固相微萃取原理介绍
固相微萃取的原理
![固相微萃取的原理](https://img.taocdn.com/s3/m/db98fa3f4b7302768e9951e79b89680203d86bf0.png)
固相微萃取的原理固相微萃取,是一种常见的富集分离技术。
其原理主要基于化学分配平衡的基础,利用固定于吸附材料上的萃取溶剂,对待分析物进行选择性吸附,实现分离富集的目的。
下面,我们将系统地介绍固相微萃取的原理及其相关知识点。
一、基本原理固相微萃取的基本原理是化学分配平衡条件下,利用吸附材料上的萃取液物质与样品中待分析物发生相互作用,使待分析物在吸附剂上发生富集,并去除杂质,达到提高检测灵敏度和准确性的作用。
二、吸附材料的选择在固相微萃取中,吸附材料的种类与性质非常重要。
常用的吸附材料主要有有机硅胶、壳聚糖、活性炭、分子筛等。
这些吸附材料可以按照待分析物的物理化学特性进行选择,使其能够对待分析物具有良好的选择性和吸附能力。
三、萃取溶剂的选择萃取溶剂是固相微萃取中一个非常重要的环节,它可以对样品的萃取效果产生直接影响。
合适的萃取溶剂需要具备良好的选择性、稳定性和良好的萃取能力等特点。
通常情况下,萃取溶剂主要分为两种,即极性萃取剂和非极性萃取剂。
极性萃取剂(如甲醇、乙酸乙酯等)常用于富集极性化合物,而非极性萃取剂(如正己烷、苯等)则常用于富集非极性化合物。
四、固相微萃取操作步骤固相微萃取主要分为样品准备和固相微萃取两大步骤。
其中样品准备主要包括取样和前处理步骤,而固相微萃取实际上是将准备好的样品溶液通过化合物分配平衡的原理,沿着一个预定方向通过萃取剂实现分离富集的过程。
五、几个需要注意的问题固相微萃取在实际操作中常常会出现一些问题,需要注意以下几点:1. 固相微萃取时间的长短会影响样品中的待分析物的富集程度,同时也会影响识别待分析物的基峰。
2. 固相微萃取温度的变化也会影响到样品中化合物的富集能力,通常情况下较高的温度可以加速富集的速度,但是也会带来不必要的扰动和不良后果。
3. 固相微萃取过程中,需要小心避免草率决定萃取液的浓度。
浓度选择不当或萃取时间过长或过短都有可能引起分析误差。
综上所述,固相微萃取是一种基于化学分配平衡原理的分离富集技术,其有效性和精度取决于吸附材料、萃取液的选择以及操作方法的正确使用。
色谱科supelco 固相微萃取
![色谱科supelco 固相微萃取](https://img.taocdn.com/s3/m/bf2b26ac6394dd88d0d233d4b14e852459fb3911.png)
色谱科Supelco固相微萃取一、概述色谱科(Supelco)是美国Sigma-Aldrich公司旗下的一个部门,主要致力于提供高质量的色谱产品和技术解决方案。
在色谱科的产品线中,固相微萃取(Solid Phase Microextraction, SPME)是一项重要的技术。
本文将对色谱科Supelco固相微萃取技术进行介绍,以及其在实际应用中的优势和发展前景。
二、固相微萃取概述1. 定义:固相微萃取是一种基于吸附分离原理的前处理技术,利用固相微萃取针(SPME fiber)将目标物质浓缩在针端上,达到富集和分离的作用。
2. 原理:SPME技术主要依赖于固相萃取材料对目标化合物的亲和力,通过吸附和解吸过程实现分析物质的富集和提取。
3. 类型:根据不同的固相材料和萃取方式,固相微萃取可分为直接固相微萃取、头空间固相微萃取、固相柱微萃取等不同类型。
三、色谱科Supelco固相微萃取技术1. 产品线:色谱科Supelco在固相微萃取领域拥有多种产品,包括SPME fiber、SPME针、SPME萃取仪等,涵盖了不同应用需求。
2. 技术优势:a. 高选择性:SPME fiber材料具有不同的亲和性,可选择性地提取目标化合物,减少干扰物质的干扰。
b. 高灵敏度:SPME技术能够将目标物质集中在针端,使样品预处理更为简化,提高了后续分析的灵敏度。
c. 环保节能:SPME技术可以在无需有机溶剂的情况下完成萃取和浓缩,符合绿色分析化学的发展理念。
3. 应用领域:色谱科Supelco固相微萃取技术在环境监测、食品安全、生物医学、药物分析等领域得到了广泛的应用,并取得了显著的效果。
四、色谱科Supelco固相微萃取技术的发展前景1. 技术改进:随着色谱科Supelco在固相微萃取领域的持续投入,技术不断改进,产品性能和稳定性得到了提升。
2. 专业定制:色谱科Supelco可以根据客户的具体需求,提供个性化的固相微萃取解决方案,满足复杂样品分析的要求。
固相微萃取
![固相微萃取](https://img.taocdn.com/s3/m/772026326ad97f192279168884868762caaebb02.png)
固相微萃取8.1.4.1 固相微萃取的原理固相微萃取(solid—phase microextraction,SPME)技术是20世纪90年代初期兴起的一项样品前处理与富集技术,它最先由加拿大Waterloo大学Pawliszyn教授的研究小组于1989年首次研制成功,属于非溶剂型选择性萃取法,是一种集采样、萃取、浓缩、进样于一体的分析技术。
SPME装置略似进样器,在特制注射器筒内的不锈钢细管顶端分别连接一根穿透针和纤维固定针,针头上连接一根熔融石英纤维,上面涂布一层多聚物固定相,注射器的柱塞控制纤维的进退。
当纤维暴露在样品中时,涂层可从液态/气态基质中吸附萃取待测物,经过一段时间后,已富集了待测物的纤维可直接转移到仪器(通常是气相色谱仪,即SPME—GC) 中,通过一定的方式解吸附,然后进行分离分析。
典型的SPME装置如图8一12所示。
SPME熔融石英纤维涂布固定相与样品或其顶空充分接触,待测物在两相间分配达到平衡后,两相中待测物浓度关系如下式:N。
一KⅥV。
C。
/(KU+V。
) (8—2)式中,N。
为固定相中待测物的分子数;K为两相间待测物的分配系数;V。
为固定液体积;U为样品体积;c。
为样品中待测物浓度。
因为U》V。
,故式(8—2)可简化为:N。
=Ku%(8-3)由式(8-3)可知,固定液吸附待测物分子数与样品中待测物浓度呈线性关系,即样品中待测物浓度越高,SPME吸附萃取的分子数越多。
当样品中待测物浓度一定时,萃取分子数主要取决于固定液体积和分配系数。
同时,方法的灵敏度和线性范围的大小也取决于这两个参数。
固定液厚度越大(即y。
越大),萃取选择性越高(K越大),则方法的灵敏度越高。
由此可见,选择合适的固定液对于萃取结果是很重要的。
