)电极的极性在焊接中,采用直流电焊机时,有正接和反接两种方法。
而大量使用的是交流电弧焊设备,电极的极性频繁交变,不存在极性问题,1)正接——焊件接电源正极,焊条接负极。
一般焊接作业均采用正接法。
2)反接——焊件接电源负极,焊条接正极。
一般焊接薄板时,为了防止烧穿,采用反接法进行焊接作业。
(二)、焊条电弧焊的焊接过程1.焊接过程2.焊条电弧焊加热特点(1)加热温度高,而且使局部加热。
焊缝附近金属受热极不均匀,可能造成工件变形、产生残余应力以及组织转变与性能变化的不均匀。
(2)加热速度快(1500度/秒),温度分布不均匀,可能出现在热处理中不应出现的组织和缺陷。
(3)热源是移动的,加热和冷却的区域不断变化。
(三)、电弧焊的冶金特点(1)反应区温度高,使合金元素强烈蒸发和氧化烧损。
(2)金属熔池体积小,处于液态的时间很短,导致化学成分均匀,气体和杂质来不及浮出而易产生气孔和夹渣等缺陷。
(四)、焊条1.焊条的组成手弧焊焊条由焊芯和药皮两部分组成。
(1)焊芯①作为电弧焊的一个电极,与焊件之间导电形成电弧;②在焊接过程中不断熔化,并过渡到移动的熔池中,与熔化的母材共同结晶形成焊缝;(2)焊条药皮①药皮的作用a)对熔池造成有效的气渣联合保护;b)使熔池内金属液脱氧、脱硫以及向熔池金属中渗合金,提高焊缝的力学性能;c)起稳弧作用,以改善焊接的工艺性。
②药皮的组成a)稳弧剂:主要使用易于电离的钾、钠、钙的化合物。
b)造渣剂:形成熔渣覆盖在熔池表面,不让大气侵入熔池,且起冶金作用。
c)造气剂:分解出CO和H2等气体包围在电弧和熔池周围,起到隔绝大气、保护熔滴和熔池的作用。
d)脱氧剂:主要应用锰铁、硅铁、钛铁、铝铁和石墨等,脱去熔池中的氧。
e)合金剂:主要应用锰铁、硅铁、铬铁、钼铁、钒铁和钨铁等铁合金。
f)粘结剂:常用钾、钠水玻璃。
(3)焊条药皮的种类a)酸性焊条——药皮中含有多量酸性氧化物,如SiO2、TiO2、Fe2O3等。
b)碱性焊条——药皮中含有多量碱性氧化物,如CaO、FeO、MnO、Na2O、MgO等。
2.焊条的种类焊条共分为十大类,即结构钢焊条、低温钢焊条、钼和铬钼耐热钢焊条、不锈钢焊条、堆焊焊条、铸铁焊条、镍及镍合金焊条、铜及铜合金焊条、铝及铝合金焊条和特殊用途焊条。
3.焊条的选用原则(1)选择与母材化学成分相同或相近的焊条(2)选择与母材等强度的焊条(3)根据结构的使用条件选择焊条药皮的类型(五)、焊接接头的金属组织和性能的变化1.焊件上温度的变化与分布焊缝区金属经受有偿稳状态开始被加热大较高的温度,然后在逐渐冷却到常温这样一个热循环。
2.焊接接头处的组织和性能的变化(以低碳钢为例)3.焊接接头的主要缺陷(1)气孔--气孔是焊接时熔池中的气泡在焊缝凝固时未能逸出而留下来形成的空穴。
防治措施:a)烘干焊条,仔细清理焊件的带焊表面及附近区域;b)采用合适的焊接电流,正确操作。
(2)夹渣--夹渣是焊后残留在焊缝中的熔渣。
预防措施:a)仔细清理带焊表面;b)多层焊时层间要彻底清渣;c)减缓熔池的结晶速度。
(3)焊接裂纹a)热裂--热裂是焊接过程中,焊接接头的金属冷却到固相线附近的高温区产生的焊接裂纹。
预防措施:减小结构刚度、焊前预热、减小合金化、选用抗裂性好的低氢型焊条等。
b)冷裂--焊接接头冷却到较低温度时产生的焊接裂纹。
预防措施:a)用低氢型焊条并烘干、清除焊件表面的油污和锈蚀;b)焊前预热、焊后热处理。
(4)未焊透--未焊透是焊接接头根部未完全熔透的现象。
产生原因:坡口角度或间隙太小、钝边过厚、坡口不洁、焊条太粗、焊速过快、焊接电流太小以及操作不当等所致。
(5)未溶合--未溶合是焊缝与母材之间未完全熔化结合的现象。
产生原因:坡口不洁、焊条直径过大及操作不当等造成。
(6)咬边--咬边是沿焊趾的母材部分产生的沟槽或凹陷的现象。
产生原因:焊接电流过大、电弧过长、焊条角度不当等所致。
(六)、焊接变形1.焊接应力与变形的原因焊接时局部加热是焊件产生焊接应力与变形的根本原因。
2.焊接变形的基本形式3.防止与减小焊接变形的工艺措施(1)反变形法(2)加余量法(3)刚性夹持法(4)选择合理的焊接工艺4.减小焊接应力的工艺措施(1)选择合理的焊接顺序(2)预热法(3)焊后退火处理二、埋弧自动焊电弧在焊剂层下燃烧进行焊接的方法,称为埋弧焊。
埋弧焊的引弧、送进焊条一般均由自动装臵来完成,因此又称为埋弧自动焊。
(一)、埋弧自动焊的焊接过程(二)、埋弧自动焊的主要特点1、生产率高2、焊接质量高而且稳定3、节约焊接材料4、改善了劳动条件5、适用于平焊长直焊缝和较大直径的环形焊缝。
对于短焊缝、曲折焊缝、狭窄位臵及薄板的焊接,不能发挥其长处。
(三)、焊丝和焊剂(四)、埋弧自动焊的工艺特点1、焊前准备工作要求严格2、焊接熔深大3、采用引弧板和引出板4、采用焊剂垫或钢垫板5、采用导向装臵三、气体保护焊(一)、氩弧焊--使用氩气作为保护气体的气体保护焊称为压弧焊。
