焦炉炉体的结构简介

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦炉炉体的结构简介

现代焦炉炉体最上部是炉顶,炉顶之下为相间配置的燃烧室和炭化室,炉体下部有蓄热室和连接蓄热室与燃烧室的斜道区,每个蓄热室下部的小烟道通过交换开闭器与烟道相连。烟道设在焦炉基础内或基础两侧,

烟道末端通向烟囱。燃烧室和炭化室

燃烧室是煤气燃烧的地方,通过与两侧炭化室的隔墙向炭化室的提供热量。装炉煤在炭化室内经高温干馏变成焦炭。燃烧室墙面温度高达1300--1400℃,而炭化室墙面温度约1000--1150℃,装煤和出焦时炭化室墙面温度变化剧烈,且装煤中的盐类对炉墙有腐蚀性。现代焦炉均采用硅砖砌筑炭化室墙。硅砖具有荷重软化点高、导热性能好、抗酸性渣侵蚀能力强、高温热稳定性能好和无残余收缩等优良性能。砌筑炭化室的硅砖采用沟舌结构,以减少荒煤气窜漏和增加砌体强度;所用的砖型有:丁字砖、酒瓶砖和宝塔砖。中国焦炉的炭化室墙多采用丁字砖,20世纪80年代以后则多采用宝塔砖。炭化室墙厚一般为90—100mm,中国多为95—105mm。为防止焦炉炉头砖产生裂缝,有的焦炉的炉头采用高铝砖或粘土砖砌筑,并设置直缝以消除应力,中国焦炉多采用这种结构。

燃烧室分成许多立火道,立火道的形式因焦炉炉型不同而异。立火道由立火道本体和立火道顶部两部分组成。煤气在立火道本体内燃烧。立火道顶是立火道盖顶以上部分。从立火道盖顶砖的下表面到炭化室盖顶砖下表之间的距离,称加热水平高度,它是炉体结构中的一个重要尺寸。如果该尺寸太小,炉顶空间温度就会过高,致使炉顶产生过多的沉积碳;反之,则炉顶空间温度过低,将出现焦饼上部受热不足,因而影响焦炭质量。另外,炉顶空间温度过高或过低,都会对炼焦化学产品质量产生不利影响。炭化室的主要尺寸有长、宽、高、锥度和中心距。焦炉的生产能力随炭化室长度和高度的增加而成比例的增加。捣固焦炉

与顶装炉不同,其锥度较小,只有0—200mm。

蓄热室

为了回收利用焦炉燃烧废气的热量预热贫煤气和空气,在焦炉炉体下部设置蓄热室。现代焦炉蓄热室均为横蓄热室(其中心线与燃烧室中心线平行),以便于单独调节。蓄热室有宽蓄热室和窄蓄热室两种。宽蓄热室是每个炭化室下设一个,窄蓄热墙一般用硅砖砌筑,有些国家用粘土砖或半硅砖代替硅砖砌筑温度较低的蓄热室下部。在蓄热室中放置格子砖,以充分回收废气中的热量。格子砖要反复承受急冷急热的温度变化,故采用粘土质或半硅质材料制造。现代焦炉的格子砖一般采用异型薄壁结构,以增加蓄热面积和提高蓄热效率。蓄热室下部有小烟道,其作用是向蓄热室交替导入冷煤气和空气,或排出废气。小烟道中交替变换的上升气流(被预热的煤气或空气)和下降气流(燃烧室排出的高温废气)温度差别大,为了承受温度的急剧变化,并防止气体对小烟道的腐蚀,需在小烟道内衬以粘土砖。

斜道区

位于燃烧室和蓄热室之间的通道。不同类型焦炉的斜道区结构有很大差异。斜道区布置着数量众多的通道(斜道、水平砖煤气道貌岸然和垂直砖煤气道等),它们彼此距离很近,并且上升气流和下降气流之间压差较大,容易漏气,所以斜道区设计要合理,以保证炉体严密。为了吸收炉组长向生产的膨胀,在斜道区各砖层均留膨胀缝。膨胀缝之间设置滑动缝,以利于膨胀之间的砖层受热自由滑动。斜道区承受焦炉上部的巨大重量,同时处于1100-1300℃的高温区,所以也用硅砖砌筑。