目前,SPME装置已实现商品化。
该装置主要由两部分组成:一部分是作为支撑用的微量注射器底座;另一部分是类似于注射针头形状的熔融石英纤维,其半径一般为15mm,上面涂布着固定体积(/g 度为10~100ttm)的聚合物固定液。
药物分析中固相微萃取法的应用
![药物分析中固相微萃取法的应用](https://img.taocdn.com/s3/m/a3b9324a77c66137ee06eff9aef8941ea76e4bde.png)
药物分析中固相微萃取法的应用药物分析中,固相微萃取法(Solid-Phase Microextraction,SPME)是一种灵敏、快速、有效的样品前处理技术。
它的原理是利用特殊的固相萃取纤维,在样品中吸附目标分析物,然后在热解仪或气相色谱仪中进行分离和检测。
本文将探讨固相微萃取法在药物分析中的应用。
一、固相微萃取原理固相微萃取是基于分子扩散和吸附原理。
它使用特定材料的固相萃取纤维作为吸附剂,将目标分析物从样品中吸附到纤维表面上。
固相纤维通常包括聚二甲基硅氧烷(PDMS)和聚酰胺(PA)等材料。
在吸附平衡达到后,纤维上的吸附物质可以通过热解仪或气相色谱仪进行分析。
二、固相微萃取的优点1. 灵敏度高:固相微萃取能够集中目标分析物,提高检测灵敏度。
2. 快速:相比传统的样品前处理方法,固相微萃取不需要繁琐的提取步骤,缩短了分析时间。
3. 低成本:固相纤维的制备和使用成本相对较低。
4. 高选择性:通过选择不同类型的固相纤维,可以实现对不同化合物的选择性吸附和富集。
三、固相微萃取在药物分析中的应用1. 药物残留分析:固相微萃取常用于食品和环境样品中药物残留的提取与测定。
例如,可以用于蔬菜中农药残留的分析,以及水体中抗生素和激素残留的检测。
2. 药物药代动力学研究:固相微萃取可以用于药物在生物样品(如血液、尿液)中的提取和浓缩,从而实现对药物的药代动力学研究。
这对于了解药物在体内的分布和代谢过程具有重要意义。
3. 药物质量控制:固相微萃取可用于药物质量控制中的固定和有机污染物的检测。
例如,可用于药物片剂中批号不合格或有疑问的成分的提取和分析。
4. 药物研发:固相微萃取可以用于药物研发过程中各阶段的样品前处理。
通过对合成中间体和产物等样品的分析,可以帮助研发人员快速了解反应过程和产物纯度。
5. 药物安全性评价:固相微萃取可以用于药物安全性评价中的药物代谢产物的提取和分析。
对于了解药物代谢途径、副作用等有重要作用。
固相萃取和固相微萃取
![固相萃取和固相微萃取](https://img.taocdn.com/s3/m/13d40c8ac67da26925c52cc58bd63186bceb9218.png)
固相萃取和固相微萃取一、概述固相萃取(SPE)和固相微萃取(SPME)是两种常见的样品前处理技术,它们可以用于分离和富集目标化合物。
SPE通常用于大样品量的分析,而SPME则适用于小样品量的分析。
二、固相萃取1. 原理固相萃取是一种样品前处理技术,通过将目标化合物从复杂的混合物中吸附到特定的固相材料上,然后再用洗脱剂将其洗脱出来。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将样品加入到固相柱中;(3)用洗脱剂洗脱目标化合物;(4)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括C18、C8、Silica gel等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPE广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPE技术来富集水中的有机污染物、食品中的农药残留等。
三、固相微萃取1. 原理固相微萃取是一种无机溶剂的萃取技术,通过将特定的固相材料包裹在针头上,然后将其插入样品中进行吸附和富集目标化合物。
这种技术可以有效地去除其他干扰物质,并提高目标化合物的浓度。
2. 步骤(1)选择适当的固相材料;(2)将固相材料包裹在针头上;(3)将针头插入样品中进行吸附和富集目标化合物;(4)用洗脱剂洗脱目标化合物;(5)将洗脱液收集并进行进一步分析。
3. 固相材料常见的固相材料包括PDMS、CAR等。
不同的固相材料具有不同的亲水性和疏水性,因此可以选择适当的材料来富集不同类型的化合物。
4. 应用领域SPME广泛应用于环境、食品、药物等领域的样品前处理中。
例如,可以用SPME技术来富集水中的有机污染物、食品中的农药残留等。
四、比较1. 样品量SPE适用于大样品量的分析,而SPME则适用于小样品量的分析。
2. 富集效率SPE和SPME都可以有效地去除其他干扰物质,并提高目标化合物的浓度。
固相微萃取法
![固相微萃取法](https://img.taocdn.com/s3/m/9ef140c64793daef5ef7ba0d4a7302768e996fc1.png)
固相微萃取法固相微萃取法是一种新型的样品前处理技术,它将传统的液液萃取方法简化为一步操作,具有操作简便、时间短、灵敏度高、选择性好等优点。
本文将从以下几个方面详细介绍固相微萃取法。
一、固相微萃取法的基本原理固相微萃取法是利用固定在小柱或膜上的吸附剂对样品中的目标物进行富集和分离。
其基本原理是,将样品溶解于适当的溶剂中,通过注射器或自动进样器将样品进入吸附柱或吸附膜中,在适当条件下使目标物质被吸附在柱或膜上,然后用洗脱剂将目标物质洗出,并进行分析。
二、固相微萃取法的优点1. 操作简便:只需将样品加入到吸附柱或膜中即可完成富集和分离过程,省去了传统液液萃取方法复杂的步骤。
2. 时间短:整个富集和分离过程只需几分钟至几十分钟不等。
3. 灵敏度高:由于富集的目标物质被高度净化和富集,所以检测灵敏度得到大幅提高。
4. 选择性好:通过选择不同的吸附剂,可以实现对不同化合物的选择性富集和分离。
5. 可靠性高:固相微萃取法不受样品矩阵的影响,因此在复杂矩阵中也能实现目标物质的富集和分离。
三、固相微萃取法的应用1. 环境监测:固相微萃取法可用于水、土壤、空气等环境样品中有机污染物的富集和分离。
2. 食品安全:固相微萃取法可用于食品中农药、兽药、食品添加剂等有害物质的检测。
3. 药物分析:固相微萃取法可用于药物血浆、尿液等生物样品中药物代谢产物的富集和分离。
4. 化学分析:固相微萃取法可用于化学反应体系中产生的有机产物或催化剂残留等有害成分的富集和分离。