氩气是惰性气体,可保护电极和熔化金属不受空气的有害作用。
氩弧焊按所用电极的不同分为熔化极氩弧焊和非熔化极氩弧焊两种。
1、非熔化极氩弧焊电极只作为发射电子、产生电弧用,填充金属另加。
常用掺有氧化钍或氧化铈的钨极,其特点是电子热发射能力强,熔点沸点高(为3700K和5800K)。
2、熔化极氩弧焊钨极氩弧焊电流小、熔深浅。
中厚以上的钛、铝、铜等合金的焊接多选用高生产率的熔化极氩弧焊。
3、氩弧焊的特点(1)由于氩气的保护,它适于各类合金钢、易氧化的有色金属,以及锆、钽、钼等稀有金属的焊接。
(2)氩弧焊电弧稳定,飞溅小,焊缝致密,表面没有熔渣,成形美观,焊接变形小。
(3)明弧可见,便于操作,容易实现全位臵自动焊接。
(4)钨极脉冲氩弧焊接可焊接0.8mm以下的薄板及某些异种金属。
(二)、二氧化碳气体保护焊利用CO2作为保护气体的气体保护焊,称为二氧化碳气体保护焊。
它的保护作用主要是使焊接区与空气隔离,防止空气中的氮气对熔化金属的有害作用。
焊接时:2CO2=2CO+O2 CO2=C+O2因此焊接是在CO2、CO、O2氧化气氛中进行的。
二氧化碳气体保护焊的特点:1、焊速高,可实现自动焊,生产率高。
2、为明弧焊接,易于控制焊缝成形。
3、对铁锈敏感性小、焊后熔渣少。
4、价格低廉。
5、焊接飞溅与气孔仍是生产中的难点。
四、电渣焊电渣焊就是利用电流通过液体熔渣所产生的电阻热进行焊接的方法。
(一)、焊接过程(二)、电渣焊的特点1、可一次焊成很厚的焊件。
2、生产率高,成本低。
3、焊缝金属比较纯净。
4、适于焊接中碳钢与合金结构钢。
五、等离子弧焊与切割(一)、等离子弧的概念1、一般焊接电弧为自由电弧,电弧区只有部分气体被电离,温度不够集中。
2、当自由电弧压缩成高能量密度的电弧,弧柱气体被充分电离,成为只含有正离子和负离子的状态时,即出现物质的第四态——等离子体。
等离子弧具有高温(15000~30000K)、高能量密度(480千瓦/厘米2)和等离子流高速运动(最大可数倍与声速)3、等离子弧焊的三种压缩效应(1)机械压缩效应在等离子枪中,当高频震荡引弧以后,气体电离形成的电弧通过焊嘴细小喷孔,受到喷嘴内壁的机械压缩。
(2)热压缩效应由于喷嘴内冷却水的作用,使靠近喷嘴内壁处的气体温度和电离度急剧降低,迫使电弧电流只能从弧柱中心通过,使弧柱中心电流密度急剧增加,电弧截面进一步减小,这是对电弧的第二次压缩。
(3)电磁收缩效应因为弧柱电流密度大大提高而伴生的电磁收缩力使电弧得到第三次压缩。
因三次压缩效应,使等离子弧直径仅有3mm左右,而能量密度、温度及气流速度大为提高。
(二)、等离子弧焊的特点1、能量密度大,温度梯度大,热影响区小,可焊接热敏感性强的材料或制造双金属件。
2、电弧稳定性好,焊接速度高,可用穿透式焊接,使焊缝一次双面成型,表面美观,生产率高。
3、气流喷速高,机械冲刷力大,可用于焊接大厚度工件或切割大厚度不锈钢、铝、铜、镁等合金。
4、电弧电离充分,电流下限达0.1A以下仍能稳定工作,适合于用微束等离子弧(0.2~30A)焊接超薄板(0.01~2mm),如膜盒、热电偶等。
六、真空电子束焊真空电子束焊是利用定向高速运动的电子束流撞击工件使动能转化为热能而使工件熔化,形成焊缝。
真空电子束焊的特点1、在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。
2、电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。
熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。
七、激光焊激光焊是以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方法。
激光焊的特点:1、激光焊能量密度大,作用时间短,热影响区和变形小,可在大气中焊接,而不需气体保护或真空环境。
2、激光束可用反光镜改变方向,焊接过程中不用电极去接触焊件,因而可以焊接一般电焊工艺难以焊到的部位。
3、激光可对绝缘材料直接焊接,焊接异种金属材料比较容易,甚至能把金属与非金属焊在一起。
4、功率较小,焊接厚度受一定限制。
八、电阻焊电阻焊是在焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的工艺方法。
电阻焊的种类很多,常用的有点焊、缝焊和对焊三种。
(一)、点焊点焊是将焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。
点焊主要用于薄板焊接。
点焊的工艺过程:1、预压,保证工件接触良好。