炉顶

位于焦炉炉体的最上部。设有看火孔、装煤孔和从炭化室导出荒煤气用的上升管孔等。炉顶最下层为炭化室盖顶层,一般用硅砖砌筑,以保证整个炭化室膨胀一致,也有用粘土砖砌筑的,这种砖不易断裂,但易

产生表面裂纹。为减少炉顶散热,在炭化室顶盖层以上采用粘土砖、红砖和隔热砖砌筑。炉顶表面一般铺缸砖,以增加炉顶面的耐磨性。在多雨地区,炉顶面设有坡度,以便排水。炉顶厚度按保证炉体强度和降低炉顶温度的要求确定,现代焦炉炉顶一般为1000—1700mm,中国大型焦炉的炉顶厚度为

1000-1250mm。

第一节焦炉炉体结构及炉型

一、焦炉炉型的分类

根据火道结构形式的不同,焦炉可分为二分式焦炉,双联火道焦炉及少数的过顶式焦炉。根据加热煤气种类的不同,焦炉可分为单热式焦炉和复热式焦炉。根据煤气入炉的方式不同,焦炉可分为下喷式焦炉和侧

入式焦炉。

二、现代焦炉的结构

现代焦炉虽有多种炉型,但都有共同的基本要求:①焦并长向和高向加热均匀,加热水平适当,以减轻化学产品的裂解损失。②劳动生产率和设备利用率高。③加热系统阻力小,热工效率高,能耗低。④炉体坚固、严密、衰老慢、炉龄长。⑤劳动条件好,调节控制方便,环境污染少。

1、炭化室

增大炭化室的容积是提高焦炉生产能力的主要措施之一。

(1)、炭化室的长度

大型焦炉一般为13~16米,随着长度的增加,焦炉的生产能力成比例地增加,长度增加的极限取决于技术装备的条件。炭化室的有效长度取决于炉门及衬砖的厚度,此厚度一般为365~420mm。

(2)、炭化室的高度

大型焦炉一般为4~6米。增加高度可以增加焦炉的生产能力,且由于煤料堆密度的增加而有利于焦炭质量的提高,但受到高向加热均匀性的限制,而且炉门、炉门框生产时的清扫都将增加困难。

(3)炭化室宽度

炭化室的宽度对焦炉的生产能力与焦炭质量均有影响,增加宽度虽然焦炉的容积增大,装煤量增多,但因煤料传热不良,随炭化室宽度的增加,结焦时间大为延长,结焦速度降低。

2、燃烧室

(1)结构形式与材质

燃烧室火道一般分为二分式和双联火道式两种,国内个别老焦炉还有过顶式。二分式焦炉的最大优点是结构简单,异向气流接触面少,但由于有水平集合烟道,使气流沿燃烧室长向分配不易均匀,同时削弱了砌体的强度。双联火道结构,具有加热均匀,气流阻力小,砌体强度高等优点,但异向气流接触面多,焦炉老龄时易串漏,结构较复杂,砖型多,故我国小型焦炉均不采用。

燃烧室材质一般均用硅砖砌筑。为进一步提高焦炉的生产能力和焦炉的强度,有发展为采用高密度硅砖的

趋势。

(2)高向加热

高低灯头系双联火道中单数火道低灯头、双数火道高灯头,使火焰在不同的高度燃烧。由于高灯头高出火道底面一段距离才送出煤气,自斜道来的空气常易将高灯头下面砖缝的石墨烧掉,造成串漏。废气循环是目前实现燃烧室高向加热均匀简单而有效的方法。此法的原理是利用循环废气降低可燃气体混合物中可燃成分的浓度,减慢燃烧速度,从而拉长了火焰,使高向加热均匀。

(3)加热水平高度

它影响炉顶空间结石墨的程度和化学产品的质量。加热水平高度由以下三个部分组成:一是煤线距炭化室顶部的距离,即为炉顶空间高度,一般大型焦炉为300mm,中小型焦炉为150-200mm;二是煤料结焦后的垂直收缩量,它取决于煤料的收缩性及炭化室的有效高度,一般为有效高度的5-7﹪;三是考虑到燃烧室顶对焦炭的传热,炭化室中成熟后的焦饼顶面高应比燃烧室顶面高出200-300mm(大焦炉)或

相关文档
最新文档