四、固相微萃取法与其他技术的比较1. 与传统液液萃取法相比,固相微萃取法操作简便、时间短、灵敏度高、选择性好。
2. 与固相萃取法相比,固相微萃取法使用的吸附剂量更少,富集时间更短,且不需要使用大量有机溶剂。
3. 与固相微萃取法相比,固相微萃取-气相色谱/质谱联用技术具有更高的灵敏度和更好的分离效果。
五、总结固相微萃取法作为一种新型的样品前处理技术,在环境监测、食品安全、药物分析、化学分析等领域得到了广泛应用。
固相萃取的原理方法等
![固相萃取的原理方法等](https://img.taocdn.com/s3/m/d442814878563c1ec5da50e2524de518974bd36a.png)
固相萃取的原理方法等固相萃取(Solid-Phase Extraction,SPE)是一种常用的样品预处理技术,用于富集和净化待分析物。
它的原理是通过在固相吸附剂上选择性地吸附待分析物,然后洗脱和收集目标化合物,最后完成富集和净化过程。
下面将详细介绍固相萃取的原理、方法和应用。
1.固相萃取的原理固相萃取的原理基于化学吸附的原理,即待分析物与固相吸附剂之间的相互作用。
固相吸附剂通常是具有较大的比表面积和可控的孔结构的材料,例如吸附树脂、硅胶和炭素。
待分析物与固相吸附剂之间的吸附是非极性或极性相互作用,例如范德华力、静电作用、氢键和π-π相互作用。
吸附树脂是最常用的固相吸附剂,它可以通过表面与待分析物之间的相互作用选择性地吸附目标化合物。
2.固相萃取的方法(1)固相萃取的吸附剂常用的固相萃取吸附剂包括固相萃取柱和固相微粒。
固相萃取柱是一种采用成列式固相吸附剂填充柱状材料的设备,样品依次在固相柱上吸附、洗脱和收集。
固相微粒是具有很小粒径的固体颗粒,通常用于制备固相微萃阱。
这些固相微粒可以喷涂或填充到试管或器皿中,并通过离心、过滤或吸入的方式用于固相萃取。
(2)固相萃取的洗脱剂3.固相萃取的应用固相萃取广泛应用于环境、食品、药物和生物分析等领域。
它具有简单、快速、高效的特点,可以对大量样品进行平行处理。
(1)环境分析固相萃取在环境样品的净化和富集中起到重要作用,如水样中有机污染物的分析、土壤样品中的有机污染物分析和大气颗粒物中有机污染物分析等。
(2)食品分析固相萃取在食品样品的预处理中广泛应用,如食品中农药、兽药、残留物、食品中的重金属和毒素等的提取和富集等。
(3)药物分析固相萃取在药物样品的提取和净化中得到了广泛应用,如血液、尿液、生物组织和药物代谢产物等的分析。
(4)生物分析固相萃取在生物样品的净化和富集中得到了广泛应用,如血清、尿液、唾液和细胞培养基等样品中蛋白质、肽类和核酸的富集和净化。
总之,固相萃取作为一种有效的样品预处理方法,可以在分析前富集和净化目标物质,提高分析的灵敏度和准确性,广泛应用于环境、食品、药物和生物分析等领域。
固相微萃取原理及使用
![固相微萃取原理及使用](https://img.taocdn.com/s3/m/8187383f178884868762caaedd3383c4bb4cb4b4.png)
固相微萃取原理及使用固相微萃取(SPME,Solid-Phase Microextraction)是一种新型的样品前处理技术,通过固定在纤维上的固相吸附剂从气态、液态或固态样品中萃取目标分析物,并将其直接转移到气相色谱仪(GC)或液相色谱仪(LC)进行定性和定量分析。
固相微萃取的原理基于固相吸附剂对目标分析物的亲合性。
通常使用的固相吸附剂是聚二甲基硅氧烷(PDMS)或其他官能化的聚合物。
PDMS 纤维富含非极性表面,能够吸附疏水性的目标分析物。
在样品中,目标分析物与固相吸附剂表面发生吸附作用,达到平衡后,可以将纤维直接放入分析仪器进行进一步分析。
固相微萃取的使用步骤包括样品处理、纤维曝气和分析步骤。
样品处理通常涉及样品的预处理,如溶解、稀释、搅拌等,以便将目标分析物从样品基质中释放出来。
然后将固相吸附剂纤维插入样品中,使其与目标分析物接触,并允许吸附达到平衡。
曝气步骤是将纤维暴露在空气或惰性气体中,以去除吸附在纤维上的水分和挥发性杂质。
最后,将纤维放入色谱仪进行分析。
固相微萃取的优点包括简便、快速、高效、灵敏、环境友好以及无需有机溶剂等。
相比于传统的样品前处理方法,如液-液萃取和固相萃取,固相微萃取不需要大量的溶剂、操作步骤和设备,大大简化了样品前处理的流程。
此外,由于固相微萃取仅使用微量吸附剂,其分析结果更具可重复性和可比性。
同时,固相微萃取可以在不破坏或减少样品中目标分析物含量的情况下实现富集,避免了样品基质对分析结果的干扰。
固相微萃取在环境、食品、生物、医药等领域中得到了广泛应用。
例如,可以用于食品和饮料中残留农药和有害物质的分析,环境水样中的挥发性有机物的监测,空气中的挥发性有机物的测定,以及生物样品中药物或代谢物的分析等。
此外,固相微萃取还可以与其他技术结合,如气相色谱质谱联用、高效液相色谱质谱联用等,以实现更高的分析灵敏度和选择性。
总之,固相微萃取是一种新颖的样品前处理技术,具有简便、高效、灵敏且环境友好的特点,被广泛应用于各种样品的分析和监测,并为分析化学领域带来了极大的便利。
固相微萃取的实验原理
![固相微萃取的实验原理](https://img.taocdn.com/s3/m/a74cc3050812a21614791711cc7931b765ce7b32.png)
固相微萃取的实验原理固相微萃取(SPME)是一种新颖的样品预处理技术,采用了无机或有机固定相来富集、分离和测定目标分析物。
SPME是在固定相吸附和解吸原理的基础上进行的。
SPME的实验原理可以概括为以下几个步骤:1. 固相涂层选择:首先,根据目标分析物的特性选择合适的固相涂层。
常用的固相涂层有聚二甲基硅氧烷(PDMS)、聚乙二醇(PEG)、纤维素等。
固相涂层的选择应根据目标分析物的疏水性、极性等属性来决定。
2. 固相涂层预处理:为了去除固相涂层上的杂质,提高采样效果,需要对固相涂层进行预处理。
一般常用的方法是热处理,即将涂层置于高温下,去除杂质和水分。
3. 采样操作:将经预处理的固相涂层置于样品中进行采样。
SPME采样可以是直接置于液体样品中的吸附模式,也可以是通过头空吸附气相中挥发性有机物的挥发模式。
在采样过程中,由于固相涂层具有一定的亲和性,目标分析物会被吸附到固相涂层上。
4. 分析物解吸:将经过采样的固相涂层插入气相色谱(GC)或液相色谱(LC)等仪器中,进行分析物的解吸。
在加热温度和时间的作用下,分析物从固相涂层中解吸入气相或流动相,进而进入色谱系统进行分离和定量测定。
SPME作为一种绿色、高效、灵敏的分析方法,具有以下优点:1. 无需使用有机溶剂或多步骤提取,减少了分析过程中的污染和误差。
2. 由于固相涂层的特殊性,可以选择性地吸附目标分析物,从而避免了固相萃取中非目标物干扰的问题。
3. 通过对固相涂层的选择和调整,可以实现对不同特性物质的富集提取,灵活性较高。
4. 相对于传统的技术,SPME具有较高的选择性和灵敏度,对于目标化合物浓度较低的样品可以进行有效的富集。
5. 实验操作简单,仪器成本较低,对分析人员要求不高,可以大大降低分析成本。
然而,SPME技术也存在一些限制和挑战:1. 对于极性较高的目标物质,固相涂层亲和性较低,吸附效果较差。
2. 分析样品的复杂性会影响到SPME的应用。
固相微萃取技术
![固相微萃取技术](https://img.taocdn.com/s3/m/263c74dd33d4b14e852468c1.png)
固相萃取的分类
• 按照操作的不同,固相萃取可分为离线萃 取和在线萃取。
• 离线萃取是指萃取过程完成后再使用一 些分析手段进行分析;在线萃取出现于 80年代,萃取和分析同步完成,可靠性、 重现性、以及操作性能和工作效率都得 到很大程度的提高。
四、固相萃取的操作步骤
• 典型的固相萃取一般分为四个基本步骤: 1、吸附剂的选择 • 目标物的最佳保留(即最佳吸附)取决于目标 物极性与吸附剂极性的相似程度,两者极性越 相似,则保留越好(即吸附越好)。 • 选择固相萃取中的固定相吸附剂时,要尽量选 择与目标物极性和样品溶剂极性相似的吸附剂。 • 当目标物极性适中时,正、反相固相萃取都可 使用。 • 吸附剂的选择还受样品溶剂洗脱强度的制约。
SPME 萃取头的选择依据
固定相的处理
• 固相微萃取中的关键部位是石英纤维固 定相, 靠它来对分析组分吸附和解吸, 如 果曾用过但上面的组分未被解吸掉则会 对以后的分析结果有干扰。每次使用前 必须将其插入气相色谱进样器, 在250℃ 左右置1h 以去除上面吸附的干扰物, 如 果曾分析过衍生化组分则需要放置更长 时间。
反相固相萃取
• 反相固相萃取所用的吸附剂和目标化合 物通常是非极性的或较弱极性的,反相 萃取过程中目标物质的碳氢键与吸附剂 表面官能团产生非极性作用(包括范德华 力或色散力),使得极性溶剂中的非极性 以及弱极性的物质在吸附剂表面吸附、 富集。
离子交换固相萃取
• 离子交换固相萃取又可分为强阳离子固 相萃取和强阴离子固相萃取两种,作用机 理都是目标物质的带电荷基团同吸附剂 表面的带电基团发生离子静电吸引,从而 实现吸附分离。
固相微萃取的装置
SPME装置略似进样器,典型的SPME装置见右图。特制 不锈钢穿透针A为中空结构,纤维固定针B和萃取纤维C 能在其中移动,熔融石英纤维C上面涂布用于萃取的固 定相,柱塞D控制固定针B的移动使纤维C伸出或退回穿 透针中。当纤维暴露在样品中时,涂层可从液态-气态 基质中吸附萃取待测物。吸附完毕后,萃取纤维C退回 到穿透针中被保护起来,己富集了待测物的纤维可直接 转移到仪器(气相色谱仪,液相色谱仪等)进样口,通过 仪器进样口的能量解吸附,然后进行分离分析。
固相微萃取原理与应用
![固相微萃取原理与应用](https://img.taocdn.com/s3/m/eda232cdcd22bcd126fff705cc17552707225edb.png)
固相微萃取原理与应用固相微萃取(Solid Phase Microextraction,SPME)是一种非常有效的样品预处理技术,它结合了固相萃取和微量分析的优点。
SPME利用固定在纤维表面的吸附剂对样品中的目标化合物进行富集,之后通过热解吸或溶解释放目标物质,再用气相色谱/质谱分析等方法进行检测和定量。
固相微萃取的原理如下:首先,选择一个合适的纤维材料作为吸附剂,并通过将其暴露于样品中,让目标物质在纤维表面吸附;然后,纤维被移出样品,通过热解吸(thermal desorption)或溶解释放(desorption)将吸附的目标物质释放到气相或液相中;最后,通过气相色谱/质谱或液相色谱等方法对目标物质进行分析和定量。
固相微萃取的应用非常广泛,具有以下几个主要优点:1. 高效快速:相比传统样品预处理方法,固相微萃取操作简单,不需要使用溶剂,样品准备时间短,通常只需10-30分钟即可完成富集过程。
2. 灵敏度高:纤维吸附剂具有大表面积和强吸附性,能够有效地吸附低浓度目标物质,提高信号的强度。
3. 可选择性:根据分析需要,可以使用不同类型的纤维吸附剂,以便选择合适的吸附物质,实现目标化合物的选择性富集。
4. 不污染:固相微萃取不需要使用溶剂,减少了对环境的污染。
同时,由于纤维吸附剂具有良好的选择性,可以减少干扰物质的富集。
固相微萃取广泛应用于食品、环境、制药、化学和生物等领域中目标化合物的富集和分析。
在食品分析中,SPME可用于检测食品中的残留农药、食品添加剂、香料和食品中的挥发性成分等,能够提供高效的样品净化和浓缩效果,保证分析结果的准确性。
在环境分析中,SPME广泛用于水样和土壤样品中有机污染物的富集。
另外,SPME还可用于大气中有机物和挥发性有机化合物的分析。
在制药和化学领域,SPME可用于药物代谢产物的分析、药物残留、挥发性有机物和脂质的分析。
在生物领域中,SPME可应用于生物样品中微量物质的分离和测定,如体液中的药物和代谢物、植物挥发性成分等。
固相萃取与固相微萃取应用之原理
![固相萃取与固相微萃取应用之原理](https://img.taocdn.com/s3/m/fee680cf690203d8ce2f0066f5335a8102d26616.png)
固相萃取与固相微萃取应用之原理固相萃取(solid-phase extraction,简称SPE)和固相微萃取(solid-phase microextraction,简称SPME)是目前广泛应用于化学分析中的两种常用技术。
它们利用固定在固相材料上的吸附剂对样品中的目标分析物进行富集和分离,从而实现样品的前处理和富集分析。
固相萃取的原理是利用固相吸附剂对溶液中的目标分析物进行富集和分离。
通常,固相萃取分为两个步骤:样品的吸附和洗脱。
首先,样品与固相吸附剂接触,目标分析物被吸附到固相材料上,而其他干扰物质则被排除。
接着,通过洗脱溶剂将目标分析物从固相材料上洗脱出来,得到富集后的目标物。
固相材料常用的类型包括吸附树脂、吸附剂和固相薄膜等,选择合适的固相材料可以根据目标物的性质和样品矩阵的组成决定。
固相微萃取是一种在固定相微量化身上进行的全固相萃取技术。
它将固定在微量化身上的吸附剂直接暴露于样品中,通过吸附分析物质进行富集。
SPME的原理可分为两个步骤:样品的吸附和洗脱。
首先,将固相微萃取针(包含固相吸附剂)插入待分析的样品中,样品中的目标分析物质会通过扩散过程进入固相材料中,并被固相吸附剂吸附。
接着,将针引出,固相吸附剂直接进入气相色谱柱或液相色谱柱,通过洗脱溶剂将目标物洗脱,得到富集后的分析物。
这两种技术在分析化学领域有着广泛的应用。
其主要应用包括环境样品分析、食品安全检测、生物样品分析等。
例如,固相萃取可以用于提取土壤、水样中的有机物、无机物、金属离子等。
而固相微萃取则可以用于分析空气中的挥发性有机化合物、食品中的香味物质、生物样本中的代谢产物等。
这些富集后的分析物可进一步通过气相色谱-质谱联用或液相色谱-质谱联用等仪器进行进一步的定性和定量分析。
固相萃取和固相微萃取的优点在于操作简便、富集效率高、回收率高、能够实现对复杂样品基质的选择性富集等。
同时,它们还可以与各种分析仪器(如气相色谱仪、液相色谱仪、质谱仪)联用,提高分析的灵敏度和准确性。
固相微萃取原理与应用
![固相微萃取原理与应用](https://img.taocdn.com/s3/m/d25c1bb3760bf78a6529647d27284b73f2423691.png)
固相微萃取原理与应用固相微萃取(SPME, solid-phase microextraction)是一种无溶剂、非破坏性的预处理技术,用于提取和浓缩分析样品中的目标化合物。
它采用了一种特殊的固相纤维,通常是聚二甲基硅氧烷(PDMS),将目标分析化合物从样品中以固相吸附的方式捕集起来。
其优点包括简便、快速、高效,可以应用于多种样品类型和化合物类别。
SPME的原理基于分配系数(partition coefficient)的概念。
分析目标物分布在气相、液相和固相之间,SPME纤维通过吸附和解吸过程在气相和固相之间平衡分配,实现了目标物从样品到纤维上的转移。
SPME的应用广泛涉及环境、食品、药物、生物、石油化工等领域。
例如在环境领域中,SPME可用于挥发性有机化合物(VOCs)和揮發性残留有机物(VROs)的分析。
在食品领域中,SPME被广泛应用于食品中的香气和风味分析,如葡萄酒、咖啡、奶制品等。
SPME的操作流程简单。
首先,选择合适的纤维类型和形式,比如直接插入纤维或通过样品瓶盖压合等方式使纤维与样品接触。
然后,通过吸附、温度控制、搅拌等条件,使目标化合物在固相纤维上固定。
最后,将纤维转移到分析设备中,如气相色谱(GC)、液相色谱(HPLC)等进行分析。
SPME的优点包括:1.无需溶剂:与传统的液液萃取相比,SPME不需使用有机溶剂,减少了对环境的污染。
2.非破坏性:SPME不需要破坏样品结构,适用于有限样品量或不可再生样品。
3.高灵敏度:SPME可实现对低浓度目标物的捕集和浓缩,提高了灵敏度。
4.快速:SPME操作简便,分析时间短。
5.可在线监测:SPME技术可以与其他分析方法(如气相色谱质谱联用)相结合,实现实时或在线分析。
然而,SPME技术也存在一些限制:1.纤维选择:选择合适的纤维类型和形式对于捕集目标物的选择性和灵敏度至关重要。
没有一种纤维可以适用于所有化合物。
2.矩阵效应:复杂样品基质中的共存物可能会影响分析结果,例如干扰分析目标物的捕集或解吸。
固相微萃取原理
![固相微萃取原理](https://img.taocdn.com/s3/m/e3dc33d6aff8941ea76e58fafab069dc51224758.png)
固相微萃取原理固相微萃取原理固相微萃取是一种常用的样品前处理技术,该技术已被广泛应用于化学、医学、环保等领域。
这种方法基于固相萃取技术,通过纤维固相材料分离富集分析样品中的目标分子。
其原理是在固相萃取的基础上,采用微量萃取剂,通过高速搅拌或振荡将溶液中的目标化合物修饰在纤维固相材料表面,实现目标分子的富集和分离。
固相微萃取可分为单相萃取和双相萃取两种模式,其中单相萃取主要用于水样中目标化合物的分析和富集,而双相萃取则主要用于脂溶性化合物的富集和分离。
在单相萃取中,纤维固相材料通常是采用聚四氟乙烯(PTFE)或聚苯乙烯(PS)制成的带有芯部孔道的纤维,这些孔道可以增加固相材料的表面积,从而提高样品的富集效率。
在样品中加入少量的萃取剂后,样品中的目标化合物会被固定在纤维表面,形成一个相对稳定的复合体。
接着,通过洗涤和干燥等步骤来分离复合体,最后用乙腈等溶剂洗脱高纯度的目标分子。
相比单相萃取,双相萃取则需要添加有机溶剂来实现化合物的富集和分离。
和单相萃取不同的是,有机相和水相之间有一定的分界面,有机相的萃取剂可以自然逸出到水相中,从而实现化合物的富集和分离。
固相微萃取技术的优点在于它使用的试剂极少,对环境污染小,并且能够同时分离和浓缩样品中的多种化合物。
此外,该技术的操作也很简单,只需要对样品进行搅拌或振动操作即可实现富集分离。
由于其操作简便、迅速和高效的特点,该技术已经在质谱、环境污染、药物筛选等相关领域被广泛应用。
不过,固相微萃取技术同样存在一些缺点,例如需要合适的固相材料和萃取剂,同时也需要控制化学反应的条件,以保证分析结果的准确性和精确性。
总之,固相微萃取技术的出现丰富了化学分析技术,具有广阔的应用前景。
未来随着技术的发展,它将不断得到改进,使其更加易用、准确和高效。
固相微萃取技术及其应用
![固相微萃取技术及其应用](https://img.taocdn.com/s3/m/0cb8c028b6360b4c2e3f5727a5e9856a561226d5.png)
固相微萃取技术及其应用一、引言固相微萃取技术是一种新型的样品前处理方法,其基本原理是利用微量有机溶剂在固相萃取柱中与水样中的目标分子进行反应,将目标分子从水样中萃取出来。
该技术具有操作简单、提取效率高、耗时短等优点,因此在环境监测、食品安全检测等领域得到了广泛应用。
二、固相微萃取技术原理1. 固相萃取柱固相微萃取技术的核心是固相萃取柱,其主要成分为聚合物吸附剂。
聚合物吸附剂具有较大的比表面积和良好的化学稳定性,能够有效地吸附分子。
因此,在样品前处理过程中,将待测样品通过固相萃取柱时,目标物质会被吸附在柱上。
2. 微量有机溶剂微量有机溶剂通常用于洗脱被吸附在固相萃取柱上的目标物质。
由于微量有机溶剂对目标物质具有较强的亲和力,因此可以有效地将目标物质从固相萃取柱上洗脱下来。
3. 水样处理水样处理是固相微萃取技术的关键步骤之一。
在水样处理过程中,通常需要将水样进行预处理,以便更好地提取目标物质。
例如,在环境监测中,可以通过调节水样pH值、添加盐酸等方法,使目标物质更容易被吸附在固相萃取柱上。
三、固相微萃取技术应用1. 环境监测固相微萃取技术在环境监测中得到了广泛应用。
例如,在地下水中检测有机污染物时,可以使用该技术对水样进行前处理,提高检测灵敏度和准确性。
2. 食品安全检测固相微萃取技术也可以用于食品安全检测。
例如,在葡萄酒中检测残留的农药时,可以使用该技术对葡萄酒进行前处理,提高检测灵敏度和准确性。
3. 药物分析固相微萃取技术也可以用于药物分析。
例如,在生物组织或体液中检测药物时,可以使用该技术对样品进行前处理,提高检测灵敏度和准确性。
四、固相微萃取技术优缺点1. 优点固相微萃取技术具有操作简单、提取效率高、耗时短等优点。
此外,该技术还可以对样品进行预处理,以提高检测灵敏度和准确性。
2. 缺点固相微萃取技术的缺点主要包括:样品处理量较小、柱寿命较短、柱的选择性有限等。
五、总结总之,固相微萃取技术是一种新型的样品前处理方法,具有操作简单、提取效率高等优点,在环境监测、食品安全检测等领域得到了广泛应用。
固相微萃取原理
![固相微萃取原理](https://img.taocdn.com/s3/m/01bde209a9956bec0975f46527d3240c8447a1c1.png)
固相微萃取原理
固相微萃取(SPE)是一种用于样品前处理的技术,它在分析化学领域中得到
了广泛的应用。
固相微萃取的原理是利用固相萃取材料对目标化合物进行选择性吸附和脱附,从而实现对样品的富集和净化。
这种方法具有操作简便、富集效果好、消耗少量有机溶剂等优点,因此在环境监测、食品安全、药物分析等领域得到了广泛的应用。
固相微萃取的原理基于化学吸附和脱附过程。
在固相微萃取过程中,样品溶液
首先通过固相萃取柱,目标化合物会与固相材料发生化学吸附,而其他干扰物质则会被排除。
接着,通过改变溶剂的极性或pH 值等条件,使得目标化合物发生脱附,从而得到富集的目标化合物。
固相微萃取的原理主要包括亲合吸附、离子交换、疏水相互作用等。
亲合吸附
是指固相萃取材料与目标化合物之间存在化学亲和力,从而实现选择性吸附。
离子交换则是利用固相材料上的功能基团与溶液中的离子发生反应,实现目标离子的选择性吸附。
疏水相互作用则是通过固相材料的疏水性实现对目标化合物的富集。
固相微萃取的原理虽然简单,但在实际应用中需要根据样品的特性选择合适的
固相材料、溶剂和萃取条件。
固相微萃取技术的发展也在不断完善,例如固相萃取柱的材料不断更新,新型固相萃取材料的研发等,为该技术的应用提供了更多的选择。
总的来说,固相微萃取技术以其简便、高效、环保的特点,成为了样品前处理
中的重要手段。
通过对固相微萃取原理的深入理解,可以更好地应用该技术于实际分析中,为分析化学领域的发展提供更多可能性。
药物分析中的固相微萃取技术应用
![药物分析中的固相微萃取技术应用](https://img.taocdn.com/s3/m/bc102ef8970590c69ec3d5bbfd0a79563c1ed4d2.png)
药物分析中的固相微萃取技术应用随着现代医药科学的不断发展,药物的研究和分析工作也变得越来越重要。
药物分析的关键是提取和检测目标物质,而固相微萃取技术(Solid Phase Microextraction, SPME)作为一种快速、高效的样品前处理方法,在药物分析领域中得到了广泛的应用。
本文将介绍固相微萃取技术在药物分析中的应用,并探讨其在该领域中的优势和未来发展。
一、固相微萃取技术的原理和方法固相微萃取技术是一种基于活性固相吸附剂的分析方法,其原理是利用具有吸附性能的固相材料从样品中吸附目标化合物,然后通过热解析或溶解脱附,将目标化合物转移至分析仪器中进行定量分析。
一般来说,固相微萃取技术主要包括直接注射法、固相内标法和固相封闭容器法等。
其中,直接注射法是指将样品直接吸附于固相材料上,然后通过吸热解析或溶解脱附将目标化合物引入检测仪器;固相内标法则是在微萃取过程中同时引入内标化合物,通过内标化合物与目标化合物的相对峰面积比值进行定量分析;固相封闭容器法是将样品与固相材料密封在一个容器中,通过吸附和脱附的循环过程提高分析效率。
二、固相微萃取技术在药物分析中的应用1.药物残留分析固相微萃取技术在药物残留分析中有着广泛的应用。
传统的药物残留分析方法通常需要复杂的操作步骤和大量的有机溶剂,而固相微萃取技术可以在不使用有机溶剂的情况下,通过简单的操作步骤并且具有良好的选择性和灵敏度,实现对药物残留的准确分析。
例如,可以利用固相微萃取技术对食品中的抗生素残留进行检测,有效保障食品安全。
2.药物代谢物分析药物代谢物是药物在体内转化过程中产生的化合物,对了解药物的代谢动力学和药效学具有重要意义。
固相微萃取技术可以有效地对药物代谢物进行富集和预处理,提高代谢物的检测灵敏度。
例如,可以利用固相微萃取技术对尿液中的代谢产物进行分析,从而了解药物在人体内的代谢过程。
3.药物含量测定固相微萃取技术还可以用于药物含量的测定。
顶空固相微萃取
![顶空固相微萃取](https://img.taocdn.com/s3/m/a182e15803768e9951e79b89680203d8ce2f6aeb.png)
顶空固相微萃取
01
顶空(固相微萃取)技术基本原理
简单来讲,顶空就是一种进样方式。
将待测样本置于一恒温密闭容器中,通过加热升温使得挥发性组分从样本中挥发出来;在顶空瓶里面的气液(气固)两相中达到热力学平衡之后,直接抽提顶部气体打入气相色谱质谱仪器中进行分离分析;从而进行一些挥发性或者气味物质的检测的原理。
固相微萃取技术的作用就是在抽提气体样本的时候采用涂有固定相的熔融石英纤维来进行吸附、富集,然后再解吸进样的这样一个原理。
02
顶空(固相微萃取)技术的适用范围
顶空(固相微萃取)技术主要用于气体,液体或者固体样本中挥发性组分或者半挥发性组分,气味物质,香味物质的检测。
03
顶空(固相微萃取)技术的特点
1、样本准备简单方便,能有效地避免一些高沸点基质对于质谱的污染以及液体进样前处理的多过程误差累积。
2、对于一些挥发性组分以及半挥发性组分灵敏度较好,能得到稳定可靠地定性定量结果。
3、对于一些含量较低,低挥发性的组分来说,固相微萃取技术能有效的起到一个富集的作用。
而顶空(固相微萃取)技术的不足在于检测范围较窄,检测周期较长,且固相微萃取fiber 贵,定量检测的精确度不高。
04
顶空(固相微萃取)技术的进样流程示意图
05
顶空(固相微萃取)技术的注意事项
萃取头fiber的选择,萃取温度的高低,萃取时间的长短,搅拌强度的选择等因素都会影响到最终的检测结果。
固相微萃取技术及其应用
![固相微萃取技术及其应用](https://img.taocdn.com/s3/m/35828b1fbdd126fff705cc1755270722192e591b.png)
固相微萃取技术及其应用引言固相微萃取技术是一种基于固相萃取原理的样品准备方法,通过利用具有选择性的固定相材料将目标分析物从复杂基质中提取出来。
本文将全面、详细、完整且深入地探讨固相微萃取技术及其在不同领域的应用。
二级标题1:固相微萃取原理三级标题1.1:概述固相微萃取原理是利用固定相材料对目标分析物具有吸附/吸附特性进行样品处理的一种方法。
固体相的选择性以及其特定表面积和孔隙结构都对固相微萃取的效果和选择性产生重要影响。
三级标题1.2:固相萃取方法固相微萃取通常可以分为固相萃取柱法和固相萃取薄膜法两种方法。
四级标题1.2.1:固相萃取柱法固相萃取柱法是利用填充有固定相材料的柱子进行样品处理的方法。
样品通过进样口进入柱子,并在与固定相材料接触的过程中发生吸附或吸附。
然后,目标分析物可以通过洗脱步骤从固定相材料中脱附出来,以供进一步分析。
四级标题1.2.2:固相萃取薄膜法固相萃取薄膜法是将固相材料固定在固体基底上,形成一个薄膜,并将其直接应用于样品处理中。
样品通过固相薄膜,目标分析物会与固相材料发生吸附/吸附作用,然后通过洗脱步骤从固定相材料中脱附出来。
三级标题1.3:固相微萃取选择性因素固相微萃取选择性取决于固定相材料的性质和样品基质的组成。
一般来说,选择性因素包括固定相材料的亲水/疏水性质、酸碱性质以及化学亲合性等。
二级标题2:固相微萃取技术的应用三级标题2.1:环境分析中的应用固相微萃取技术在环境分析中发挥着重要作用,可以用于水样、土壤样品和大气样品中目标分析物的富集和预处理。
三级标题2.2:食品安全检测中的应用固相微萃取技术可以用于食品安全检测中目标分析物的提取和富集,以及食品中的残留物的分析。
三级标题2.3:生物医学分析中的应用固相微萃取技术在生物医学领域中的应用包括药物代谢研究、体液分析和生物样品的预处理等。
三级标题2.4:石油化工中的应用固相微萃取技术可以用于石油化工领域中的精细化工产品的质量控制、污染物的分析和工艺监测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固相微萃取技术(SPME)及其应用摘要:固相微萃取(SPME)是一种应现代仪器要求而产生的样品前处理新技术。
随着人们对其原理和技术发展的深入理解,新型SPME装置的不断应用和发展,SPME已广泛应用于环保及水质处理、临床医药、公安案件处理、国防等。
本文对其原理、萃取条件、联用技术的现状进行了综述。
关键词:固相微萃取; 萃取条件; 联用技术; 应用; 综述The Solid Phase Micro Extraction (SPME) And It’s ApplicationAbstract: The solid phase micro extraction (SPME) is a new kind of modern instrument method before output sample. Along with people as to it's the princ iple develop deep with the technique into the comprehension, the new SPME e quip continuously applied with the development, SPME already extensive and a pplied handle in the environmental protection and fluid matter, the clinical med icine, public security official's case handle, national defense etc.. Present this te xt as to it's principle, the conditions of extraction, coupling with other analytic al technologies to proceeds the overviewed.Keywords: solid-phase micro extraction; the conditions of extraction; coupling with analytical technologies; application; review固相微萃取(Solid-Phase Microextraction,简写为SPME)是近年来国际上兴起的一项试样分析前处理新技术。
1990年由加拿大Waterloo大学的Arhturhe和Pa wliszyn首创,1993年由美国Supelco公司推出商品化固相微萃取装置,1994年获美国匹兹堡分析仪器会议大奖。
固相萃取是目前最好的试样前处理方法之一,具有简单、费用少、易于自动化等一系列优点。
而固相微萃取是在固相萃取基础上发展起来的,保留了其所有的优点,摒弃了其需要柱填充物和使用溶剂进行解吸的弊病,它只要一支类似进样器的固相微萃取装置即可完成全部前处理和进样工作。
该装置针头内有一伸缩杆,上连有一根熔融石英纤维,其表面涂有色谱固定相,一般情况下熔融石英纤维隐藏于针头内,需要时可推动进样器推杆使石英纤维从针头内伸出。
分析时先将试样放入带隔膜塞的固相微萃取专用容器中,如需要同时加入无机盐、衍生剂或对pH值进行调节,还可加热或磁力转子搅拌。
固相微萃取分为两步,第一步是萃取,将针头插入试样容器中,推出石英纤维对试样中的分析组分进行萃取;第二步是在进样过程中将针头插入色谱进样器,推出石英纤维中完成解吸、色谱分析等步骤。
固相微萃取的萃取方式有两种:一种是石英纤维直接插入试样中进行萃取,适用于气体与液体中的分析组分;另一种是顶空萃取,适用于所有基质的试样中挥发性、半挥发性分析组分。
由于以上优点,SPME迅速在药品和生物样品分析、环境监测与分析,食品检测等方面有了一席之地,随着各种联用技术和新型涂层材料的发展和成熟,SPME 已不在限于以上所说的几个方面,在医药、生物制药(如脂肪酸的分离测定,生物聚合物如蛋白质的吸附萃取)有了更大的发展,SPME已经成为分析方法中重要的一个领域。
1.原理固相微萃取装置非常小巧,状似一只色谱注射器,由手柄和萃取头或纤维头两部分组成,萃取头是一根外套不锈钢细管的1厘米长、涂有不同固定相的熔融石英纤维头,纤维头在不锈钢管内可自由伸缩,用于萃取、吸附样品,手柄用于安装或固定萃取头,可永久使用。
SPME的理论发展大致分为两个,一是早期的平衡理论[1],一是近年发展起来的非平衡理论[2]。
平衡理论认为在吸附或吸收的过程中,固-气或固-液相间建立了吸附或吸收平衡,吸附的量为:n=(KVCV')/(KV+V')(1-1)其中n为分析物吸附在固相涂层上的量,K为分析物在固相(或气相)和液相之间的平衡常数,V为固相涂层的体积,C为分析物在试样溶液中最初的浓度。
从公式中可以看出,n是一个与平衡常数、固相涂层的体积、试样体积及分析物在试样溶液中最初的浓度有关的量。
在SPME中选用的固相涂层对于萃取的有机成分有较强的亲和力,一个大的K可以保证有效的富集,提高了分析的灵敏度。
通常K值并不足以大到使分析物都被萃取到固相涂层中,因此SPME仅仅是一种平衡取样的方法。
若试样体积不变,在整个浓度区间,n与c呈指数而非线性的关系。
仅当c较低时,即平衡处于吸附等温线的线性范围内,公式(1)才成立。
若试样溶液有一个足够低的浓度(50微克每升以下),为了使响应值(n)与c保持线性关系,试样体积也受到限制(如小于5毫升),否则线性响应关系就不在保持。
非平衡理论侧认为在一定时间内,由于慢传质过程,平衡未完全达到。
考虑到分析物在两相中的扩散过程,它被萃取到固相涂层的量为:n=C﴾1-exp(-A(2mm'KV+2mm'V')/mVV'+2m'KVV')﴿(KVV'/KV+V') (1-2)式中K为分析物在试样介质和涂层之间的平衡常数,A为涂层的表面积,m、m'分别为分析物在试样和在固相涂层中的质量转移系数(m为扩散系数除以涂层厚度)。
在SPME采样时,并不一定要求分析物完全被萃取或一直进行到平衡建立,只要在严格条件下获得可靠且稳定的响应值与浓度之间的线性关系。
当吸附(吸收)时间无限长时,则达到平衡后分析物在固相涂层中的量n'为:n'=KVV'/KV+V'(1-3)此结果和平衡理论是一样的。
2固相微萃取技术条件的选择2.1萃取效果影响的因素2.1.1萃取头的选择萃取头是SPME装置的核心,其涂层的性质已经成为SPME方法成功与否的关键。
因此对其选择要十分慎重。
涂层的选择应该由待测物质的性质决定,一般根据相似相溶原理进行选择,极性大的待测物质选择强极性的涂层,极性小的选择弱极性的涂层材料。
小分子或挥发性物质常用厚膜100微米萃取头,较大分子或半挥发性物质采用7微米萃取头,综合考虑分析物的极性和挥发性时,还可以有85微米、65微米、75微米、30微米的极性或非极性萃取头选择。
固定相层可以以非键合、键合或部分交联的形式涂敷在石英纤维上,涂层在有机溶剂中的稳定性为:键合相>部分交联>非键合相,非键合相在有机溶剂中还有较大的溶胀性。
最常用的固相涂层物质是聚甲基硅氧烷(PDMS)和聚丙烯酸酯(PA),前者用于非极性化合物、多环芳烃、芳香烃等,100微米的PDMS适用于分析低沸点的极性物质,7微米的PDMS适用于分析中沸点和高沸点的物质。
后者多用于极性化合物如苯酚类化合物。
随着SPME的不断发展,新型的涂层材料也不断出现:涂有石墨碳黑的石英纤维用于分析水中和空气中的微量化合物,特点是表面多孔、热稳定性好、不保留水、吸附容量大等;Liu等人将键合有碳八和碳十八液相色谱用硅胶用高温环氧固定在金属丝上,将其用于分析水中的芳香烃化合物和多环芳烃,此涂层表面积大、易于达到吸附平衡、可提高检测灵敏度;公认的性能较好的极性涂层材料O megamax250在人体血清样、尿样的分析中效果良好,且干扰峰很少,而用此涂层对研碎药片中的雷尼替丁(ranitidine)进行分析,可得到较低的检测限(0.1微克每升),而多孔二乙烯基苯聚合物类涂层材料可用于杂环胺类的诱导变性剂、安非他明等药物的检测,检出限均在1微克每升以上;而Athur、Michalska等人提出以导电聚合物吡咯(PPY)作为涂层材料,得到了许多人的赞同,导电聚合物易于在单体上引入功能基或在其上沉积金属离子和存在多重作用力如π-π作用、偶极作用、酸碱作用等,PPY能[3]在空气中与有机溶剂保持相对稳定,且其单体和衍生物易得,Wu等人以其作为涂层材料成功地对β-受体阻断剂等物质进行分析,证明PPY有较高的萃取效率[4],PPY也可用于药物如安非他明的检测,甚至是离子型的待测物它也可以进行检测;此外,还有人开发了纤维双液相涂层,它克服了单液相涂层萃取有机化合物范围狭窄的缺点。
涂层材料必须满足对待测物有较强萃取能力外,还应在常用的有机溶剂中保持足够的稳定性,实际上的涂层很难两个方面都满足,如PA在使用了10-20次后就因损伤而不能再继续使用,这使得SPME方法的重现性受到一定的制约。
涂层材料越厚,对待测物吸附量越大,可降低最低检出限,但同时也会增加平衡萃取时间,减慢分析速度,而非键合相在溶剂中有一定的溶胀性对涂层厚度也应当考虑。
2.1.2试样量、容器体积由于固相微萃取是一个固定的萃取过程,为保证萃取的效果需要对试样量,试样容器的体积进行选择。
试样量与试样容器的体积对于保证结果有很大关系,试样量与试样容器体积之间存在有匹配关系,试样量增大的情况下,重现性明显变好,检出量提高。
2.1.3萃取时间萃取时间是从石英纤维与试样接触到吸附平衡所需要的时间。
为保证试验结果重现性良好,应在试验中保持萃取时间一定。
影响萃取时间的因素很多,例如分配系数、试样的扩散速度、试样量、容器体积、试样本身基质、温度等。
在萃取初始阶段,分析组分很容易且很快富集到石英纤维固定相中,随着时间的延长,富集的速度越来越慢,接近平衡状态时即使时间延长对富集也没有意义了,因此在摸索实验方法时必须做富集—时间曲线,从曲线上找出最佳萃取时间点,即曲线接近平缓的最短时间。
一般萃取时间在5~60 min以内,但也有特殊情况。
2.1.4使用无机盐向液体试样中加入少量氯化钠、硫酸钠等无机盐可增强离子强度,降低极性有机物在水中的溶解度即起到盐析作用,使石英纤维固定相能吸附更多的分析组分。
一般情况下可有效提高萃取效率,但并不一定适用于任何组分。
2.1.5改变pH值改变pH值同使用无机盐一样能改变分析组分与试样介质、固定相之间的分配系数,对于改善试样中分析成分的吸附是有益的。
由于固定相属于非离子型聚合物,故对于吸附中性形式的分析物更有效。